Siga este enlace para ver otros tipos de publicaciones sobre el tema: Bergman spaces.

Artículos de revistas sobre el tema "Bergman spaces"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Bergman spaces".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Alhami, Kifah Y. "OPERATORS ON BERGMAN SPACES". Journal of Southwest Jiaotong University 56, n.º 5 (30 de octubre de 2021): 399–403. http://dx.doi.org/10.35741/issn.0258-2724.56.5.35.

Texto completo
Resumen
Bergman space theory has been at the core of complex analysis research for many years. Indeed, Hardy spaces are related to Bergman spaces. The popularity of Bergman spaces increased when functional analysis emerged. Although many researchers investigated the Bergman space theory by mimicking the Hardy space theory, it appeared that, unlike their cousins, Bergman spaces were more complex in different aspects. The issue of invariant subspace constitutes one common problem in mathematics that is yet to be resolved. For Hardy spaces, each invariant subspace for shift operators features an elegant description. However, the method for formulating particular structures for the large invariant subspace of shift operators upon Bergman spaces is still unknown. This paper aims to characterize bounded Hankel operators involving a vector-valued Bergman space compared to other different vector value Bergman spaces.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Reséndis O., L. F. y L. M. Tovar S. "Bicomplex Bergman and Bloch spaces". Arabian Journal of Mathematics 9, n.º 3 (1 de julio de 2020): 665–79. http://dx.doi.org/10.1007/s40065-020-00285-y.

Texto completo
Resumen
Abstract In this article, we define the bicomplex weighted Bergman spaces on the bidisk and their associated weighted Bergman projections, where the respective Bergman kernels are determined. We study also the bicomplex Bergman projection onto the bicomplex Bloch space.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ghiloufi, N. y M. Zaway. "Meromorphic Bergman spaces". Ukrains’kyi Matematychnyi Zhurnal 74, n.º 8 (4 de octubre de 2022): 1060–72. http://dx.doi.org/10.37863/umzh.v74i8.6163.

Texto completo
Resumen
UDC 517.5We introduce new spaces of holomorphic functions on the pointed unit disc in <em>C</em> that generalize classical Bergman spaces. We prove some fundamental properties of these spaces and their dual spaces. Finally, we extend the Hardy – Littlewood and Fejer – Riesz inequalities to these spaces with application of the Toeplitz operators. ´
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Vasilevski1, N. L. "On quaternionic bergman and poly-bergman spaces". Complex Variables, Theory and Application: An International Journal 41, n.º 2 (abril de 2000): 111–32. http://dx.doi.org/10.1080/17476930008815241.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Shamoyan, Romi F. y Olivera Mihić. "On Extremal Problems in Certain New Bergman Type Spaces in Some Bounded Domains inCn". Journal of Function Spaces 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/975434.

Texto completo
Resumen
Based on recent results on boundedness of Bergman projection with positive Bergman kernel in analytic spaces in various types of domains inCn, we extend our previous sharp results on distances obtained for analytic Bergman type spaces in unit disk to some new Bergman type spaces in Lie ball, bounded symmetric domains of tube type, Siegel domains, and minimal bounded homogeneous domains.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Peláez, José Ángel, Jouni Rättyä y Kian Sierra. "Embedding Bergman spaces into tent spaces". Mathematische Zeitschrift 281, n.º 3-4 (19 de septiembre de 2015): 1215–37. http://dx.doi.org/10.1007/s00209-015-1528-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Shamoyan, Romi F. y Olivera R. Mihić. "On some extremal problems in Bergman spaces in weakly pseudoconvex domains". Communications in Mathematics 26, n.º 2 (1 de diciembre de 2018): 83–97. http://dx.doi.org/10.2478/cm-2018-0006.

Texto completo
Resumen
AbstractWe consider and solve extremal problems in various bounded weakly pseudoconvex domains in ℂn based on recent results on boundedness of Bergman projection with positive Bergman kernel in Bergman spaces $A_\alpha ^p$ in such type domains. We provide some new sharp theorems for distance function in Bergman spaces in bounded weakly pseudoconvex domains with natural additional condition on Bergman representation formula.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Axler, Sheldon. "Zero Multipliers of Bergman Spaces". Canadian Mathematical Bulletin 28, n.º 2 (1 de junio de 1985): 237–42. http://dx.doi.org/10.4153/cmb-1985-029-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Lusky, Wolfgang. "On generalized Bergman spaces". Studia Mathematica 119, n.º 1 (1996): 77–95. http://dx.doi.org/10.4064/sm-119-1-77-95.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Rochberg, Richard. "Book Review: Bergman spaces". Bulletin of the American Mathematical Society 42, n.º 02 (12 de enero de 2005): 251–57. http://dx.doi.org/10.1090/s0273-0979-05-01046-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Chacón, Gerardo R. y Humberto Rafeiro. "Variable exponent Bergman spaces". Nonlinear Analysis: Theory, Methods & Applications 105 (agosto de 2014): 41–49. http://dx.doi.org/10.1016/j.na.2014.04.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Békollé, David. "Theory of Bergman Spaces". Mathematical Intelligencer 27, n.º 1 (diciembre de 2005): 85–86. http://dx.doi.org/10.1007/bf02984819.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Sultanic, Saida. "Sub-Bergman Hilbert spaces". Journal of Mathematical Analysis and Applications 324, n.º 1 (diciembre de 2006): 639–49. http://dx.doi.org/10.1016/j.jmaa.2005.12.035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Zabulionis, A. "Imbedding of Bergman spaces". Lithuanian Mathematical Journal 27, n.º 2 (1988): 123–28. http://dx.doi.org/10.1007/bf00966193.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

BÁRTA, TOMÁŠ. "ON R-SECTORIAL DERIVATIVES ON BERGMAN SPACES". Bulletin of the Australian Mathematical Society 77, n.º 2 (abril de 2008): 305–13. http://dx.doi.org/10.1017/s0004972708000324.

Texto completo
Resumen
AbstractIn this paper we show boundedness of vector-valued Bergman projections on simple connected domains. With this result we show R-sectoriality of the derivative on the Bergman space on C+ and maximal Lp-regularity for an integrodifferential equation with a kernel in the Bergman space.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Chen, Zeqian y Wei Ouyang. "Maximal and Area Integral Characterizations of Bergman Spaces in the Unit Ball ofℂn". Journal of Function Spaces and Applications 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/167514.

Texto completo
Resumen
We present maximal and area integral characterizations of Bergman spaces in the unit ball ofℂn. The characterizations are in terms of maximal functions and area integral functions on Bergman balls involving the radial derivative, the complex gradient, and the invariant gradient. As an application, we obtain new maximal and area integral characterizations of Besov spaces. Moreover, we give an atomic decomposition of real-variable type with respect to Carleson tubes for Bergman spaces.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Luecking, Daniel H. "Multipliers of Bergman spaces into Lebesgue spaces". Proceedings of the Edinburgh Mathematical Society 29, n.º 1 (febrero de 1986): 125–31. http://dx.doi.org/10.1017/s001309150001748x.

Texto completo
Resumen
Let U be the open unit disk in the complex plane endowed with normalized Lebesgue measure m. will denote the usual Lebesgue space with respect to m, with 0<p<+∞. The Bergman space consisting of the analytic functions in will be denoted . Let μ be some positivefinite Borel measure on U. It has been known for some time (see [6] and [9]) what conditions on μ are equivalent to the estimate: There is a constant C such thatprovided 0<p≦q.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Cho, Hong Rae y Jinkee Lee. "On boundedness of the weighted Bergman projections on the Lipschitz spaces". Bulletin of the Australian Mathematical Society 66, n.º 3 (diciembre de 2002): 385–91. http://dx.doi.org/10.1017/s0004972700040247.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Vasilevski, N. L. "On the structure of Bergman and poly-Bergman spaces". Integral Equations and Operator Theory 33, n.º 4 (diciembre de 1999): 471–88. http://dx.doi.org/10.1007/bf01291838.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Selvan, A. Antony y R. Radha. "Frames in Hermite-Bergman and special Hermite-Bergman spaces". Journal of Pseudo-Differential Operators and Applications 8, n.º 2 (3 de noviembre de 2016): 241–54. http://dx.doi.org/10.1007/s11868-016-0178-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

BUCKLEY, STEPHEN M., PEKKA KOSKELA y DRAGAN VUKOTIĆ. "Fractional integration, differentiation, and weighted Bergman spaces". Mathematical Proceedings of the Cambridge Philosophical Society 126, n.º 2 (marzo de 1999): 369–85. http://dx.doi.org/10.1017/s030500419800334x.

Texto completo
Resumen
We study the action of fractional differentiation and integration on weighted Bergman spaces and also the Taylor coeffficients of functions in certain subclasses of these spaces. We then derive several criteria for the multipliers between such spaces, complementing and extending various recent results. Univalent Bergman functions are also considered.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Shamoyan, Romi F. y Olivera R. Mihić. "On Distance Function in Some New Analytic Bergman Type Spaces inℂn". Journal of Function Spaces 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/275416.

Texto completo
Resumen
We extend our previous sharp results on distances obtained for analytic Bergman type spaces in unit disk to some new analytic Bergman type spaces in higher dimensions inℂn. Also, we study the same problem in anisotropic mixed normh(p,q,s)spaces consisting ofn-harmonic functions on the unit polydisc ofℂn.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Stroethoff, Karel. "Compact Toeplitz operators on weighted harmonic Bergman spaces". Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 64, n.º 1 (febrero de 1998): 136–48. http://dx.doi.org/10.1017/s144678870000135x.

Texto completo
Resumen
AbstractWe consider the Bergman spaces consisting of harmonic functions on the unit ball in Rn that are squareintegrable with respect to radial weights. We will describe compactness for certain classes of Toeplitz operators on these harmonic Bergman spaces.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Guo, Xin y Maofa Wang. "Compact linear combinations of composition operators over the unit ball". Journal of Operator Theory 88, n.º 1 (15 de junio de 2022): 61–84. http://dx.doi.org/10.7900/jot.2020nov28.2310.

Texto completo
Resumen
In this paper, we study the compactness of any finite linear combination of composition operators with general symbols on weighted Bergman spaces over the unit ball in terms of a power type criterion. The strategy of the proof involves the subtle connection of composition operator theory between weighted Bergman spaces and Korenblum spaces.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Clifford, J. H. y Dechao Zheng. "Composition Operators on Bergman Spaces". Chinese Annals of Mathematics 24, n.º 04 (octubre de 2003): 433–48. http://dx.doi.org/10.1142/s0252959903000438.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Bekolle, David. "Bergman spaces with small exponents". Indiana University Mathematics Journal 49, n.º 3 (2000): 0. http://dx.doi.org/10.1512/iumj.2000.49.1687.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Stević, Stevo. "On generalized weighted bergman spaces". Complex Variables, Theory and Application: An International Journal 49, n.º 2 (10 de febrero de 2004): 109–24. http://dx.doi.org/10.1080/02781070310001650047.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Bertram, Wolfgang y Joachim Hilgert. "Geometric Hardy and Bergman spaces." Michigan Mathematical Journal 47, n.º 2 (2000): 235–63. http://dx.doi.org/10.1307/mmj/1030132532.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Wu, Zhijian. "Operators on harmonic Bergman spaces". Integral Equations and Operator Theory 24, n.º 3 (septiembre de 1996): 352–71. http://dx.doi.org/10.1007/bf01204606.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Miao, Jie y Dechao Zheng. "Compact Operators on Bergman Spaces". Integral Equations and Operator Theory 48, n.º 1 (1 de enero de 2004): 61–79. http://dx.doi.org/10.1007/s00020-002-1176-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Wu, Zhijian. "Area operator on Bergman spaces". Science in China Series A 49, n.º 7 (julio de 2006): 987–1008. http://dx.doi.org/10.1007/s11425-006-0987-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Hu, Zhangjian, Xiaofen Lv y Alexander P. Schuster. "Bergman spaces with exponential weights". Journal of Functional Analysis 276, n.º 5 (marzo de 2019): 1402–29. http://dx.doi.org/10.1016/j.jfa.2018.05.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Akgün, R. "Polynomial Approximation in Bergman Spaces". Ukrainian Mathematical Journal 68, n.º 4 (septiembre de 2016): 485–501. http://dx.doi.org/10.1007/s11253-016-1236-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Faour, Nazih S. "Toeplitz operators on Bergman spaces". Rendiconti del Circolo Matematico di Palermo 35, n.º 2 (junio de 1986): 221–32. http://dx.doi.org/10.1007/bf02844733.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Chen, Sh, S. Ponnusamy y X. Wang. "Harmonic mappings in Bergman spaces". Monatshefte für Mathematik 170, n.º 3-4 (15 de noviembre de 2012): 325–42. http://dx.doi.org/10.1007/s00605-012-0448-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Aleman, Alexandru, Stefan Richter y William T. Ross. "Bergman Spaces on Disconnected Domains". Canadian Journal of Mathematics 48, n.º 2 (1 de abril de 1996): 225–43. http://dx.doi.org/10.4153/cjm-1996-011-5.

Texto completo
Resumen
AbstractFor a bounded region G ⊂ ℂ and a compact set K ⊂ G, with area measure zero, we will characterize the invariant subspaces ℳ (under ƒ → zƒ) of the Bergman space (G \ K), 1 ≤ p < ∞, which contain (G) and with dim(ℳ/(z - λ)ℳ) = 1 for all λ ∈ G \ K. When G \ K is connected, we will see that dim(ℳ/(z - λ)ℳ) = 1 for all λ ∈ G \ K and thus in this case we will have a complete description of the invariant subspaces lying between (G) and (G \ K). When p = ∞, we will remark on the structure of the weak-star closed z-invariant subspaces between H∞(G) and H∞(G \ K). When G \ K is not connected, we will show that in general the invariant subspaces between (G) and (G \ K) are fantastically complicated. As an application of these results, we will remark on the complexity of the invariant subspaces (under ƒ → ζƒ) of certain Besov spaces on K. In particular, we shall see that in the harmonic Dirichlet space , there are invariant subspaces ℱ such that the dimension of ζℱ in ℱ is infinite.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Aleman, Alexandru y Aristomenis G. Siskakis. "Integration operators on Bergman spaces". Indiana University Mathematics Journal 46, n.º 2 (1997): 0. http://dx.doi.org/10.1512/iumj.1997.46.1373.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Luecking, Daniel H. "Zero sequences for bergman spaces". Complex Variables, Theory and Application: An International Journal 30, n.º 4 (agosto de 1996): 345–62. http://dx.doi.org/10.1080/17476939608814936.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Andersson, Mats Erik. "Integral means on bergman spaces". Complex Variables, Theory and Application: An International Journal 32, n.º 2 (marzo de 1997): 147–60. http://dx.doi.org/10.1080/17476939708814985.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Sadraoui, Houcine. "Hyponormality on general Bergman spaces". Filomat 33, n.º 17 (2019): 5737–41. http://dx.doi.org/10.2298/fil1917737s.

Texto completo
Resumen
A bounded operator T on a Hilbert space is hyponormal if T*T-TT* is positive. We give a necessary condition for the hyponormality of Toeplitz operators on weighted Bergman spaces, for a certain class of radial weights, when the symbol is of the form f+g?, where both functions are analytic and bounded on the unit disk. We give a sufficient condition when f is a monomial.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Diamantopoulos, E. "Hilbert matrix on Bergman spaces". Illinois Journal of Mathematics 48, n.º 3 (julio de 2004): 1067–78. http://dx.doi.org/10.1215/ijm/1258131071.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Chakrabarti, Debraj y Pranav Upadrashta. "Fourier representations in Bergman spaces". Journal of Mathematical Analysis and Applications 475, n.º 1 (julio de 2019): 464–89. http://dx.doi.org/10.1016/j.jmaa.2019.02.050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Shamoyan, R. F. y E. B. Tomashevskaya. "On some new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones". REPORTS ADYGE (CIRCASSIAN) INTERNATIONAL ACADEMY OF SCIENCES 21, n.º 3 (2021): 21–33. http://dx.doi.org/10.47928/1726-9946-2021-21-3-21-33.

Texto completo
Resumen
We introduce new multifunctional mixed norm analytic Herz-type spaces in tubular domains over symmetric cones and provide new sharp embedding theorems for them. Some results are new even in case of onefunctional holomorphic spaces. Some new related sharp results for new multifunctional Bergman-type spaces will be also provided under one condition on Bergman kernel.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Arsenovic, Milos y Romi Shamoyan. "Embedding relations and boundedness of the multifunctional operators in tube domains over symmetric cones". Filomat 25, n.º 4 (2011): 109–26. http://dx.doi.org/10.2298/fil1104109a.

Texto completo
Resumen
We obtain a new general sufficient condition for the continuity of the Bergman projection in tube domains over symmetric cones using multifunctional embeddings. We also obtain some sharp embedding relations between the generalized Hilbert-Hardy spaces and the mixed-norm Bergman spaces in this setting.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Bertram, Wolfgang y Joachim Hilgert. "Hardy spaces and analytic continuation of Bergman spaces". Bulletin de la Société mathématique de France 126, n.º 3 (1998): 435–82. http://dx.doi.org/10.24033/bsmf.2332.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Hilgert, Joachim y Bernhard Krötz. "Weighted Bergman spaces¶associated with causal symmetric spaces". manuscripta mathematica 99, n.º 2 (1 de junio de 1999): 151–80. http://dx.doi.org/10.1007/s002290050167.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Zhu, Xiangling y Weifeng Yang. "Differences of composition operators from weighted Bergman spaces to Bloch spaces". Filomat 28, n.º 9 (2014): 1935–41. http://dx.doi.org/10.2298/fil1409935z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

SEHBA, BENOÎT F. "-CARLESON MEASURES AND MULTIPLIERS BETWEEN BERGMAN–ORLICZ SPACES OF THE UNIT BALL OF". Journal of the Australian Mathematical Society 104, n.º 1 (22 de marzo de 2017): 63–79. http://dx.doi.org/10.1017/s1446788717000076.

Texto completo
Resumen
We define the notion of $\unicode[STIX]{x1D6F7}$-Carleson measures, where $\unicode[STIX]{x1D6F7}$ is either a concave growth function or a convex growth function, and provide an equivalent definition. We then characterize $\unicode[STIX]{x1D6F7}$-Carleson measures for Bergman–Orlicz spaces and use them to characterize multipliers between Bergman–Orlicz spaces.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Shamoyan, Romi y Olivera Mihic. "On some new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in pseudoconvex domains". Filomat 33, n.º 17 (2019): 5677–90. http://dx.doi.org/10.2298/fil1917677s.

Texto completo
Resumen
We introduce new multifunctional mixed norm analytic Herz-type spaces in strongly pseudoconvex domains and provide new sharp embedding theorems for them. Some results are new even in case of onefunctional holomorphic spaces. Some new related sharp results for new multifunctional Bergman-type spaces will be also provided under one condition on Bergman kernel. Similar results with similar proofs in unbounded tubular domains over symmetric cones and bounded symmetric domains will be also shortly mentioned.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Chacón, Gerardo R. "Toeplitz Operators on Weighted Bergman Spaces". Journal of Function Spaces and Applications 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/753153.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía