Índice
Literatura académica sobre el tema "Béton à faible impact envionnemental"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Béton à faible impact envionnemental".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Tesis sobre el tema "Béton à faible impact envionnemental"
Hantz, Tematuanui a. tehei. "Béton à faible impact environnemental pour la valorisation de coquilles d'huitres perlières Pinctada de Polynésie Française". Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3053.
Texto completoThe atolls of French Polynesia, despite lacking terrestrial resources, generate economic resources through pearl farming. This activity produces over a thousand tons of waste annually in the form of pearl oyster shells (Pinctada Margaritifera and Pinctada Maculata). These nacre co-products, with mechanical properties linked to their microstructure, could, once crushed, help address the shortage of sand and construction aggregates in the remote pearl-producing archipelagos. The goal of this thesis is to formulate an environmentally friendly concrete for the people of Polynesia, with a skeleton entirely composed of local pearl farming co-products.These shells, often exposed to tropical weather, can present varying levels of degradation. A comparison of the performances of fresh and degraded nacre revealed that the absence of organic matter in their matrix leads to reduced tensile strength and elongation at break. However, even in this state, nacre retains high performance among mollusk-synthesized materials.In addition, a comparison of mortars composed of 100% granular skeletons made from crushed shells (Pinctada Margaritifera, Pinctada Maculata, but also Crassostrea Gigas and Pecten Maximus) showed that the most efficient material is not necessarily the one made from the strongest shells, but rather from those with the most complex geometry. Moreover, the generally flat shape of crushed shells leads to a significant decrease in the compactness of the granular skeleton, which can negatively impact the concrete's properties. To reduce the void volume between grains, grinding parameters were optimized to achieve a blend of two granular classes with the lowest possible porosity.Even when optimized, granular skeletons composed of 100% crushed shells still exhibit intergranular porosity above 45%. Under these conditions, it is necessary to add a substantial amount of inert filler to maintain an acceptable cement quantity while filling all the intergranular voids. This addition, which dries out the filler paste, required a significant adjustment in the water quantity, depending on the porosity of the inert filler used. This methodology allowed the transition from unoptimized shell concrete, with very low compressive strength (2-5 MPa), to a much more efficient concrete with compressive strength exceeding 20 MPa.Looking ahead to the continuation of the project, which will take place in Polynesia beyond this thesis, knowledge transfer from the laboratory to socio-economic actors has begun using formulations incorporating co-products of oyster shells from Arcachon (Crassostrea Gigas), abundant in Nouvelle-Aquitaine, where most of the thesis work was conducted. The environmental impact on concrete structures made from crushed oyster shells, placed on the Île de Ré under real-world conditions with the aim of installing future boat moorings, was first studied. Next, a non-structural industrial demonstrator, consisting of a pedestrian walkway and steps, was implemented at the base of the Dune of Pilat as part of the renovation of the Village des Cabanes, a visitor center for this major classified site. In addition to proving the possible implementation of an innovative process in a complex societal and industrial chain, these projects have demonstrated that crushed shell concrete is mechanically durable and that it is even possible to adapt the formulations to non-optimized skeletons
Soualhi, Hamza. "Optimisation de la viscosité des bétons à faible impact environnemental". Thesis, Cergy-Pontoise, 2014. http://www.theses.fr/2014CERG0712.
Texto completoIt is possible to modify the composition of conventional concrete used in the building field in order to reduce the emission of CO2 associated with their manufacture, particularly in the production of their constituents. This is can be achieved by significantly reducing the amount of clinker and incorporating alternative materials (mineral and chemical additions), which are generally have a lower reactivity and require a low quantity of water, with an adequate level of mechanical performance and durability. This is the case of concrete with low environmental impact. The use superplasticizer in the production of concrete allows increasing their flowability, despite the using of low content of water, but their plastic viscosity remains high and may cause problems of implementation. Controlling the plastic viscosity of this type of concrete is crucial to ensure the development of these products.Within this objective, a rheometer for concrete was developed. The relevant test protocol used for this apparatus enables to characterize the rheological behavior not only for conventional concrete, but also for concrete with low environmental impact.The use of the developed rheometer within an experimental program permits then to highlight the effect of the parameters of concrete compositions, and in particular the used additions (type and rate of substitution) on their rheological behavior.The obtained results from this program propose and validate a mathematical model for assessing the plastic viscosity, which is applicable for ordinary concrete and concrete with low environmental impact. An optimization method for calculating the plastic viscosity of the concrete has been proposed using this model
Petitpain, Marjorie. "Bétons à faible impact environnemental pour l’industrie du béton : accélération du durcissement de bétons à base de liants ternaires". Electronic Thesis or Diss., Lille 1, 2017. http://www.theses.fr/2017LIL10160.
Texto completoThis study is part of the action program of the french concrete industry; it aims finding innovative solutions of concrete with low environmental impact, which allow to get technical and economic performances at least equivalent to those of the traditional concretes. To answer this issue, the study of ternary binders, made of Portland cement CEM I, blast furnace slag and limestone addition, was realized by optimizing the means that are available in precast industry to accelerate their hardening: use of a thermal treatment, use of chemical activators and optimization of the mixture’s compactness. Thermal treatment proves to be the most powerful lever of action. The developed solutions (material and process) obtain a much better economic-environmental balance compared to a control concrete whose binder is composed of Portland cement CEM I
Petitpain, Marjorie. "Bétons à faible impact environnemental pour l’industrie du béton : accélération du durcissement de bétons à base de liants ternaires". Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10160/document.
Texto completoThis study is part of the action program of the french concrete industry; it aims finding innovative solutions of concrete with low environmental impact, which allow to get technical and economic performances at least equivalent to those of the traditional concretes. To answer this issue, the study of ternary binders, made of Portland cement CEM I, blast furnace slag and limestone addition, was realized by optimizing the means that are available in precast industry to accelerate their hardening: use of a thermal treatment, use of chemical activators and optimization of the mixture’s compactness. Thermal treatment proves to be the most powerful lever of action. The developed solutions (material and process) obtain a much better economic-environmental balance compared to a control concrete whose binder is composed of Portland cement CEM I
Kassem, Fidaa. "Reliability of reinforced concrete structures : Case of slabs subjected to impact". Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0096/document.
Texto completoReinforced concrete structures (RC) are subjected to several sources of uncertainties that highly affect their response. These uncertainties are related to the structure geometry, material properties and the loads applied. The lack of knowledge on the potential load, as well as the uncertainties related to the features of the structure shows that the design of RC structures could be made in a reliability framework. This latter allows propagating uncertainties in the deterministic analysis. However, in order to compute failure probability according to one or several failure criteria, mechanical and stochastic models have to be coupled which can be very time consuming and in some cases impossible. The platform OpenTURNS is used to perform the reliability analysis of three different structures . OpenTURNS is coupled to CASTEM to study the reliability of a RC multifiber cantilever beam subjected to a concentrated load at the free end, to Abaqus to study the reliability of RC slabs which are subjected to accidental dropped object impact during handling operations within nuclear plant buildings, and to ASTER to study the reliability of a prestressed concrete containment building. Only the physical problem of reinforced concrete impacted by a free flying object is investigated in detail. Two deterministic models are used and evaluated: a 3D finite element model simulated with the commercial code “Abaqus/Explicit” and an analytical mass-spring model. The aim of this study is to address this issue of reliability computational effort. Two strategies are proposed for the application of impacted RC slabs. The first one consists in using deterministic analytical models which predict accurately the response of the slab. In the opposite case, when finite element models are needed, the second strategy consists in reducing the number of simulations needed to assess the failure probability. In order to examine the reliability of RC slabs, Monte Carlo and importance sampling methods are coupled with the mass-spring model, while FORM is used with the finite element model. These two stategies are compared in order to verify their efficiency to calculate the probability of failure. Finally, a parametric study is performed to identify the influence of deterministic model parameters on the calculation of failure probability (dimensions of slabs, impact velocity and mass, boundary conditions, impact point, reinforcement