Artículos de revistas sobre el tema "Bi-functional Electrocatalyst"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Bi-functional Electrocatalyst".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Ekspong, Joakim, and Thomas Wågberg. "Stainless Steel as A Bi-Functional Electrocatalyst—A Top-Down Approach." Materials 12, no. 13 (2019): 2128. http://dx.doi.org/10.3390/ma12132128.
Texto completoSunarso, Jaka, Alexey M. Glushenkov, Angel A. J. Torriero, et al. "Bi-Functional Water/Oxygen Electrocatalyst Based on PdO-RuO2Composites." Journal of The Electrochemical Society 160, no. 1 (2012): H74—H79. http://dx.doi.org/10.1149/2.019302jes.
Texto completoTang, Shaobin, Xunhui Zhou, Tianyong Liu, et al. "Single nickel atom supported on hybridized graphene–boron nitride nanosheet as a highly active bi-functional electrocatalyst for hydrogen and oxygen evolution reactions." Journal of Materials Chemistry A 7, no. 46 (2019): 26261–65. http://dx.doi.org/10.1039/c9ta10500j.
Texto completoWang, Hao-Fan, Cheng Tang, Xiaolin Zhu, and Qiang Zhang. "A ‘point–line–point’ hybrid electrocatalyst for bi-functional catalysis of oxygen evolution and reduction reactions." Journal of Materials Chemistry A 4, no. 9 (2016): 3379–85. http://dx.doi.org/10.1039/c5ta09327a.
Texto completoMeng, Lu, Ling Zhan, Hongliang Jiang, Yihua Zhu, and Chunzhong Li. "Confined Co9S8 into a defective carbon matrix as a bifunctional oxygen electrocatalyst for rechargeable zinc–air batteries." Catalysis Science & Technology 9, no. 20 (2019): 5757–62. http://dx.doi.org/10.1039/c9cy01717h.
Texto completoJin, Liujun, Hui Xu, Cheng Wang, Yong Wang, Hongyuan Shang, and Yukou Du. "Multi-dimensional collaboration promotes the catalytic performance of 1D MoO3 nanorods decorated with 2D NiS nanosheets for efficient water splitting." Nanoscale 12, no. 42 (2020): 21850–56. http://dx.doi.org/10.1039/d0nr05250g.
Texto completoWang, Yaqin, Xinxin Xu, Luyao Liu, Jin Chen, and Guimei Shi. "A coordination polymer-derived Co3O4/Co–N@NMC composite material as a Zn–air battery cathode electrocatalyst and microwave absorber." Dalton Transactions 48, no. 21 (2019): 7150–57. http://dx.doi.org/10.1039/c8dt03792b.
Texto completoChen, Xiaojuan, Yan Meng, Taotao Gao, et al. "An iron foam acts as a substrate and iron source for the in situ construction of a robust transition metal phytate electrocatalyst for overall water splitting." Sustainable Energy & Fuels 4, no. 1 (2020): 331–36. http://dx.doi.org/10.1039/c9se00348g.
Texto completoYuan, Shi-Jie, and Xiao-Hu Dai. "An efficient sewage sludge-derived bi-functional electrocatalyst for oxygen reduction and evolution reaction." Green Chemistry 18, no. 14 (2016): 4004–11. http://dx.doi.org/10.1039/c5gc02729b.
Texto completoWu, Caiyun, Yunmei Du, Yunlei Fu, et al. "Mo, Co co-doped NiS bulks supported on Ni foam as an efficient electrocatalyst for overall water splitting in alkaline media." Sustainable Energy & Fuels 4, no. 4 (2020): 1654–64. http://dx.doi.org/10.1039/c9se00822e.
Texto completoMaitra, S., R. Mitra, and T. K. Nath. "Aqueous Mg-Ion Supercapacitor and Bi-Functional Electrocatalyst Based on MgTiO3 Nanoparticles." Journal of Nanoscience and Nanotechnology 21, no. 12 (2021): 6217–26. http://dx.doi.org/10.1166/jnn.2021.19321.
Texto completoAmanullah, Sk, and Abhishek Dey. "A bi-functional cobalt-porphyrinoid electrocatalyst: balance between overpotential and selectivity." JBIC Journal of Biological Inorganic Chemistry 24, no. 4 (2019): 437–42. http://dx.doi.org/10.1007/s00775-019-01670-5.
Texto completoBurse, Shalmali, Rakesh Kulkarni, Rutuja Mandavkar, et al. "Vanadium-Doped FeBP Microsphere Croissant for Significantly Enhanced Bi-Functional HER and OER Electrocatalyst." Nanomaterials 12, no. 19 (2022): 3283. http://dx.doi.org/10.3390/nano12193283.
Texto completoAly, Islam A., Mohamed O. Abdelsalam, and Ehab N. El Sawy. "Surface Engineered Ni-Fe Foam As a Bi-Functional Electrode for Water Electrolysis in Alkaline Media." ECS Meeting Abstracts MA2024-01, no. 34 (2024): 1714. http://dx.doi.org/10.1149/ma2024-01341714mtgabs.
Texto completoLuo, Xinlei, Ziheng Zheng, Bingxue Hou, Xianpan Xie, and Cheng Cheng Wang. "Facile synthesis of a MOF-derived Co–N–C nanostructure as a bi-functional oxygen electrocatalyst for rechargeable Zn–air batteries." RSC Advances 13, no. 27 (2023): 18888–97. http://dx.doi.org/10.1039/d3ra02191b.
Texto completoNguyen, Thi Xuyen, Nai-Hsin Ting, and Jyh-Ming Ting. "Multi-metal phosphide as bi-functional electrocatalyst for enhanced water splitting performance." Journal of Power Sources 552 (December 2022): 232249. http://dx.doi.org/10.1016/j.jpowsour.2022.232249.
Texto completoKumaravel, Sangeetha, Kannimuthu Karthick, Selvasundarasekar Sam Sankar, et al. "Current progressions in transition metal based hydroxides as bi-functional catalysts towards electrocatalytic total water splitting." Sustainable Energy & Fuels 5, no. 24 (2021): 6215–68. http://dx.doi.org/10.1039/d1se01193f.
Texto completoDuan, Yaxin, Haitao Liu, Huabing Zhang, et al. "Conductive bimetal organic framework nanorods decorated with highly dispersed Co3O4 nanoparticles as bi-functional electrocatalyst." Nanotechnology 33, no. 14 (2022): 145601. http://dx.doi.org/10.1088/1361-6528/ac3d66.
Texto completoNandan, R., and K. K. Nanda. "Rational geometrical engineering of palladium sulfide multi-arm nanostructures as a superior bi-functional electrocatalyst." Nanoscale 9, no. 34 (2017): 12628–36. http://dx.doi.org/10.1039/c7nr04733a.
Texto completoHu, Enlai, Jiqiang Ning, Bin He, et al. "Unusual formation of tetragonal microstructures from nitrogen-doped carbon nanocapsules with cobalt nanocores as a bi-functional oxygen electrocatalyst." Journal of Materials Chemistry A 5, no. 5 (2017): 2271–79. http://dx.doi.org/10.1039/c6ta09943b.
Texto completoNandan, Ravi, and K. K. Nanda. "A unique approach to designing resilient bi-functional nano-electrocatalysts based on ultrafine bimetallic nanoparticles dispersed in carbon nanospheres." Journal of Materials Chemistry A 5, no. 21 (2017): 10544–53. http://dx.doi.org/10.1039/c7ta02293j.
Texto completoMukherjee, Biswanath. "First principles investigation on cobalt–tetracyanoquinodimethane monolayer for efficient Bi-functional single atom electrocatalyst." Journal of Electroanalytical Chemistry 897 (September 2021): 115602. http://dx.doi.org/10.1016/j.jelechem.2021.115602.
Texto completoRodney, John D., S. Deepapriya, M. Cyril Robinson, et al. "Lanthanum doped copper oxide nanoparticles enabled proficient bi-functional electrocatalyst for overall water splitting." International Journal of Hydrogen Energy 45, no. 46 (2020): 24684–96. http://dx.doi.org/10.1016/j.ijhydene.2020.06.240.
Texto completoWang, Ying, Mengfei Qiao, and Xamxikamar Mamat. "An advantage combined strategy for preparing bi-functional electrocatalyst in rechargeable zinc-air batteries." Chemical Engineering Journal 402 (December 2020): 126214. http://dx.doi.org/10.1016/j.cej.2020.126214.
Texto completoBhuvanendran, Narayanamoorthy, Sabarinathan Ravichandran, Kai Peng, Santhana Sivabalan Jayaseelan, Qian Xu, and Huaneng Su. "Highly durable carbon supported FeN nanocrystals feature as efficient bi‐functional oxygen electrocatalyst." International Journal of Energy Research 44, no. 11 (2020): 8413–26. http://dx.doi.org/10.1002/er.5524.
Texto completoLv, Hualun, Xudong Zhang, Jialin Cai, et al. "Construction of RuSe2/MoOx hybrid and used as bi-functional electrocatalyst for overall water splitting." Materials Chemistry and Physics 277 (February 2022): 125461. http://dx.doi.org/10.1016/j.matchemphys.2021.125461.
Texto completoJhajharia, Suman Kumari, and Kaliaperumal Selvaraj. "Molecularly engineered graphene oxide anchored metal organic assembly: An active site economic bi-functional electrocatalyst." FlatChem 29 (September 2021): 100269. http://dx.doi.org/10.1016/j.flatc.2021.100269.
Texto completoZhuang, Shuxin, Kelong Huang, Chenghuan Huang, Hongxia Huang, Suqin Liu, and Min Fan. "Preparation of silver-modified La0.6Ca0.4CoO3 binary electrocatalyst for bi-functional air electrodes in alkaline medium." Journal of Power Sources 196, no. 8 (2011): 4019–25. http://dx.doi.org/10.1016/j.jpowsour.2010.11.056.
Texto completoJoy, Jaison, Sivamathini Rajappa, Vijayamohanan K. Pillai, and Subbiah Alwarappan. "Co3Fe7/nitrogen-doped graphene nanoribbons as bi-functional electrocatalyst for oxygen reduction and oxygen evolution." Nanotechnology 29, no. 41 (2018): 415402. http://dx.doi.org/10.1088/1361-6528/aad35e.
Texto completoMujtaba, Ayesha, Naveed Kausar Janjua, Tariq Yasin, and Sana Sabahat. "Assessing the electrochemical performance of hierarchical nanostructured CuO@TiO2 as an efficient bi-functional electrocatalyst." Journal of the Iranian Chemical Society 17, no. 3 (2019): 649–62. http://dx.doi.org/10.1007/s13738-019-01797-x.
Texto completoJayaseelan, Santhana Sivabalan, Narayanamoorthy Bhuvanendran, Qian Xu, and Huaneng Su. "Co3O4 nanoparticles decorated Polypyrrole/carbon nanocomposite as efficient bi-functional electrocatalyst for electrochemical water splitting." International Journal of Hydrogen Energy 45, no. 7 (2020): 4587–95. http://dx.doi.org/10.1016/j.ijhydene.2019.12.085.
Texto completoJo, Seunghwan, Woon Bae Park, Docheon Ahn, et al. "Metal-Oxygen Hybridization of Bi/Bife(oxy)Hydroxide for Sustainable Lattice Oxygen Mechanism at High Current Density." ECS Meeting Abstracts MA2023-01, no. 37 (2023): 2155. http://dx.doi.org/10.1149/ma2023-01372155mtgabs.
Texto completoLee, Dong-Yeol, Jaeyoung Lee, and Sinwoo Kang. "Applicability of Non-PGM Bi-Functional Electrocatalyst in a Scaled-up Anion Exchange Membrane Water Electrolysis." ECS Meeting Abstracts MA2024-01, no. 34 (2024): 1756. http://dx.doi.org/10.1149/ma2024-01341756mtgabs.
Texto completoBian, Weiyong, Zhenrong Yang, Peter Strasser, and Ruizhi Yang. "A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution." Journal of Power Sources 250 (March 2014): 196–203. http://dx.doi.org/10.1016/j.jpowsour.2013.11.024.
Texto completoLiu, Ying, Fei Yang, Wei Qin, and Guowei Yang. "Co2P@NiCo2O4 bi-functional electrocatalyst with low overpotential for water splitting in wide range pH electrolytes." Journal of Colloid and Interface Science 534 (January 2019): 55–63. http://dx.doi.org/10.1016/j.jcis.2018.09.017.
Texto completoEnsafi, Ali A., Mehdi Jafari-Asl, Afshin Nabiyan, and B. Rezaei. "Ni3S2/ball-milled silicon flour as a bi-functional electrocatalyst for hydrogen and oxygen evolution reactions." Energy 116 (December 2016): 392–401. http://dx.doi.org/10.1016/j.energy.2016.09.128.
Texto completoSiva, V., L. Kumaresan, P. Velusamy, Govindasamy Palanisamy, T. Chellapandi, and N. Dineshbabu. "Development of sustainable NiFe2O4/ZnO/g-C3N4 nanohybrid electrocatalyst for bi-functional HER and OER applications." Materials Science in Semiconductor Processing 195 (August 2025): 109589. https://doi.org/10.1016/j.mssp.2025.109589.
Texto completoKhadija-Tul-Kubra, Faiqa Noreen, Ali Junaid, et al. "An effective bi-functional electrocatalyst for electrochemical water splitting using NiCo2O4 nanoparticles decorated with Polypyrrole nanocomposite." Fuel 397 (October 2025): 135381. https://doi.org/10.1016/j.fuel.2025.135381.
Texto completoZahoor, Awan. "Effect of varying percentages of Co3O4 Nanoparticles on the Behavior of (ORR/OER) Bifunctional Co3O4/α-MnO2 Electrocatalyst". TECCIENCIA 18, № 34 (2023): 43–52. http://dx.doi.org/10.18180/tecciencia.2023.34.4.
Texto completoZahoor, Awan, Ghadia Ahmed, Muhammad Amir, Faaz Butt Butt та as Naqvi. "Effect of varying percentages of Co3O4 Nanoparticles on the Behavior of (ORR/OER) Bifunctional Co3O4/α-MnO2 Electrocatalyst". TECCIENCIA 18, № 34 (2023): 43–52. http://dx.doi.org/10.18180/tecciencia.2022.34.4.
Texto completoAnand, Abhas, Anil Verma, and Suddhasatwa Basu. "(Invited) NiCo2O4/MnO2 Microsphere as Efficient Bi-functional Electrocatalyst for Zinc-air Battery." ECS Meeting Abstracts MA2024-01, no. 10 (2024): 932. http://dx.doi.org/10.1149/ma2024-0110932mtgabs.
Texto completoSarmad, Qassam, Uneeb Masood Khan, Mutawara Mahmood Baig та ін. "Praseodymium-doped Sr2TiFeO6-δ double perovskite as a bi-functional electrocatalyst for hydrogen production through water splitting". Journal of Environmental Chemical Engineering 10, № 3 (2022): 107609. http://dx.doi.org/10.1016/j.jece.2022.107609.
Texto completoTian, Weiliang, Cheng Wang, Ruida Chen, et al. "Aligned N-doped carbon nanotube bundles with interconnected hierarchical structure as an efficient bi-functional oxygen electrocatalyst." RSC Advances 8, no. 46 (2018): 26004–10. http://dx.doi.org/10.1039/c8ra03994a.
Texto completoJung, Ho-Young, Sehkyu Park, Prabhu Ganesan, and Branko N. Popov. "Electrochemical Studies of Unsupported PtIr Electrocatalyst as Bi-Functional Oxygen Electrode in Unitized Regenerative Fuel Cells (URFCs)." ECS Transactions 16, no. 2 (2019): 1117–21. http://dx.doi.org/10.1149/1.2981953.
Texto completoMeng, Lingshen, Liping Li, Jianghao Wang, et al. "Valence-engineered MoNi4/MoOx@NF as a Bi-functional electrocatalyst compelling for urea-assisted water splitting reaction." Electrochimica Acta 350 (August 2020): 136382. http://dx.doi.org/10.1016/j.electacta.2020.136382.
Texto completoChen, Lulu, Wenxiu Yang, Xiangjian Liu, Ling Long, Dandan Li, and Jianbo Jia. "Cobalt sulfide/N,S-codoped defect-rich carbon nanotubes hybrid as an excellent bi-functional oxygen electrocatalyst." Nanotechnology 30, no. 7 (2018): 075402. http://dx.doi.org/10.1088/1361-6528/aaf457.
Texto completoKaipannan, Subramani, P. Anandha Ganesh, Karnan Manickavasakam, et al. "Waste engine oil derived porous carbon/ZnS Nanocomposite as Bi-functional electrocatalyst for supercapacitor and oxygen reduction." Journal of Energy Storage 32 (December 2020): 101774. http://dx.doi.org/10.1016/j.est.2020.101774.
Texto completoLi, Guang-Lan, Guang-Chun Cheng, Bei-Bei Yang, et al. "One-step construction of porous mixed spinel-type MnCoxO4/NCNT as an efficient bi-functional oxygen electrocatalyst." International Journal of Hydrogen Energy 43, no. 42 (2018): 19451–59. http://dx.doi.org/10.1016/j.ijhydene.2018.08.175.
Texto completoRasheed, Tabinda, Sana Munir, Amal BaQais, et al. "Multi-walled carbon nanotubes with embedded nickel sulphide as an effective electrocatalyst for Bi-functional water splitting." International Journal of Hydrogen Energy 67 (May 2024): 373–80. http://dx.doi.org/10.1016/j.ijhydene.2024.04.131.
Texto completoSreekumar, Revathy, Shilpa Radhakrishna Pillai, Rakhi Raghavan Baby, and Sreejakumari Sukumaran Suseelamma. "Morphology tuned Ni-WS2 coated stainless steel mesh as an efficient bi-functional electrocatalyst for water splitting." Materials Today Communications 44 (March 2025): 111860. https://doi.org/10.1016/j.mtcomm.2025.111860.
Texto completo