Literatura académica sobre el tema "Bioabsorbable polymers"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bioabsorbable polymers".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Bioabsorbable polymers":

1

Shalaby, Shalaby W. "Bioabsorbable polymers update". Journal of Applied Biomaterials 3, n.º 1 (1992): 73–74. http://dx.doi.org/10.1002/jab.770030112.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sharifpanah, Fatemeh, Matthias Reinhardt, Johanna Schönleben, Claudia Meyer, Madeleine Richter, Matthias Schnabelrauch, Claudia Rode et al. "Embryonic Stem Cells for Tissue Biocompatibility, Angiogenesis, and Inflammation Testing". Cells Tissues Organs 204, n.º 1 (2017): 1–12. http://dx.doi.org/10.1159/000471794.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Aim: To introduce embryoid bodies derived from mouse embryonic stem (ES) cells, which differentiate blood vessel-like structures and leukocytes, as a novel in vitro model system for biocompatibility, inflammation, and angiogenesis studies. Methodology/Results: Punched spherical discs of bioabsorbable polymers (ε-caprolactone and L-lactide in different compositions) with a diameter of 2 mm and a thickness of 0.2 mm were inoculated with embryoid bodies for cocultivation. As reference material for biocompatible, nonbioabsorbable, and bioincompatible materials, polymer punched discs of petriPERM (PP) membrane (polytetrafluoroethylene) as well as polyvinylchloride (PVC) were used. Tissue outgrowth on the polymer discs decreased and cell toxicity increased upon confrontation on bioabsorbable biomaterials and PVC. Bioabsorbable polymers as well as PVC decreased the branching points and total tube length of CD31-positive vascular structures in embryoid bodies. With the exception of PP, all applied materials increased the differentiation of CD68-positive macrophages and the generation of reactive oxygen species, which is indicative of proinflammatory processes upon contact of tissue with biomaterials. Consequently, cocultivation with polymers increased secretion of the cytokines interleukin-6, monocyte chemotactic protein-1, and tumor necrosis factor-α. Conclusion: Three-dimensional tissues cultivated from ES cells are well-suited for testing the biocompatibility, the vascular response, and the inflammatory reaction towards bioabsorbable and nonbioabsorbable polymers.
3

KIMURA, Yoshiharu. "Biodegradable and Bioabsorbable Polymers". Journal of the Japan Society of Colour Material 64, n.º 8 (1991): 512–22. http://dx.doi.org/10.4011/shikizai1937.64.512.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

TÖrmälä, P., T. Pohjonen y P. Rokkanen. "Bioabsorbable polymers: Materials technology and surgical applications". Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 212, n.º 2 (1 de febrero de 1998): 101–11. http://dx.doi.org/10.1243/0954411981533872.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Biostable and bioabsorbable biomaterials are used to manufacture implants for supporting, replacement, augmentation and guiding of growth of tissues. Bioabsorbable implants are a better choice for applications where only the temporary presence of the implant is needed. Because of bioabsorption of such implants, there is no need for a removal operation after healing of the tissue and the risks of implant related, long-term complications are eliminated or strongly reduced. Reinforcing of bioabsorbable materials is necessary in order to develop strong and safe, small implants for fixation of bone fractures and connective tissue damage. Self-reinforced bioabsorbable polymeric implants have been used so far extensively in the treatment of traumas of the musculoskeletal system.
5

Coe, Jeffrey D. "Instrumented transforaminal lumbar interbody fusion with bioabsorbable polymer implants and iliac crest autograft". Neurosurgical Focus 16, n.º 3 (marzo de 2004): 1–9. http://dx.doi.org/10.3171/foc.2004.16.3.12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Object The purpose of this study was to evaluate the clinical and radiographic results in 31 patients from one center who underwent instrumented transforaminal lumbar interbody fusion (TLIF) for primarily degenerative indications. Methods Bioabsorbable polymer spacers manufactured with a copolymer of 70:30 poly(L-lactide-co-D,L-lactide) and filled with iliac crest autograft bone were used for the TLIF procedure. In this paper the details of this procedure, intermediate (1- to 2-year) clinical and radiographic outcomes, and the basic science and rationale for the use of bioabsorbable polymers are discussed. At a mean of 18.4 months of follow up, 30 patients (96.8%) were judged to have attained solid fusions and 25 patients (81%) had good to excellent results. Three patients (9.7%) experienced complications, none of which were directly or indirectly attributable to the use of the bioabsorbable polymer implant. Only one implant in one patient (3.2%) demonstrated mechanical failure on insertion, and that patient experienced no clinical sequelae. Conclusions This is the first clinical series to be published in which the mean follow-up duration equals or exceeds the biological life expectancy of this material (12–18 months). Both the clinical and radiographic results of this study support the use of interbody devices manufactured from biodegradable polymers for structural interbody support in the TLIF procedure.
6

Vert, Michel. "Bioabsorbable polymers in medicine: an overview". EuroIntervention 5, F (diciembre de 2009): F9—F14. http://dx.doi.org/10.4244/eijv5ifa2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ebisawa, Mizue. "Optical Measurement of Bioabsorbable Crystalline Polymers". IEEJ Transactions on Fundamentals and Materials 132, n.º 6 (2012): 458–59. http://dx.doi.org/10.1541/ieejfms.132.458.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Sinha, Vivek R. y Lara Khosla. "Bioabsorbable Polymers for Implantable Therapeutic Systems". Drug Development and Industrial Pharmacy 24, n.º 12 (enero de 1998): 1129–38. http://dx.doi.org/10.3109/03639049809108572.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Vaccaro, Alexander R. y Luke Madigan. "Spinal applications of bioabsorbable implants". Journal of Neurosurgery: Spine 97, n.º 4 (noviembre de 2002): 407–12. http://dx.doi.org/10.3171/spi.2002.97.4.0407.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
✓ With the increasing use of bioabsorbable implants in a variety of clinical conditions, potential advantages in selected spinal applications are now being realized. Newer polymers with biomechanical properties relevant to the requirements of specific spinal implants and resorption rates appropriate for specific spinal applications are being developed. These new materials offer the necessary biomechanical stability of conventional spinal implants without the sequelae associated with metallic implants such as long-term loosening, implant migration, and imaging interference. At this time, the majority of clinical applications for these new polymers have involved tension band plating in the lumbar and anterior cervical spine, anterior spinal interbody reconstruction, posterior bone graft containment, and bone graft harvest site reconstruction.
10

Giardino, Roberto, Milena Fini, Nicolo Nicoli Aldini, Gianluca Giavaresi y Michele Rocca. "Polylactide Bioabsorbable Polymers for Guided Tissue Regeneration". Journal of Trauma: Injury, Infection, and Critical Care 47, n.º 2 (agosto de 1999): 303–8. http://dx.doi.org/10.1097/00005373-199908000-00014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Bioabsorbable polymers":

1

Leonard, Dermot John. "Enhanced performance of bioabsorbable polymers using high-energy radiation". Thesis, Queen's University Belfast, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486240.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Synthetic bioabsorbable polymers, first developed in the 1960s, are being increasingly used in the manufacture of medical devices. Some of the uses these devices have been applied to are suturing, orthopaedic fixation and drug-delivery. The principal advantage offered by bioabsorbable polymers is that a device made from these materials does not require removal. However, the degradation characteristics of these materials occasionally cause problems in medical uses, such as negative tissue reactions and poor wound healing. Therefore, a need exists to develop techniques which can modify the degradation characteristics ofbioabsorbable polymers. This study investigated the application of high-energy radiation, in the form of gamma and electron-beam (e-beam) radiation, to the bioabsorbable polymers polylactide (PLA) and polylactide-co-glycolide (pLGA). It was fqund that both forms of radiation reduce the molecular weight of these polymers in proportion to the delivered dose. Additionally, it was found that the effect of e-beam radiation is depth-dependent, with the surface material being more significantly affected than the core material. The reduction in the molecular weight ofthe bioabsorbable materials was found to have led to reduced mechanical strength and absorption time. After e-beam irradiation these characteristics were also found to be depth-dependent The work presented in this thesis suggests that e-beam radiation can be used to tailor the characteristics ofa bioabsorbable polymer that are crucial to its use in medical devices. This tailoring can be location specific, which it is believed will lead to the production ofbioabsorbable medical devices with improved efficacy and less negative response.
2

Guerra, Sánchez Antonio. "Contribution to bioabsorbable stent manufacture with additive manufacturing technologies". Doctoral thesis, Universitat de Girona, 2019. http://hdl.handle.net/10803/667867.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
The main motivation of this work was to analyse the feasibility of the current stent’s manufacturing process to produce the new bioresorbable stents (BRS) as well as study new manufacturing methods. Fibre Laser Cutting (FLC) has been selected because is the current manufacturing process for stents, and 3D-Printing (3DP) because its capability to process different types of materials for medical applications and their economic aspects. Stents have been selected for being one of the most implanted biomedical device in the world. The thesis focuses on improve the bioresorbable stent’s manufacturing processes, establishing relationships between the process parameters and the key stent aspects, namely, precision, mechanical properties, and medical properties, and reduce the costs derived of the manufacturing process
La principal motivació d'aquest treball va ser analitzar la viabilitat del procés de fabricació de stent actual per produir els nous stents bioabsorbibles (SBA), així com estudiar noves maneres de fabricar-los. El tall làser de fibra (TLF) ha estat seleccionat perquè és el procés de fabricació actual per stents i L´impressió 3D (I3D) perquè té la capacitat de processar diferents tipus de materials per a aplicacions mèdiques i els seus aspectes econòmics. Stents ha estat seleccionat per ser un dels dispositius mèdics més implantats del món. La tesi es centra en la millora dels processos de fabricació de stent, establint relacions entre els paràmetres del procés i els aspectes clau de stent, precisió, propietats mecàniques i propietats mèdiques i reduir els costos derivats d'aquest procés de fabricació
3

Gradwohl, Marion. "Développement d’une bioprothèse résorbable par impression 3D pour une reconstruction mammaire autologue post-mastectomie". Thesis, Université de Lille (2018-2021), 2021. https://pepite-depot.univ-lille.fr/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Les patientes atteintes d’un cancer du sein bénéficient pour la plupart d’une mastectomie, qui consiste en une ablation du sein dans le but de retirer les cellules tumorales. Cet acte chirurgical entraîne une perte conséquente de tissu et peut être alors suivi d’une opération de reconstruction mammaire afin de combler le volume manquant. Il existe aujourd’hui un certain nombre de méthodes de reconstruction, cependant toutes présentent à la fois des avantages et des inconvénients. Les recherches actuelles sont orientées vers le développement de solutions de reconstruction innovantes à partir des propres tissus des patientes. Parmi elles, la reconstruction par chambre d’ingénierie tissulaire (TEC) semble prometteuse pour reconstruire des volumes plus importants.L’objectif de ce travail de thèse est de proposer une amélioration des TEC en ayant recourt à l’impression 3D de matériaux biorésorbables. L’utilisation de polymères thermoplastiques biorésorbables permet de ne pas avoir à réaliser une seconde chirurgie après la reconstruction qui consisterait en le retrait de l’implant. De plus, utiliser l’impression 3D comme moyen de fabrication permettra à terme de proposer aux patientes des implants sur-mesure adaptés à leur morphologie et donc d’améliorer l’aspect esthétique de la reconstruction.L’étude a d’abord porté sur le choix d’un procédé de fabrication additive et d’une méthode de stérilisation pour le développement de l’implant permettant de minimiser la dégradation des biomatériaux sélectionnés. La fabrication par dépôt de filament fondu ainsi que la stérilisation par oxyde d’éthylène ont été retenues comme moyen de production de l’implant final stérile. Une étude de dégradation in vitro a ensuite été réalisée dans le but de déterminer les profils de résorption des PLGA et PLCL. Enfin, une étude in vivo a été conduite sur un modèle rat qui nous a permis de valider le concept de TEC résorbable imprimée en 3D. Les deux biomatériaux résorbables sélectionnés se sont donc montrés compatibles avec le procédé de reconstruction par chambre d’ingénierie tissulaire et ont donc permis la croissance du lambeau graisseux au cours du temps au sein de la TEC
Mastectomy is one of the most common way to treat breast cancer, it consists in the removal of breast tissue to remove tumor cells. This surgical act causes a consequent loss of tissue and can then be followed by a breast reconstruction operation to fill in the missing volume. Implant based or autologous fat grafting (fat flap or lipofilling) are some of breast reconstruction method, however they all have advantages and drawbacks. Tissue engineering chamber (TEC) using fat flap from the patient’s own tissue could be a promising solution to restore large volume of mature and vascularized adipose tissue and a therapeutic alternative to current breast reconstruction techniques.The main objective of this thesis it to improve TEC by using additive manufacturing and bioabsorbable polymers. The use of bioresorbable thermoplastic polymers eliminates the need for a second surgery, which would consist of removing the implant after breast reconstruction. In addition, using 3D printing to manufacture the TEC will allow patients to be offered tailor-made implants adapted to their morphology and therefore improve the aesthetic aspect of the reconstruction.The study first focused on the choice of an additive manufacturing process and a sterilization method for the development of the implant to minimize the degradation of the selected biomaterials. Fused Filament Fabrication (FFF) as well as ethylene oxide sterilization were chosen as means of producing the final sterile device. An in vitro degradation study was then carried out to determine the resorption profiles of PLGA and PLCL. Finally, an in vivo study was carried out on a rat model which enabled us to validate the concept of 3D-printed bioabsorbable TEC. The two selected polymers were therefore shown to be compatible with the tissue engineering chamber reconstruction process and thus allowed the growth of the fat flap over time within the TEC
4

Sedaghati, T. "Design and development of nerve conduits for peripheral nerve regeneration using a new bioabsorbable nanocomposite polymer". Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1465974/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Nerve autografting is the “gold standard” technique to repair nerve defects with a gap larger than 30 mm. The current commercially available FDA and CE approved nerve conduits offer considerable benefits to the patients suffering from completely transected nerve. They fail, however, to support neural regeneration in gaps over 30 mm. The aim of this research was to design, develop and evaluate new nerve conduits made from a biodegradable nanocomposite material known as polyhedral oligomeric silsesquioxanes incorporated poly (caprolactone) urea/ urethane (POSS-PCL). This material has been previously shown to have favourable cellular interactions. The biomechanical properties of POSS-PCL nanocomposite with varying POSS concentration were evaluated. Increasing POSS concentration resulted in less viscous polymer solution while increased the surface hydrophobicity, surface roughness and in vitro protein absorption. This increase, however, caused a considerable reduction in Schwann cells proliferation and rounded morphology. To enhance cellular interactions of the POSS-PCL surface, it was functionalized with synthetic RGD peptide, which resulted in an increase of SCs average process length while reducing the hydrophobicity of POSS-PCL surface. Furthermore, human adipose derived stem cells were successfully differentiated into Schwann-like cells as determined by S-100 expression and NGF production. The porogen concentration used for making porous conduits was also investigated using solvent evaporation technique combined with porogen leaching. It was demonstrated that 2% POSS-PCL with 30% porogen had the favourable viscoelastic properties for nerve conduit manufacturing. Two types of nerve conduit with varying wall thicknesses were fabricated and examined for their physiochemical properties. Double layered conduits were considered more suitable for the short-term pilot in vivo study as they had higher compressive resistance and suture retention ability than the single layered ones. Following in vivo implantation of conduits, Visual observations showed good interaction of conduits with surrounding tissue and no obvious inflammation at the repair site after 6 weeks. Histology revealed that the porous conduit (17.53±6.44 μm pore size) improved myelin sheath formation compared to non-porous POSS-PCL nerve conduit. Further investigations of POSS-PCL conduits are required to determine if this implant can overcome the limitation of commercially available nerve conduits.
5

Marcheix, Pierre-Sylvain. "Evaluation in vitro et in vivo d’un polymère biorésorbable à la Gentamycine dans le traitement expérimental d’infections ostéo-articulaires". Thesis, Limoges, 2016. http://www.theses.fr/2016LIMO0079/document.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Le traitement d'une infection ostéo-articulaire nécessite une prise en charge longue, obligeant à des chirurgies itératives et à un traitement antibiotique systémique prolongé. À ce jour, le polyméthacrylate de méthyle est le vecteur d’antibiotique local le plus fréquemment utilisé chez l’homme pour traiter une infection ostéo-articulaire. Cependant les PMMA sont non résorbables et obligent à multiplier les interventions chirurgicales afin d’aboutir au traitement définitif de l’infection ostéo-articulaire. Le PMMA ne permet pas une libération complète de l’antibiotique avec de surcroît des doses inférieures à la CMI du germe en cause, pouvant faciliter l’émergence de bactéries résistantes. L'objectif de notre travail était d’obtenir une libération locale efficace et prolongée d’antibiotique grâce à un polymère entièrement résorbable. Le cahier des charges établi pour l’élaboration de ce polymère était le suivant : système matriciel offrant une libération de gentamicine à une dose de 1 à 2 mg/jour/g de mélange sur une période de plus de 10 jours. De plus, le polymère devait être bio-résorbable, c’est-à-dire qu’il devait pouvoir être dégradé jusqu'à obtenir des fragments pouvant être éliminés naturellement par l'organisme. Afin de répondre à ces exigences, il a été créé le PLA50P, Poly(D,L-acide lactique) de haut poids moléculaire. Afin d’obtenir le mélange gentamycine-PLA, une technique de compression des poudres des deux composants a été mise en œuvre. Ce polymère pouvait être stérilisé par -irradiation, sans influence sur les caractéristiques de relargage du polymère.La cinétique in vitro de la gentamicine relarguée par le PLA50GS montrait un pic maximum de gentamicine libérée obtenu à 12 jours et une stabilisation ensuite jusqu’à 63 jours de la quantité relarguée. La quantité cumulée de gentamicine relarguée à 3 semaines in vitro est de 54 % de la quantité contenue initialement dans PLA50GS. In vivo, nous observions une libération in situ de 5,1 µg/mL de gentamicine à J3, de 1,9 µg/mL de gentamicine à J7 et de 0 µg/mL à 5 semaines avec disparition de PLA50GS à l’examen macroscopique. Nous avons ainsi pu mettre en évidence, in vitro et in vivo, un relargage de la gentamicine à des doses supérieures à la CMI du germe et ce pendant plus de trois semaines.Afin de confirmer ces observations, nous avons ensuite mis au point un modèle d’infection périostée chez le rat. Pour ce faire nous avons utilisé des rats âgés de 10 à 12 semaines avec une injection au contact de l’os et au 1/3 moyen de la patte arrière de deux fois 100 ml de SAMS d’origine animale. L’utilisation du PLA50GS a montré sa supériorité par rapport à une administration parentérale d’une dose équivalente de Gentamicine avec une négativation du contage bactériologique chez tous les rats traités par le polymère chargé à la Gentamicine. Nous avons ensuite voulu traiter une infection articulaire grâce à notre polymère. Nous avons donc créé un modèle animal utilisant un lapin femelle de 4 kg avec une injection de 1 ml d’une solution à 103 CFU/ml de staphylococcus méthi-sensible d’origine léporidée. Le PLA50GS nous a permis de réduire très significativement la charge bactérienne intra-articulaire (baisse de 3 à 4 log10 soit 1000 à 10000 fois moins de bactéries) alors que le traitement antibiotique par voie générale dit de référence ne nous a pas permis de réduire l’infection intra-articulaire de façon significative par rapport au groupe non traité. Le PLA50GS nous a ainsi permis de réduire l’infection de 3 log10 par rapport aux autres groupes avec 2 lapins sur 6 guéris de leur infection.Le PLA50GS présente, ainsi, les caractéristiques suivantes : (i) stabilité de la Gentamicine au sein du polymère, (ii) polymère sous forme de poudre stable, (iii) relargage prolongé de la Gentamicine pendant plusieurs semaines, (iv) effet « burst » présent mais limité, (v) très bonne biotolérance, et (vi) efficacité supérieure aux traitements antimicrobiens classiques
The treatment of soft-tissue infections, osteomyelitis, and acute or chronic septic arthritis is a lengthy process that involves repeated surgical procedures and the systemic administration of antibiotics for at least 6 weeks to 3 months. Poor diffusion of antibiotics into bones and joints requires high doses given parenterally for long periods. At present, the antibiotic vector most widely used in humans with bone or joint infections is polymethylmethacrylate. Because PMMA is not bioabsorbable, multiple surgical procedures are required to eradicate infection. Furthermore, PMMA does not release its full antibiotic load over time and may yield local antibiotic concentrations lower than the minimal inhibitory concentration of the causative organism, thereby promoting the emergence of resistant strains. The objective of our work was to develop a fully bioabsorbable polymer capable of ensuring the prolonged and efficient release of its antibiotic load, thus improving the management of bone and joint infections. The specifications for the polymer included the release by the matrix system of 1-2 mg of gentamicin per day and per gram of mixture over more than 10 days. Other specifications were appropriate physical characteristics, a drug release rate sufficient to ensure optimal treatment safety, and ease of implantation. The polymer was also to be bioabsorbable, i.e., subject to degradation into fragments capable of being eliminated naturally by the body. High-molecular weight PLA50P, Poly(D,L-lactic acid) was created and found to meet these specifications. Use of this polymer as large particles (0.5 to 1 mm) limited the initial burst phenomenon. A gentamicin-PLA50P mixture was obtained by compression of the two components prepared in powder form. The antibiotic load was set at 20% to limit the initial burst. The polymer can be sterilized by gamma irradiation, which has no effect on drug release characteristics.In vitro kinetic studies of gentamicin release by the polymer showed a peak on day 12 followed by a plateau that lasted until day 63. After 3 weeks, the cumulative amount of gentamicin released in vitro was 54% of the total amount loaded onto the polymer. In vivo gentamicin concentrations measured in situ were 5.1 µg/mL on day 3, 1.9 µg/mL on day 7, and 0 µg/mL on day 35, when the polymer was no longer visible to the naked eye. Thus, both in vivo and in vitro, gentamicin was released in concentrations greater than the MIC of the microorganism, for longer than 3 weeks.To test the gentamicin-loaded polymer, we created a rat model of periosteal infection. Rats aged 10-12 weeks received two 100 mL injections of methicillin-susceptible Staphylococcus aureus collected from animals, into the middle third of the hind leg, in contact with the bone. Treatment with gentamicin-loaded PLA50P proved superior over parenteral administration of an equivalent gentamicin dose, consistently reverting the bacteriological cultures to negative. We then created a rabbit model of septic arthritis. A doe weighing 4 kg received an add intraarticular injection of 1 mL of a solution containing 103 cfu/mL of a methicillin-sensitive S. aureus strain collected from another rabbit. Gentamicin-loaded PLA50P treatment induced a highly significant drop in the intraarticular bacterial load (by 3-4 log10), whereas standard systemic gentamicin therapy failed to significantly diminish bacterial counts comparatively to the untreated controls. Thus, gentamicin-loaded PLA50P diminished the bacterial load by 3 log10 comparatively to the other groups and allowed eradication of the infection in 2 of the 6 rabbits.In sum, gentamicin-loaded PLA50P (i) ensures the stability of the antibiotic; (ii) is available as a stable powder; (iii) ensures the prolonged release of gentamicin over several weeks; (iv) produces a limited burst effect; (v) exhibits very good biotolerance; (vi) and is more effective than standard antimicrobial therapy
6

Duval, Charlotte. "Elaboration de copolymères biorésorbables pour endoprothèse". Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL018N/document.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
L’objectif de ce travail était d’élaborer un copolymère biodégradable dans le but de développer une endoprothèse biorésorbable. Ainsi, des copolymères de lactide et de glycolide ont été synthétisés par copolymérisation par ouverture de cycle, dans des conditions permettant le contrôle de leurs paramètres macromoléculaires. Après plastification et mise en forme des copolymères par extrusion, l’étude des propriétés mécaniques, à l’état sec et après immersion en milieu aqueux, a été réalisée. Les essais de traction ont permis de vérifier l’importance de la vitesse de sollicitation et d’accéder à certaines grandeurs caractéristiques du matériau. L’étude de la dégradation des copolymères, sous forme de jonc, a mis en évidence un mécanisme de dégradation hétérogène sur une durée en accord avec l’application visée. La plastification par des molécules acides a permis d’accélérer la vitesse d’hydrolyse des copolymères. En conclusion, les propriétés mécaniques et de dégradation des copolymères PDLGA synthétisés sont donc en adéquation avec le cahier des charges de l’application biomédicale
This work describes the synthesis of biodegradable copolymer to design a bioabsorbable endoprosthesis. Lactide and glycolide-based copolymers were synthesized by ring opening polymerization. Experimental conditions were chosen to produce controlled structures. The study of mechanical properties was performed in dry and wet states. During the tensile experiments, the effect of strain rate was noticed and some characteristics parameters were determined. Hydrolytic degradation of materials was fast and revealed a heterogeneous mechanism. Addition of acidic molecules for plasticizing increased the degradation rate of the copolymers.Mechanical properties and degradation of the PDLGA copolymers are indeed in good agreement with the specifications of this biomedical application
7

Atchley, Katherine Marie. "Processing and characterization of a novel bioabsorbable polymer for biomedical applications". 2006. http://etd.utk.edu/2006/AtchleyKatherine.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Bioabsorbable polymers":

1

Agrawal, CM, J. Parr y S. Lin, eds. Synthetic Bioabsorbable Polymers for Implants. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2000. http://dx.doi.org/10.1520/stp1396-eb.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Mauli, Agrawal C., Parr Jack E y Lin Steve T. 1947-, eds. Synthetic bioabsorbable polymers for implants. West Conshohocken, PA: American Society for Testing and Materials, 2000.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bioabsorbable Polymers for Biomedical and Pharmaceutical Applications. Technomic Publishing Co, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

(Editor), C. Mauli Agrawal, Jack E. Parr (Editor) y Steve T. Lin (Editor), eds. Synthetic Bioabsorbable Polymers for Implants (Astm Special Technical Publication// Stp) (Astm Special Technical Publication// Stp). Astm International, 2000.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Bioabsorbable polymers":

1

Suzuki, Shuko y Yoshito Ikada. "Bioabsorbable Polymers". En Biomaterials for Surgical Operation, 19–38. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-570-1_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Barrows, T. H., J. D. Johnson, S. J. Gibson y D. M. Grussing. "The Design and Synthesis of Bioabsorbable Poly(Ester-Amides)". En Polymers in Medicine II, 85–90. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-1809-5_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Horton, Vicki L., Paula E. Blegen, Thomas H. Barrows, Gregory J. Quarfoth, Sheila J. Gibson, James D. Johnson y Roy L. McQuinn. "Comparison of Bioabsorbable Poly(ester-amide) Monomers and Polymers In Vivo Using Radiolabeled Homologs". En Progress in Biomedical Polymers, 263–82. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-0768-4_27.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Pietrzak, William S. "Bioabsorbable Polymer Applications in Musculoskeletal Fixation and Healing". En Musculoskeletal Tissue Regeneration, 509–29. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-239-7_24.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Schultze, Christine, N. Grabow, H. Martin y K. P. Schmitz. "Finite-element-analysis and in vitro study of bioabsorbable polymer stent designs". En IFMBE Proceedings, 2175–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89208-3_520.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Nakamura, Tatsuo, Yasuhiko Shimizu, Teruo Matsui, Norihito Okumura, Suong Hyu Hyon y Kouji Nishiya. "A Novel Bioabsorbable Monofilament Surgical Suture Made From (ε -Caprolactone, L-Lactide) Copolymer". En Degradation Phenomena on Polymeric Biomaterials, 153–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77563-5_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Niemelä, Sanna-Mari, Irma Ikäheimo, Markku Koskela, Minna Veiranto, Esa Suokas, Pertti Törmälä, Timo Waris, Nureddin Ashammakhi y Hannu Syrjälä. "Ciprofloxacin-Releasing Bioabsorbable Polymer is Superior to Titanium in Preventing Staphylococcus Epidermidis Attachment and Biofilm Formation In Vitro". En Bioceramics 17, 427–30. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-961-x.427.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Erryani, Aprilia, Alfiyah Rahmah, Talitha Asmaria, Franciska Pramuji Lestari y Ika Kartika. "Microstructure and Corrosion Behavior of Bioabsorbable Polymer Polylactic Acid-Polycaprolactone Reinforced by Magnesium-Zinc Alloy for Biomedical Application". En Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health Informatics, 377–86. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6926-9_32.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

"Synthetic Bioabsorbable Polymers". En High Performance Biomaterials, editado por Thomas H. Barrows, 243–54. Routledge, 2017. http://dx.doi.org/10.1201/9780203752029-17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Burg, K. J. L. y Waleed S. W. Shalaby. "Bioabsorbable Polymers: Tissue Engineering". En Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, 429–32. Taylor & Francis, 2015. http://dx.doi.org/10.1081/e-ebpp-120051876.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Bioabsorbable polymers":

1

Stępak, Bogusz D., Arkadiusz J. Antończak, Paweł E. Kozioł, Konrad Szustakiewicz y Krzysztof M. Abramski. "Laser micromachining and modification of bioabsorbable polymers". En SPIE LASE, editado por Udo Klotzbach, Kunihiko Washio y Craig B. Arnold. SPIE, 2014. http://dx.doi.org/10.1117/12.2040583.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hazlett, Lauren, Gabriella Becker, Allyn Calvis, Mary Verzi y Manish Paliwal. "Design of Bioabsorbable Polymeric Humeral Fracture Fixation Device". En ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39743.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Approximately 55,500 proximal humeral fractures require surgical fixation annually. The current standard for internal humeral fracture fixation involves implantation of rigid metallic devices to prevent dislocation of bone fragments. However, these devices have high stiffness characteristics which can cause stress shielding in bone. A second method of fixation, called biological fixation, decreases stiffness which reduces stress shielding by utilizing more flexible devices. This approach tends leads to increased incidences of delayed healing and nonunion of fracture fragments. Therefore, this device design implements two bioabsorbable polymers in two distinct layers that degrade at different rates. The purpose of this design is to provide rigid fixation during the initial fracture healing phase followed by a period of biological fixation, allowing for functional healing along with a reduction in stress shielding over time compared to current devices. The bioabsorbable property permits the device to remain in situ, thus eliminating the need for removal surgery and reducing the risk of surgical site infection. Using finite element analysis, the design has been demonstrated to exhibit varying axial, torsional, and flexural stiffness over time. The final device was fabricated by injection molding, and tested for flexural stiffness. In addition, the polymers were tested for stiffness at specific time intervals over the course of the degradation period. All stiffness tests were performed under simple three point loads. A Nikon 3200 camera (Nikon Inc., Melville, NY) was used to sequentially image the material samples and plate throughout each load application. The flexural stiffness of the device was determined by utilizing Digital Image Correlation analysis in Matlab (MathWorks, Inc.) to analyze surface displacements between image frames. The success of the device was determined by comparing the observed difference in stiffness to standard stiffness values for humeral fixation devices currently available on the market. A substantial decrease in stiffness combines the benefits of rigid and biological fixation devices as well as eliminates the complications associated with each, providing an improved solution for proximal humeral fractures.
3

Huttunen, Assi, Petri Laakso, Claire O’Connell, Gareth Williams, Mikko Huttunen, Henna Niiranen, Ville Ellä, Richard Sherlock y Minna Kellomäki. "Nano-, pico-and femtosecond laser machining of bioabsorbable polymers and biomedical composites". En ICALEO® 2008: 27th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2008. http://dx.doi.org/10.2351/1.5061357.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Dong, Pengfei, Longzhen Wang y Linxia Gu. "Degradation Modeling of Bioabsorbable Polymer Stent". En ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88116.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
In this work, a computational model of PLLA (Poly L-lactic acid) stent was constructed to study the degradation behavior of the bioabsorbable stent in terms of the loss of mechanical integrity. A degradation model was improved based on experimental data from the literature, as well as a finite element (FE) model was constructed based on the model of the degradation behavior of PLLA material. The results showed that the degradation of the PLLA would switch the material property of stent from a uniform model to a heterogeneous model due to the decline of Young’s modulus locally at each location of the stent. Loss of mechanical integrity of the stent showed a bilinear behavior due to the decline of the Young’s modulus and the locale failure of the structure, respectively. The breakdown pieces of stent will stay a relative longer time in lesion after the loss of the mechanical integrity of the stent due to the nonlinear response of the degradation degree to the degradation time and strain in the material.
5

de Castro, Paulo Bastos y Eduardo Fancello. "ON A DUCTILE-CHEMICAL DAMAGE MODEL FOR BIOABSORBABLE POLYMERIC MATERIALS". En 6th International Symposium on Solid Mechanics. ABCM, 2017. http://dx.doi.org/10.26678/abcm.mecsol2017.msl17-0057.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Becker, Gabriella, Allyn Calvis, Lauren Hazlett, Mary Verzi y Manish Paliwal. "Bioabsorbable polymeric fracture fixation devices aim to reduce stress shielding in bone". En 2014 40th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2014. http://dx.doi.org/10.1109/nebec.2014.6972727.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Hussein, H., H. Rai, R. Colleran, E. Xhepa, S. Sinieck, S. Cassese, M. Joner, A. Kastrati, RA Byrne y D. Foley. "37 Optical coherence tomography tissue coverage and characterization by grey-scale signal intensity analysis post bifurcation stenting with new generation bioabsorbable polymer everolimus-eluting stents". En Irish Cardiac Society Annual Scientific Meeting & AGM, Thursday October 5th – Saturday October 7th 2017, Millennium Forum, Derry∼Londonderry, Northern Ireland. BMJ Publishing Group Ltd and British Cardiovascular Society, 2017. http://dx.doi.org/10.1136/heartjnl-2017-ics17.37.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Pasar a la bibliografía