Tesis sobre el tema "Biomass gasification. Coal gasification. Thermogravimetry"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 36 mejores tesis para su investigación sobre el tema "Biomass gasification. Coal gasification. Thermogravimetry".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Bu, Jiachuan. "Kinetic analysis of coal and biomass co-gasification with carbon dioxide". Morgantown, W. Va. : [West Virginia University Libraries], 2009. http://hdl.handle.net/10450/10457.
Texto completoTitle from document title page. Document formatted into pages; contains vi, 184 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 82-84).
Zhou, Lingmei. "Kinetic study on co-gasification of coal and biomass". Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2014. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-154403.
Texto completoBhagavatula, Abhijit. "THERMO-CHEMICAL CONVERSION OF COAL-BIOMASS BLENDS: KINETICS MODELING OF PYROLYSIS, MOVING BED GASIFICATION AND STABLE CARBON ISOTOPE ANALYSIS". UKnowledge, 2014. http://uknowledge.uky.edu/cme_etds/43.
Texto completoNewalkar, Gautami. "High-pressure pyrolysis and gasification of biomass". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53917.
Texto completoLong, Henry A. III. "Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture". ScholarWorks@UNO, 2011. http://scholarworks.uno.edu/td/1371.
Texto completoNyendu, Guevara Che. "Non-Catalytic Co-Gasification of Sub-Bituminous Coal and Biomass". DigitalCommons@USU, 2015. https://digitalcommons.usu.edu/etd/4233.
Texto completoLi, Fanxing. "CHEMICAL LOOPING GASIFICATION PROCESSES". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1236704412.
Texto completoXu, Qixiang. "Investigation of Co-Gasification Characteristics of Biomass and Coal in Fluidized Bed Gasifiers". Thesis, University of Canterbury. Chemical and Process, 2013. http://hdl.handle.net/10092/8399.
Texto completoParenti, Joshua A. "Thermo-gravimetric analysis of CO₂ induced gasification upon selected coal/biomass chars and blends". Morgantown, W. Va. : [West Virginia University Libraries], 2009. http://hdl.handle.net/10450/10229.
Texto completoTitle from document title page. Document formatted into pages; contains v, 126 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 59-69).
Lakey, Thomas E. "Gasification of coal and biomass char using a superheated steam flame". Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/16526/.
Texto completoSricharoenchaikul, Viboon. "Fate of carbon-containing compounds from gasification of kraft black liquor with subsequent catalytic conditioning of condensable organics". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/10145.
Texto completoWu, Chunyang. "Fuel-NOx Formation during Low-Grade Fuel Combustion in a Swirling-Flow Burner". Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1165.pdf.
Texto completoEstejab, Bahareh. "Hydrodynamic and gasification behavior of coal and biomass fluidized beds and their mixtures". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/79366.
Texto completoPh. D.
Trouillet-Richaud, Raphaelle. "Toxic emissions from the gasification and combustion of coal and biomass waste". Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313145.
Texto completoBeutler, Jacob B. "Thermochemical Conversion of Biomass: Detailed Gasification and Near-Burner Co-Firing Measurements". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7026.
Texto completoLewis, Aaron D. "Gasification of Biomass, Coal, and Petroleum Coke at High Heating Rates and Elevated Pressure". BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4373.
Texto completoAboyade, Akinwale Olufemi. "Cogasification of coal and biomass : impact on condensate and syngas production". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20405.
Texto completoENGLISH ABSTRACT: Gasification provides a proven alternative to the dependence on petroleum for the production of high value products such as liquid fuels and chemicals. Syngas, the main product from gasification can be converted to fuels and chemicals via a number of possible synthesis processes. Coal and natural gas are currently the main feedstock used for syngas production. In South Africa (SA), Sasol operates the largest commercial coal-to-liquids conversion process in the world, based on updraft fixed bed gasification of low grade coal to syngas. Co-utilizing alternative and more sustainable feedstock (such as biomass and wastes) with coal in existing coal-based plants offers a realistic approach to reducing the costs and risks associated with setting up dedicated biomass conversion plants. An experimental and modelling investigation was performed to assess the impacts of co-gasifying two of the most commonly available agricultural wastes in SA (sugarcane bagasse and corn residue) with typical low grade SA coals, on the main products of updraft fixed bed gasification, i.e. liquid condensates and syngas. Condensates are produced in the pyrolysis section of the updraft gasifier, whereas syngas is a result of residual char conversion. An experimental set-up that simulates the pyrolysis section of the gasifier was employed to investigate the yield and composition of devolatilized products at industrially relevant conditions of 26 bars and 400-600°C. The results show that about 15 wt% of coal and 70 wt% of biomass are devolatilized during the pyrolysis process. The biomass derived condensates were determined to comprise of significantly higher quantities of oxygenates such as organic acids, phenols, ketones, and alcohols, whereas coal derived hydrocarbon condensates were dominated by polycyclic aromatic hydrocarbons, creosotes and phenols. Results of investigation into the influence of coal-biomass feedstock mix ratio on yields of products from pyrolysis show limited evidence of non-additive or synergistic behaviour on the overall distribution of solid, liquid and gas yields. On the other hand, in terms of the distribution of specific liquid phase hydrocarbons, there was significant evidence in favour of non-additive pyrolysis behaviour, as indicated by the non-additive yield distribution of specific chemicals. Synergistic trends could also be observed in the thermogravimetric (TGA) study of pyrolysis under kinetically controlled non-isothermal conditions. Model free and model fitting kinetic analysis of the TGA data revealed activation energies ranging between 94-212 kJ mol-1 for the biomass fuels and 147-377 kJ mol-1 for coal. Synergistic interactions may be linked to the increased presence of hydrogen in biomass fuels which partially saturates free radicals formed during earlier stages of devolatilization, thereby preventing secondary recombination reactions that would have produced chars, allowing for the increased formation of volatile species instead. Analysis of char obtained from the co-pyrolysis experiments revealed that the fixed carbon and volatile content of the blended chars is is proportional to the percentage of biomass and coal in the mixture. CO2 reactivity experiments on the chars showed that the addition of biomass to coal did not impose any kinetic limitation on the gasification of blended chars. The blended chars decomposed at approximately the same rate as when coal was gasified alone, even at higher biomass concentrations in the original feedstock blend. Based on these observations, a semi-empirical equilibrium based simulation of syngas production for co-gasification of coalbiomass blends at various mix ratios was developed using ASPEN Plus. The model showed that H2/CO ratio was relatively unaffected by biomass addition to the coal fuel mix, whereas syngas heating value and thermal efficiency were negatively affected. Subsequent evaluation of the production cost of syngas at biomass inputs ranging between 0-20 wt% of coal reflected the significant additional cost of pretreating biomass (3.3% of total capital investment). This resulted in co-gasification derived syngas production costs of ZAR146/tonne (ZAR12.6/GJ) at 80:20 coalbiomass feedstock ratio, compared to a baseline (coal only) cost of ZAR130/tonne (ZAR10.7/GJ). Sensitivity analysis that varied biomass costs from ZAR0 ZAR470 revealed that syngas production costs from co-gasification remained significantly higher than baseline costs, even at low to zero prices of the biomass feedstock. This remained the case even after taking account of a carbon tax of up to ZAR117/tCO2. However, for range of carbon tax values suggested by the SA treasury (ZAR70 tCO2 to ZAR200 tCO2), the avoided carbon tax due to co-feeding biomass can offset between 40-96% of the specific retrofitting cost at 80:20 coal-biomass feedstock mass ratio. In summary, this dissertation has showed that in addition to the widely recognized problems of ash fouling and sintering, co-feeding of biomass in existing coal based updraft gasification plants poses some challenges in terms of impacts on condensates and syngas quality, and production costs. Further research is required to investigate the potential in ameliorating some of these impacts by developing new high value product streams (such as acetic acid) from the significant fraction of condensates derived from biomass.
AFRIKAANSE OPSOMMING: Vergassing bied 'n beproefde alternatief vir die afhanklikheid van petroleum vir die produksie van hoë waarde produkte soos vloeibare brandstof en chemikalieë. Sintese gas, die belangrikste produk van vergassing, kan omgeskakel word na brandstof en chemikalieë deur 'n aantal moontlike sintese prosesse. Steenkool en aardgas is tans die belangrikste grondstowwe wat gebruik word vir sintese gas produksie. In Suid-Afrika (SA) bedryf Sasol die grootste kommersiële steenkool-totvloeistof omskakelingsproses in die wêreld, gebaseer op stygstroom vastebed vergassing van laegraadse steenkool na sintese gas. Die gebruik van alternatiewe en meer volhoubare grondstowwe (soos biomassa en afval) saam met steenkool in die bestaande steenkool-gebaseerde aanlegte bied 'n realistiese benadering tot die vermindering van die koste en risiko's wat verband hou met die oprigting van toegewyde biomassa omskakelingsaanlegte. 'n Eksperimentele en modelleringsondersoek is uitgevoer om die impak van gesamentlike vergassing van twee van die mees algemeen beskikbare landbouafvalprodukte in Suid-Afrika (suikerriet bagasse en mieliereste) met tipiese laegraadse SA steenkool op die vernaamste produkte van stygstroom vastebed vergassing, dws vloeistof kondensate en sintese gas, te evalueer. Kondensate word geproduseer in die piroliese gedeelte van die stygstroomvergasser, terwyl sintese gas 'n resultaat is van die omskakeling van oorblywende houtskool. 'n Eksperimentele opstelling wat die piroliese gedeelte van die vergasser simuleer is gebruik om die opbrengs en die samestelling van produkte waarvan die vlugtige komponente verwyder is by industrie relevante toestande van 26 bar en 400-600°C te ondersoek. Die resultate toon dat ongeveer 15% (massabasis) van die steenkool en 70% (massabasis) van die biomassa verlore gaan aan vlugtige komponente tydens die piroliese proses. Daar is vasgestel dat die kondensate afkomstig van biomassa uit aansienlik hoër hoeveelhede suurstofryke verbindings soos organiese sure, fenole, ketone, en alkohole bestaan, terwyl koolwaterstofkondensate afkomstig uit steenkool oorwegend bectaan uit polisikliese aromatise verbindings, kreosote en fenole. Die resultate van die ondersoek na die invloed van die verhouding van steenkool tot biomassa grondstof op piroliese opbrengste toon beperkte bewyse van nie-toevoegende of sinergistiese gedrag op die algehele verspreiding van soliede, vloeistof en gas opbrengste. Aan die ander kant, in terme van die verspreiding van spesifieke vloeibare fase koolwaterstowwe, was daar beduidende bewyse ten gunste van 'n sinergistiese piroliese gedrag. Sinergistiese tendense is ook waargeneem in die termogravimetriese (TGA) studie van piroliese onder kineties beheerde nieisotermiese toestande. Modelvrye en modelpassende kinetiese analise van die TGA data het aan die lig gebring dat aktiveringsenergieë wissel tussen 94-212 kJ mol-1 vir biomassa brandstof en 147-377 kJ mol-1 vir steenkool. Ontleding van die houtskool verkry uit die gesamentlike piroliese eksperimente het aan die lig gebring dat die onmiddellike kenmerke van die gemengde houtskool die geweegde gemiddelde van die individuele waardes vir steenkool en biomassa benader. CO2 reaktiwiteitseksperimente op die houtskool het getoon dat die byvoeging van biomassa by steenkool nie enige kinetiese beperking op die vergassing van gemengde houtskool plaas nie. Die gemengde houtskool ontbind teen ongeveer dieselfde tempo as wanneer steenkool alleen vergas is, selfs teen hoër biomassa konsentrasies in die oorspronklike grondstofmengsel. Op grond van hierdie waarnemings is 'n semi-empiriese ewewig-gebaseerde simulasie van sintese gas produksie vir gesamentlike vergassing van steenkool-biomassa-mengsels vir verskeie mengverhoudings ontwikkel met behulp van Aspen Plus. Die model het getoon dat die H2/CO verhouding relatief min geraak is deur biomassa by die steenkool brandstofmengsel te voeg, terwyl sintese gas se verhittingswaarde en termiese doeltreffendheid negatief geraak is. Daaropvolgende evaluering van die produksiekoste van sintese gas vir biomassa insette wat wissel tussen 0-20% (massabasis) van die hoeveelheid steenkool het die aansienlike addisionele koste van die vooraf behandeling van biomassa (3.3% van die totale kapitale belegging) gereflekteer. Dit het gelei tot 'n produksiekoste van ZAR146/ton (ZAR12.6/GJ) vir sintese gas afkomstig uit gesamentlike-vergassing van 'n 80:20 steebkool-biomassa grondstof mengesl, in vergelyking met 'n basislyn (steenkool) koste van ZAR130/ton (ZAR10.7/GJ). Sensitiwiteitsanalise wat biomassa koste van ZAR0 - ZAR470 gevarieër het, het aan die lig gebring dat sintese gas produksiekoste van gesamentlike vergassing aansienlik hoër bly as die basislyn koste, selfs teen 'n lae of nul prys van biomassa grondstof. Dit bly die geval selfs nadat koolstof belasting van tot ZAR117/tCO2 in ag geneem is. In opsomming het hierdie verhandeling getoon dat, bykomend tot die wyd-erkende probleme van as besoedeling en sintering, die gesamentlike gebruik van biomassa in bestaande steenkool stygstroom vergassingsaanlegte groot uitdagings inhou in terme van die impak op die kwaliteit van kondensate en sintese gas, asook produksiekoste. Verdere navorsing is nodig om die potensiaal te ondersoek vir die verbetering van sommige van hierdie impakte deur die ontwikkeling van nuwe hoë waarde produkstrome (soos asynsuur) uit die beduidende breukdeel van kondensate wat verkry word uit biomassa.
Zhang, Ling. "Sunlight Ancient and Modern: the Relative Energy Efficiency of Hydrogen from Coal and Current Biomass". Thesis, Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/submitted/etd-08182004-145924/unrestricted/zhang%5Fling%5F200412%5Fmast.pdf.
Texto completoJones, Christopher, Committee Member ; White, David, Committee Member ; Teja, Amyn, Committee Member ; Realff, Matthew, Committee Chair. Includes bibliographical references.
Ponzio, Anna. "Thermally homogenous gasification of biomass/coal/waste for medium or high calorific value syngas production". Doctoral thesis, KTH, Energi- och ugnsteknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4902.
Texto completoQC 20100903
Ponzio, Anna. "Thermally homogeneous gasification of biomass/coal/waste for medium or high calorific value syngas production /". Stockholm : Industriell teknik och management, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4902.
Texto completoZhang, Ziyin. "An Experimental Study of Catalytic Effects on Reaction Kinetics and Producer Gas in Gasification of Coal-Biomass Blend Chars with Steam". Thesis, University of Canterbury. Chemical and Process Engineering, 2011. http://hdl.handle.net/10092/6204.
Texto completoAloqaili, Mashal Mohammed. "THE EFFECT OF JATROPHA TORRIFIED BIOMASS AND COAL PREPARATION ON STEAM CO-GASIFICATION IN A FIXED BED REACTOR". OpenSIUC, 2014. https://opensiuc.lib.siu.edu/theses/1570.
Texto completoZhang, Guanjun [Verfasser], Bernd [Akademischer Betreuer] Meyer, Bernd [Gutachter] Meyer y Heiko [Gutachter] Hessenkemper. "Mineral matter behavior during co-gasification of coal and biomass / Guanjun Zhang ; Gutachter: Bernd Meyer, Heiko Hessenkemper ; Betreuer: Bernd Meyer". Freiberg : Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek 'Georgius Agricola, 2014. http://d-nb.info/1220779652/34.
Texto completoMelapi, Aviwe. "Investigation into the characteristics and possible applications of biomass gasification by-products from a downdraft gasifier system". Thesis, University of Fort Hare, 2015. http://hdl.handle.net/10353/d1020174.
Texto completoLuo, Siwei. "Conversion of Carbonaceous Fuel to Electricity, Hydrogen, and Chemicals via Chemical Looping Technology - Reaction Kinetics and Bench-Scale Demonstration". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397573499.
Texto completoGerosa, Tatiana Magalhães. "Desenvolvimento e aplicação de ferramenta metodológica aplicável à identificação de rotas insumo - processo - produto para a produção de combustíveis e derivados sintéticos". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/86/86131/tde-15062012-094830/.
Texto completoThis paper aims to present to identify of the best route for the production of fuels and synthetic derivatives through the development and application of a methodological tool based on quality tools: affinity diagram, relations diagram and matrices cause-effect. The diagrams have been adapted for the analysis and discussion of positive and negative factors of each item of the triad considered: feedstock-process-product. From the analysis, matrices of cause and effect were created and also, separated into positive and negative factors for the inputs: natural gas (NG), biomass and coal; for the processes: production of synthesis gas (syngas) from GN, coal gasification and biomass gasification; and for the products: lubricating oil, diesel fuel, naphtha, methanol and ammonia. The analysis of cause-effect matrices generated the final matrix, named balance matrix, which allowed the selection of the most suitable route for the production of fuels and synthetic derivatives. Among the input studied, NG presented remarkable advantages among the others. Therefore, the process to be used should be the production of syngas from NG. Among the products considered, methanol showed the best benefits to be produced.
Klinger, Mathias. "Zur Hochtemperaturkorrosion von Feuerfestmaterialien mit sauren, intermediären und basischen Schlacken in reduzierender Atmosphäre". Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-226765.
Texto completoThe corrosion of the refractory lining is the most crucial wear mechanism in slurry fed gasifiers. Due to the low solubility of Cr2O3 in (alumino-)silicate melts, high chromia bricks are state of the art, yet they are expensive, offer a non-satisfying service life of 3 to 24 months, and may need to be disposed of as toxic waste (chromium-VI compounds). Possible alternative materials are alumina or spinel based refractories with optimized composition, as used in various steel making processes. However, steel ladle slags, rich in CaO and poor in SiO2, differ significantly from coal or biomass slags of the gasification process. The corrosion mechanisms of coal or biomass slag attacks onto alumina and spinel based refractories are not investigated in detail yet. In the present work, the corrosion mechanisms of an acidic, an intermediate, and a basic slag against such Al2O3-containing materials have been studied. Ash analyses and short-term corrosion tests in reducing atmosphere were used as a basis for the description of the corrosion. Wear areas were investigated by means of X-ray diffraction and electron microscopy methods. In combination with thermochemical investigations using (quasi-)ternary phase diagrams it was possible to characterize the corrosion processes. The three ashes revealed a different corrosion behavior, with only few mineral phases being formed. Depending on the tested ceramic, the acidic ash (SA) led to a strong or light damage, respectively. In contrast, the intermediate ash (IA) exhibited a deep infiltration and intense corrosion in terms of dissolution and crystallization (mainly anorthite, CaAl2Si2O8) throughout all tested specimens. The basic ash (BA) infiltrated all samples only to a shallow depth. Nevertheless, a strong corrosion due to the massive crystallization of gehlenite (Ca2Al2SiO7), followed by hibonite (CaAl12O19), was observed. The evaluation of the occurring wear pointed up that the corrosion of alumina and spinel based refractories mainly depends on their micro structure and especially on the composition of the ash/slag. Considering the dissolution and crystallization processes in the isothermal section of the SiO2-CaO-Al2O3-(Na2O/K2O) phase diagram, the experimental findings could be confirmed and the corrosion mechanisms described. By dissolution of Al2O3 from the ceramic matrix the slag is enriched in this component until its composition reaches the stability field of corundum (α-Al2O3), which causes corrosion to stop. The deep infiltration and strong corrosion of IA could be explained by a wide range of pure liquid phase which needed to be traversed on its corrosion path in the ternary phase diagram. This enabled IA to dissolve a lot of Al2O3 before the first crystalline phases were formed. For BA, in contrast, the rapid crystallization of gehlenite increased the slag viscosity and led to a consumption of the remaining melt, which in turn stopped further infiltration. The composition of SA is located in the stability field of anorthite plus liquid, forcing the direct precipitation of this mineral. This, and the proximity to the corundum stability field, led to shallow infiltration in some cases. For other tested samples the infiltration and corrosion was stronger, showing that for SA the availability of Al2O3 and the presence of calcium aluminates or glass phases in the ceramic matrix played an essential role. The elucidation of the corrosion mechanisms of chromia-free, Al2O3-containing refractories showed that, besides an optimized micro structure, the adjustment of the slag chemistry is a further option to minimize infiltration. In the technical processes fluxes (lime stone, CaCO3 or quarz sand, SiO2) can be added or blends of different feed stocks can be used. Long-term exposure tests for 150 h and a field trial of one sample in the SFGT entrained-flow gasifier confirmed the findings of the short-term corrosion tests
KIHEDU, Joseph. "Fundamental study on co-gasification of biomass with coal". Thesis, 2013. http://hdl.handle.net/2237/17990.
Texto completoZhang, Guanjun. "Mineral matter behavior during co-gasification of coal and biomass". Doctoral thesis, 2014. https://tubaf.qucosa.de/id/qucosa%3A22943.
Texto completoChih-JungChen y 陳致融. "Numerical Simulation and Optimization of Coal and Biomass Gasification in an Entrained-bed Gasifier". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/99171288255043145063.
Texto completo國立成功大學
機械工程學系碩博士班
101
Gasification plays an important role in the development of clean coal technology. In addition, not only coal but also other materials can be employed as feedstocks in gasification. Biomass is an important source of renewable energy in the world. It can also be gasified with coal through co-gasification. Therefore, the objective of this study is to seek appropriate operations for gasification process, the present study develops a numerical method to predict coal gasification phenomena in an entrained-flow gasifier. Particular emphasis is placed on the influence of injection pattern upon synthesis gas (syngas) production. The parameter of steam/coal ratio is also taken into account to evaluate its impact on hydrogen generation. With oxygen injected from the center inlet and coal from the middle ring inlet of the reactor, the operating pattern gives the best performance of coal gasification where the carbon conversion (CC) and coal gas efficiency (CGE) are 89 and 72%, respectively. Increasing steam into the reactor reduces CC and less CO is generated. For the results of gasaification by different feeds, the obtained results suggest that in all cases, the carbon conversions of the three fuels are higher than 90%. However, the cold gasification efficiency for raw bamboo is low, mainly due to the relatively lower calorific value of the material. In the case of the torrefied bamboo fuel, the gasification performance is enhanced significantly and is quite similar to the coal gasification under the same conditions. It appears that the optimum oxygen-to-fuel mass flow ratios for the gasification of raw bamboo, torrefied bamboo, and coal are 0.9, 0.7, and 0.7, and their equivalence ratios are 0.692, 0.434, and 0.357, respectively. On the other hand, Gasification is a very complex thermal conversion process. The result of gasification is influenced by many factors. Hence, the present study was conducted to optimize the gasification process in an entrained-flow gasifier through the application of the Taguchi method. Results suggest that the optimum conditions are a wall temperature of 1500 K, an O/F ratio of 0.6, coal feed type and a gasifier pressure of 3 MPa. The influence strength order of each control condition is feed type>O/F ratio>wall temperature>pressure. The value of the S/N ratio for the optimum case is 13.40, which is the highest value compared to other cases. The simulations suggest that the developed numerical method is able to provide an accurate prediction on syngas formation. With oxygen injected from the center inlet and coal from the middle ring inlet of the reactor, the operating pattern gives the best performance of coal gasification. Analysis of the Taguchi method was used to evaluate the calculation results. Results show that the Taguchi method is able to investigate the gasification process well.
Gao, Chen. "Co-gasification of biomass with coal and oil sands coke in a drop tube furnace". Master's thesis, 2010. http://hdl.handle.net/10048/1238.
Texto completoChemical Engineering
Gordillo, Ariza Gerardo. "Fixed Bed Countercurrent Low Temperature Gasification of Dairy Biomass and Coal-Dairy Biomass Blends Using Air-Steam as Oxidizer". 2009. http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-870.
Texto completoMoyo, Patience. "The application of a distributed activation energy based model to the gasification and combustion of coal and biomass char blends". Thesis, 2014. http://hdl.handle.net/10539/15357.
Texto completoDenton, Rachel Marie. "Evaluating the uncertainty of life cycle assessments : estimating the greenhouse gas emissions for Fischer-Tropsch fuels". Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-05-2768.
Texto completotext
Krishna, S. "Laser-based Diagnostics and Numerical Simulations of Syngas Combustion in a Trapped Vortex Combustor". Thesis, 2015. http://hdl.handle.net/2005/2768.
Texto completoKlinger, Mathias. "Zur Hochtemperaturkorrosion von Feuerfestmaterialien mit sauren, intermediären und basischen Schlacken in reduzierender Atmosphäre". Doctoral thesis, 2016. https://tubaf.qucosa.de/id/qucosa%3A23127.
Texto completoThe corrosion of the refractory lining is the most crucial wear mechanism in slurry fed gasifiers. Due to the low solubility of Cr2O3 in (alumino-)silicate melts, high chromia bricks are state of the art, yet they are expensive, offer a non-satisfying service life of 3 to 24 months, and may need to be disposed of as toxic waste (chromium-VI compounds). Possible alternative materials are alumina or spinel based refractories with optimized composition, as used in various steel making processes. However, steel ladle slags, rich in CaO and poor in SiO2, differ significantly from coal or biomass slags of the gasification process. The corrosion mechanisms of coal or biomass slag attacks onto alumina and spinel based refractories are not investigated in detail yet. In the present work, the corrosion mechanisms of an acidic, an intermediate, and a basic slag against such Al2O3-containing materials have been studied. Ash analyses and short-term corrosion tests in reducing atmosphere were used as a basis for the description of the corrosion. Wear areas were investigated by means of X-ray diffraction and electron microscopy methods. In combination with thermochemical investigations using (quasi-)ternary phase diagrams it was possible to characterize the corrosion processes. The three ashes revealed a different corrosion behavior, with only few mineral phases being formed. Depending on the tested ceramic, the acidic ash (SA) led to a strong or light damage, respectively. In contrast, the intermediate ash (IA) exhibited a deep infiltration and intense corrosion in terms of dissolution and crystallization (mainly anorthite, CaAl2Si2O8) throughout all tested specimens. The basic ash (BA) infiltrated all samples only to a shallow depth. Nevertheless, a strong corrosion due to the massive crystallization of gehlenite (Ca2Al2SiO7), followed by hibonite (CaAl12O19), was observed. The evaluation of the occurring wear pointed up that the corrosion of alumina and spinel based refractories mainly depends on their micro structure and especially on the composition of the ash/slag. Considering the dissolution and crystallization processes in the isothermal section of the SiO2-CaO-Al2O3-(Na2O/K2O) phase diagram, the experimental findings could be confirmed and the corrosion mechanisms described. By dissolution of Al2O3 from the ceramic matrix the slag is enriched in this component until its composition reaches the stability field of corundum (α-Al2O3), which causes corrosion to stop. The deep infiltration and strong corrosion of IA could be explained by a wide range of pure liquid phase which needed to be traversed on its corrosion path in the ternary phase diagram. This enabled IA to dissolve a lot of Al2O3 before the first crystalline phases were formed. For BA, in contrast, the rapid crystallization of gehlenite increased the slag viscosity and led to a consumption of the remaining melt, which in turn stopped further infiltration. The composition of SA is located in the stability field of anorthite plus liquid, forcing the direct precipitation of this mineral. This, and the proximity to the corundum stability field, led to shallow infiltration in some cases. For other tested samples the infiltration and corrosion was stronger, showing that for SA the availability of Al2O3 and the presence of calcium aluminates or glass phases in the ceramic matrix played an essential role. The elucidation of the corrosion mechanisms of chromia-free, Al2O3-containing refractories showed that, besides an optimized micro structure, the adjustment of the slag chemistry is a further option to minimize infiltration. In the technical processes fluxes (lime stone, CaCO3 or quarz sand, SiO2) can be added or blends of different feed stocks can be used. Long-term exposure tests for 150 h and a field trial of one sample in the SFGT entrained-flow gasifier confirmed the findings of the short-term corrosion tests.:1 Einleitung und Zielstellung 2 Kenntnisstand 2.1 Ausmauerung in Vergasern 2.2 Werkstoffverschleiß und Korrosionstests 2.2.1 Arten des Werkstoffverschleißes 2.2.2 Korrosionstests 2.2.3 Auswertung von Korrosionstests 2.3 Chromhaltige Steine 2.4 Chromfreie Feuerfestwerkstoffe für die Vergasung und Stahlerzeugung 2.4.1 Korundbasierte Steine 2.4.2 Spinellhaltige Steine 3 Proben und Untersuchungsmethodik 3.1 Auswahl der Einsatzstoffe 3.1.1 Keramikproben 3.1.2 Testaschen/-schlacken 3.2 Charakterisierung der Einsatzstoffe und des Korrosionsverhaltens 3.2.1 Röntgenfluoreszenzanalyse 3.2.2 Ascheschmelzverhalten 3.2.3 Röntgendiffraktometrie 3.2.4 Hochtemperatur-Röntgendiffraktometrie 3.2.5 Berechnung der Hochtemperatur-Phasenentwicklung 3.2.6 Lichtmikroskopie 3.2.7 Rasterelektronenmikroskopie 3.3 Korrosionsuntersuchungen und -berechnungen 3.3.1 Kurzzeitauslagerung im thermo-optischen Messsystem 3.3.2 Langzeitauslagerung mittels Tiegeltest 3.3.3 Keramiktest im Flugstromvergaser 3.3.4 Berechnung von Phasendiagrammen 4 Ergebnisse und Diskussion 4.1 Charakterisierung der Aschen 4.1.1 Elementzusammensetzung der Aschen 4.1.2 Ascheschmelzverhalten 4.1.3 Phasenbestand der Aschen 4.1.4 Hochtemperaturverhalten der Aschen 4.2 Ergebnisse der TOMAC-Tests 4.2.1 Lichtmikroskopische Untersuchungen 4.2.2 REM/EDS-Untersuchungen 4.3 Ableitung von Korrosionsmechanismen 4.3.1 Wechselwirkungen mit der sauren Asche 4.3.2 Wechselwirkungen mit der intermediären Asche 4.3.3 Wechselwirkungen mit der basischen Asche 4.3.4 Wechselwirkungen beim Referenz-Chromstein 4.4 Schlussfolgerungen aus den TOMAC-Tests 4.4.1 Zusammenfassung der TOMAC-Ergebnisse 4.4.2 Technische Bedeutung 4.4.3 Vorschlag für eine vereinfachte Untersuchungsmethodik 4.5 Validierung der Ergebnisse 4.5.1 Werkstofftest in der Langzeitauslagerung 4.5.2 Werkstofftest im Flugstromvergaser 5 Zusammenfassung und Ausblick