Tesis sobre el tema "Bootstrap"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Bootstrap".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Lee, Stephen Man Sing. "Generalised bootstrap procedures". Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319569.
Texto completoKan, Hasan E. "Bootstrap based signal denoising". Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://bosun.nps.edu/uhtbin/hyperion.exe/02Sep%5FKan.pdf.
Texto completoThesis Advisor(s): Monique P. Fargues, Ralph D. Hippenstiel. "September 2002." Includes bibliographical references (p. 89-90). Also available in print.
Ip, Wai Cheung. "Bootstrap methods in econometrics". Thesis, University of Leeds, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292325.
Texto completoNETO, ANSELMO CHAVES. "BOOTSTRAP IN TIME SERIES". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1991. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8324@1.
Texto completoThe bootstrap of B. Efron, what should not be imagined without fast andcheaper computation, can solve several problems free from assumption that the data conform to a bell-shaped curve. This work has the aim to present this computer-intensive technics in the context of Time Series - Box and Jenkins´s Methodology. As we know this methodology own some asymptotic results. Then in the identification stage of the structure of the model it may present some troubles on regions of the parametric space, as we show later on the bootstrap is proposed as an aption and a comparative simulation study is pointed out. We build up the bootstrap distribution of the sample autocorrelation and sample partial autocorrelation, and yet a bootstrap distribution to the non-linear LS estimator of the coefficients to the ARMA (p,q) model. As a consequence we get the non- parametric measure of the accuracy of the estimates. The study of simulation wich takes into account the non-linear LS estimato to the coefficients, actually focalize the borden of the stationarity and invertibility region.
Ramli, Ahmad Lutfi Amri Bin. "Bootstrap based surface reconstruction". Thesis, Durham University, 2012. http://etheses.dur.ac.uk/4468/.
Texto completoKan, Hasan Ertam. "Bootstrap based signal denoising". Thesis, Monterey, California. Naval Postgraduate School, 2002. http://hdl.handle.net/10945/2883.
Texto completo"This work accomplishes signal denoising using the Bootstrap method when the additive noise is Gaussian. The noisy signal is separated into frequency bands using the Fourier or Wavelet transform. Each frequency band is tested for Gaussianity by evaluating the kurtosis. The Bootstrap method is used to increase the reliability of the kurtosis estimate. Noise effects are minimized using a hard or soft thresholding scheme on the frequency bands that were estimated to be Gaussian. The recovered signal is obtained by applying the appropriate inverse transform to the modified frequency bands. The denoising scheme is tested using three test signals. Results show that FFT-based denoising schemes perform better than WT-based denoising schemes on the stationary sinusoidal signals, whereas WT-based schemes outperform FFT-based schemes on chirp type signals. Results also show that hard thresholding never outperforms soft thresholding, at best its performance is similar to soft thresholding."--p.i.
First Lieutenant, Turkish Army
Rifai, Khaled. "Bootstrap-Instrumente für Unternehmensgründungen". Lohmar Eul, 2009. http://d-nb.info/995568170/04.
Texto completoCastedo, Echeverri Alejandro. "CFTs and the Bootstrap". Doctoral thesis, SISSA, 2016. http://hdl.handle.net/20.500.11767/3581.
Texto completoPrzykucki, Michał Jan. "Extremal and probabilistic bootstrap percolation". Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/245349.
Texto completoRichard, Patrick. "Sieve bootstrap unit root tests". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103285.
Texto completoWe also argue that using biased estimators to build bootstrap DGPs may result in less accurate inference. Some simulations confirm this in the case of ADF tests. We show that one can use the GLS transformation matrix to obtain equations that can be used to estimate bias in general ARMA(p,q) models. We compare the resulting bias reduced estimator to a widely used bootstrap based bias corrected estimator. Our simulations indicate that the former has better finite sample properties then the latter in the case of MA models. Finally, our simulations show that using bias corrected or bias reduced estimators to build bootstrap DGP sometimes provides accuracy gains.
鄧國良 y Kwok-leong Tang. "Sensitivity analysis of bootstrap methods". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31977479.
Texto completoYu, Zhuqing y 俞翥清. "Uniformly consistent bootstrap confidence intervals". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B47752993.
Texto completopublished_or_final_version
Statistics and Actuarial Science
Master
Master of Philosophy
Liljas, Erik. "3D-bootstrap - Konfidensintervall för guldfyndigheter". Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-86723.
Texto completoSmith, Paul James. "Sharp thresholds in bootstrap percolation". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610754.
Texto completoBuzun, Nazar. "Bootstrap in high dimensional spaces". Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22285.
Texto completoThe objective of this thesis is to explore theoretical properties of various bootstrap methods. We introduce the convergence rates of the bootstrap procedure which corresponds to the difference between real distribution of some statistic and its resampling approximation. In this work we analyze the distribution of Euclidean norm of independent vectors sum, maximum of sum in high dimension, Wasserstein distance between empirical measures, Wassestein barycenters. In order to prove bootstrap convergence we involve Gaussian approximation technique which means that one has to find a sum of independent vectors in the considered statistic such that bootstrap yields a resampling of this sum. Further this sum may be approximated by Gaussian distribution and compared with the resampling distribution as a difference between variance matrices. In general it appears to be very difficult to reveal such a sum of independent vectors because some statistics (for example, MLE) don't have an explicit equation and may be infinite-dimensional. In order to handle this difficulty we involve some novel results from statistical learning theory, which provide a finite sample quadratic approximation of the Likelihood and suitable MLE representation. In the last chapter we consider the MLE of Wasserstein barycenters model. The regularised barycenters model has bounded derivatives and satisfies the necessary conditions of quadratic approximation. Furthermore, we apply bootstrap in change point detection methods. In the parametric case we analyse the Likelihood Ratio Test (LRT) statistic. Its high values indicate changes of parametric distribution in the data sequence. The maximum of LRT has a complex distribution but its quantiles may be calibrated by means of bootstrap. We show the convergence rates of the bootstrap quantiles to the real quantiles of LRT distribution. In non-parametric case instead of LRT we use Wasserstein distance between empirical measures. We test the accuracy of change point detection methods on synthetic time series and electrocardiography (ECG) data. Experiments with ECG illustrate advantages of the non-parametric approach versus complex parametric models and LRT.
Lin, Ying-Hsuan. "Conformal Bootstrap in Two Dimensions". Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493283.
Texto completoPhysics
Tang, Kwok-leong. "Sensitivity analysis of bootstrap methods". [Hong Kong] : University of Hong Kong, 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13793792.
Texto completoGandolfo, Enrico. "Metodo bootstrap e alcune applicazioni". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/2957/.
Texto completoChaves, Inácio Felipe. "Bootstrap ponderado : uma avaliação numérica". Universidade Federal de Pernambuco, 2004. https://repositorio.ufpe.br/handle/123456789/6597.
Texto completoEm modelos de regressão linear em que os erros são heteroscedásticos, a prática comum é utilizar o estimador de mínimos quadrados ordinários para a estimação dos parâmetros juntamente com um estimador consistente da matriz de covariâncias dessas estimativas que, em geral, é o estimador desenvolvido por White (1980) ou uma de suas variantes. Entretanto, estimadores da matriz de covariâncias baseados em esquemas de bootstrap têm-se mostrado boas alternativas aos estimadores tradicionais. Em especial o estimador desenvolvido por Cribari?Neto & Zarkos (2004), em que a probabilidade de seleção dos resíduos é ponderada pelo inverso do grau de alavancagem, apresenta desempenho superior aos estimadores consistentes tradicionais, principalmente em situações não-balanceadas em que há observações potencialmente influentes. Utilizando simulações de Monte Carlo, foi analisada neste trabalho a sensibilidade desse estimador a diferentes formas de reamostragem através da análise do comportamento de novos estimadores que utilizam outras probabilidades de seleção dos resíduos. Adicionalmente, investigou-se a sensibilidade da inferência baseada neste e em outros estimadores a situações de não-normalidade dos erros
Pavlíčková, Lucie. "Metoda bootstrap a její aplikace". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228541.
Texto completoZhang, Guangjian. "Bootstrap procedures for dynamic factor analysis". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1153782819.
Texto completoChauvet, Guillaume. "Méthodes de Bootstrap en population finie". Phd thesis, Rennes 2, 2007. http://tel.archives-ouvertes.fr/tel-00267689.
Texto completoXu, Liqun. "Bootstrap for dual scaling of rankings". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0001/NQ35373.pdf.
Texto completoWang, Qun. "Bootstrap techniques for statistical pattern recognition". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0027/MQ52407.pdf.
Texto completoGredenhoff, Mikael. "Bootstrap inference in time series econometrics". Doctoral thesis, Stockholm : Economic Research Institute, Stockholm School of Economics [Ekonomiska forskningsinstitutet vid Handelshögsk.] (EFI), 1998. http://www.hhs.se/efi/summary/476.htm.
Texto completoAllison, James Samuel. "Bootstrap-based hypothesis testing / J.S. Allison". Thesis, North-West University, 2008. http://hdl.handle.net/10394/3701.
Texto completoThesis (Ph.D. (Statistics))--North-West University, Potchefstroom Campus, 2009.
Canepa, Alessandra. "Bootstrap inference in cointegrated VAR models". Thesis, University of Southampton, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268384.
Texto completoMeinke, Alexander. "Applications of the Extremal Functional Bootstrap". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26112018-120129/.
Texto completoO estudo da simetria conforme é motivado através de um exemplo em mecânica estatística e em seguida rigorosamente desenvolvido em teorias de campos quânticos em dimensões espaciais gerais. Em particular, os campos primários são introduzidos como os objetos fundamentais de tais teorias e então estudados através do formalismo de quantização radial. As implicações da invariância conforme na forma funcional das funções de correlação são estudadas em detalhe. Blocos conformes são definidos e várias abordagens para seu cálculo analítico e numérico são apresentadas com uma ênfase especial no caso unidimensional. Com base nessas preliminares, uma formulação moderna do programa de bootstrap conforme e suas várias extensões são discutidas. Exemplos são dados em que limites nas dimensões de escala em uma teoria unidimensional são derivados numericamente. Usando esses resultados, motivei a técnica de usar o bootstrap funcional extremo, que depois desenvolvo em mais detalhes. Diversos detalhes técnicos são discutidos e exemplos são apresentados. Após uma breve discussão das teorias de campo conformes com fronteiras, eu aplico métodos numéricos para encontrar restrições no espectro do modelo de Ising em 3D. Outra aplicação é apresentada em que eu estudo a função de 4 pontos na fronteira de uma teoria particular no espaço Anti-de-Sitter, a fim de aproximar o espectro de massa da teoria.
Dalposso, Gustavo Henrique. "Método Bootstrap na agricultura de precisão". Universidade Estadual do Oeste do Paraná, 2017. http://tede.unioeste.br/handle/tede/3075.
Texto completoMade available in DSpace on 2017-09-20T19:23:51Z (GMT). No. of bitstreams: 1 Gustavo_Dalposso2017.pdf: 1367696 bytes, checksum: 564cf4753004f95da013e7b93a9767ac (MD5) Previous issue date: 2017-02-15
Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná (FA)
One issue in precision agriculture studies concerns about the statistical methods applied in inferential analysis, since they have required assumptions that, sometimes, cannot be assumed. A possibility to traditional methods is to use the bootstrap method, which consists in resampling and replacing the original data set to carry out inferences. The bootstrap methodology can be applied to independent sample data as well as in cases of dependence, such as in spatial statistics. However, adjustments are required during the resampling process in order to use the bootstrap method in spatial data. Thus, this trial aimed at applying the bootstrap method in precision agriculture studies, whose result was the preparation of three scientific papers. Soybean yield and soil attributes datasets formed with few samples were used in the first paper to determine a multiple linear regression model. Bootstrap methods were chosen to select variables, identify influential points and determine confidence intervals of the model parameters. The results showed that the bootstrap methods allowed selecting significant attributes to design a model, to build confidence intervals of the studied parameters and finally to indentify the influential points on the estimated parameters. Besides, spatial dependence of soybean yield data and soil attributes were studied in the second paper by bootstrap method in geostatistical analysis. The spatial bootstrap method was used to quantify the uncertainties associated with the spatial dependence structure, the fitted model parameter estimators, kriging predicted values and multivariate normality assumption of data. Thus, it was possible to quantify the uncertainties in all phases of geostatistical analysis. A spatial linear model was used to analyze soybean yield considering the soil attributes in the third paper. Spatial bootstrap methods were used to determine point and interval estimators associated with the studied model parameters. Hypothesis tests were carried out on the model parameters and probability plots were developed to identify data normality. These methods allowed to quantify the uncertainties associated to the structure of spatial dependence, as well as to evaluate the individual significance of the parameters associated with the average of the spatial linear model and to verify data multivariate normality assumption. Finally, it is concluded that bootstrap method is an effective alternative to make statistical inferences in precision agriculture studies.
Um problema que ocorre nos estudos vinculados à agricultura de precisão diz respeito aos métodos estatísticos utilizados nas análises inferenciais, pois eles requerem pressupostos que muitas vezes não podem ser assumidos. Uma alternativa aos métodos tradicionais é a utilização do método bootstrap, que utiliza reamostragens com reposição do conjunto de dados originais para realizar inferências. A metodologia bootstrap pode ser aplicada a dados amostrais independentes e também em casos de dependência, como na estatística espacial. No entanto, para se utilizar o método bootstrap em dados espaciais, são necessárias adaptações no processo de reamostragem. Este trabalho teve como objetivo utilizar o método bootstrap em estudos vinculados à agricultura de precisão, cujo resultado é a elaboração de três artigos. No primeiro artigo utilizou-se um conjunto de dados de produtividade de soja e atributos do solo formado com poucas amostras para determinar um modelo de regressão linear múltipla. Foram utilizados métodos bootstrap para a seleção de variáveis, identificação de pontos influentes e determinação de intervalos de confiança dos parâmetros do modelo. Os resultados mostraram que os métodos bootstrap permitiram selecionar os atributos que foram significativos na construção do modelo, construir os intervalos de confiança dos parâmetros e identificar os pontos que tiveram grande influência sobre os parâmetros estimados. No segundo artigo estudou-se a dependência espacial de dados de produtividade de soja e atributos do solo utilizando o método bootstrap na análise geoestatística. Utilizou-se o método bootstrap espacial para quantificar as incertezas associadas à caracterização das estruturas de dependência espacial, aos estimadores dos parâmetros dos modelos ajustados, aos valores preditos por krigagem e ao pressuposto de normalidade multivariada dos dados. Os resultados obtidos possibilitaram quantificar as incertezas em todas as fases da análise geoestatística. No terceiro artigo utilizou-se uma regressão espacial linear para modelar a produtividade de soja em função de atributos do solo. Foram utilizados métodos bootstrap espaciais para determinar estimadores pontuais e por intervalo associados aos parâmetros do modelo. Realizaram-se testes de hipóteses sobre os parâmetros do modelo e foram eleborados gráficos de probabilidade para identificar a normalidade dos dados. Os métodos permitiram quantificar as incertezas associadas à estrutura de dependência espacial, avaliar a significância individual dos parâmetros associados à média do modelo espacial linear e verificar a suposição de normalidade multivariada dos dados. Conclui-se, portanto, que o método bootstrap é uma eficaz alternativa para realizar inferências em estudos vinculados à agricultura de precisão.
Meltzer, David H. "Topics in the Analytic Conformal Bootstrap". Thesis, Yale University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10957332.
Texto completoIn this thesis, we explore analytical methods to study conformal field theories (CFTs) in a general number of spacetime dimensions. We first use the lightcone bootstrap to systematically study correlation functions of scalar operators charged under global symmetries. We then generalize existing techniques in the lightcone bootstrap to study four-point functions containing operators with spin. As an application, we observe a close connection between anomalous dimensions of large spin, double-twist operators and the conformal collider bounds. Through further refinement of these techniques and the application of known analyticity properties for four-point functions, we also present a proof for these bounds that relies on basic physical consistency conditions. We then generalize these techniques further to study large N CFTs in the Regge limit and the implications of crossing symmetry in this limit. By studying the Regge limit, we can make new predictions for the large twist, large spin spectrum of CFTs and derive new bounds on CFT data. In the final part of this thesis, we use the Regge limit and constraints from unitarity to derive new bounds for both large N and generic CFTs. For large N CFTs, we derive new constraints on theories dual to a weakly-coupled, gravitational theory in an Anti-deSitter (AdS) spacetime, and for generic CFTs we derive generalizations of the conformal collider bounds.
Lacinová, Veronika. "Odhady diskrétního rozložení pravděpodobnosti a bootstrap". Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-234260.
Texto completoKusuki, Yuya. "Analytic Conformal Bootstrap in 2D CFT". Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263457.
Texto completoKecojevic, Tatjana. "Bootstrap inference for parametric quantile regression". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/bootstrap-inference-for-parametric-quantile-regression(194021d5-e03f-4f48-bfb8-5156819f5900).html.
Texto completoYam, Chiu Yu. "Quasi-Monte Carlo methods for bootstrap". HKBU Institutional Repository, 2000. http://repository.hkbu.edu.hk/etd_ra/272.
Texto completoGonçalves, Sílvia. "The bootstrap for dependent heterogeneous processes /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9987533.
Texto completoChauvet, Guillaume Carbon Michel. "Méthodes de Bootstrap en population finie". Rennes : Université Rennes 2, 2008. http://tel.archives-ouvertes.fr/tel-00267689/fr.
Texto completoBarbosa, Eduardo Campana. "Inferência via Bootstrap na Conjoint Analysis". Universidade Federal de Viçosa, 2017. http://www.locus.ufv.br/handle/123456789/17847.
Texto completoMade available in DSpace on 2018-02-22T18:20:05Z (GMT). No. of bitstreams: 1 texto completo.pdf: 826585 bytes, checksum: 3724f9d33c7d0253426d44dc0a59b8fc (MD5) Previous issue date: 2017-12-14
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
A presente tese teve como objetivo introduzir o método de reamostragem com reposição ou Bootstrap na Conjoint Analysis. Apresenta-se no texto uma revisão conceitual (Revisão de Literatura) sobre a referida metodologia (Conjoint Analysis) e também sobre o método proposto (Bootstrap). Adicionalmente, no Capítulo I e II, define-se a parte teórica e metodológica da Conjoint Analysis e do método Bootstrap, ilustrando o funcionamento conjunto dessas abordagens via aplicação real, com dados da área de tecnologia de alimentos. Inferências adicionais que até então não eram fornecidas no contexto clássico ou frequentista podem agora ser obtidas via análise das distribuições empíricas dos estimadores das Importâncias Relativas (abordagem por notas) e das Probabilidades e Razão de Escolhas (abordagem por escolhas). De forma geral, os resultados demonstraram que o método Bootstrap forneceu estimativas pontuais mais precisas e tornou ambas as abordagens da Conjoint Analysis mais informativas, uma vez que medidas de erro padrão e, principalmente, intervalos de confiança puderam ser facilmente obtidos para certas quantidades de interesse, possibilitando a realização de testes ou comparações estatísticas sobre as mesmas.
The aim of this thesis was introduce the Booststrap resampling method in Conjoint Analysis. We present in the text a conceptual review (Literature Review) about this methodology (Conjoint Analysis) and also about the proposed method (Bootstrap). In addition, in Chapter I and II, the theoretical and methodological aspects of Conjoint Analysis and the Bootstrap method are defined, illustrating the joint operation of these approaches via real application, with data from the food technology area.. Additional inferences have not been provided in the classic or frequentist context can now be obtained by analyzing the empirical distributions of Relative Importance (ratings based approach) and Probability and Choice Ratio (choice based approach) estimators. Overall, the results demonstrated that the Bootstrap method provided more accurate point estimates and made both Conjoint Analysis approaches more informative, since standard error measures, and mainly confidence intervals, could be easily obtained for certain quantities of interest, making it possible to perform statistical tests or comparisons on them.
Zhilova, Mayya. "Bootstrap confidence sets under model misspecification". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17380.
Texto completoThe thesis studies a multiplier bootstrap procedure for construction of likelihood-based confidence sets in two cases. The first one focuses on a single parametric model, while the second case extends the construction to simultaneous confidence estimation for a collection of parametric models. Theoretical results justify the validity of the bootstrap procedure for a limited sample size, a large number of considered parametric models, growing parameters’ dimensions, and possible misspecification of the parametric assumptions. In the case of one parametric model the bootstrap approximation works if the cube of the parametric dimension is smaller than the sample size. The main result about bootstrap validity continues to apply even if the underlying parametric model is misspecified under a so-called small modelling bias condition. If the true model deviates significantly from the considered parametric family, the bootstrap procedure is still applicable but it becomes conservative: the size of the constructed confidence sets is increased by the modelling bias. For the problem of construction of simultaneous confidence sets we suggest a multiplier bootstrap procedure for estimating a joint distribution of the likelihood ratio statistics, and for adjustment of the confidence level for multiplicity. Theoretical results state the bootstrap validity; a number of parametric models enters a resulting approximation error logarithmically. Here we also consider the case when parametric models are misspecified. If the misspecification is significant, then the bootstrap critical values exceed the true ones and the bootstrap confidence set becomes conservative. The theoretical approach includes non-asymptotic square-root Wilks theorem, Gaussian approximation of Euclidean norm of a sum of independent vectors, comparison and anti-concentration bounds for Euclidean norm of Gaussian vectors. Numerical experiments for misspecified regression models nicely confirm our theoretical results.
PORQUEDDU, MARIO. "Bootstrap methods for dynamic factor models". Doctoral thesis, Università Bocconi, 2009. https://hdl.handle.net/11565/4053467.
Texto completoBergström, Gustav. "The Use of Importance Sampling in Bootstrap Simulations and in Moving Block Bootstrap Simulations for Efficient VaR Estimations". Thesis, Umeå universitet, Institutionen för fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-66587.
Texto completoSivasothinathan, Ramanan. "A bootstrap approach for constructing superconvergent interpolants". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ34042.pdf.
Texto completoReesor, R. Mark. "Relative entropy, distortion, the bootstrap and risk". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ65258.pdf.
Texto completoPraestgaard, Jens Thomas. "General-weights bootstrap of the empirical process /". Thesis, Connect to this title online; UW restricted, 1991. http://hdl.handle.net/1773/8966.
Texto completoKent, A. "Infinite dimensional algebras and the conformal bootstrap". Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383184.
Texto completo馮子豪 y Tze-ho Fung. "Bootstrap estimation of variance in survey sampling". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1987. http://hub.hku.hk/bib/B31208198.
Texto completoChan, Tsz-hin y 陳子軒. "Hybrid bootstrap procedures for shrinkage-type estimators". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48521826.
Texto completopublished_or_final_version
Statistics and Actuarial Science
Master
Master of Philosophy
Buzun, Nazar [Verfasser]. "Bootstrap in high dimensional spaces / Nazar Buzun". Berlin : Humboldt-Universität zu Berlin, 2021. http://d-nb.info/1226153208/34.
Texto completoCoker, Thomas David. "Graph colouring and bootstrap percolation with recovery". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610806.
Texto completoLIMA, Fábio Pereira. "Inferência bootstrap em modelos de regressão beta". Universidade Federal de Pernambuco, 2017. https://repositorio.ufpe.br/handle/123456789/24578.
Texto completoMade available in DSpace on 2018-05-10T17:06:08Z (GMT). No. of bitstreams: 1 TESE Fabio Pereira Lima.pdf: 5026433 bytes, checksum: 608a6a35ae31e2257e95cb554d5c8f3f (MD5) Previous issue date: 2017-02-23
CAPES
O método bootstrap, introduzido por Efron (1979), tornou-se uma importante ferramenta estatística para contornar problemas inferenciais em pequenas amostras ou quando a teoria assintótica é intratável, podendo ser utilizado, por exemplo, na construção de intervalos de confiança, para realizar correção de viés de estimadores e para realizar testes de hipóteses. Quando se trata da classe de modelos de regressão beta proposta em Ferrari e Cribari- Neto (2004), utilizada na modelagem de variáveis contínuas no intervalo (0,1), o método tem um importante papel na construção de intervalos de predição e na realização de testes de hipóteses. A presente tese tem como objetivo abordar os principais métodos bootstrap utilizados para realizar inferências sobre os parâmetros dessa classe de modelos, avaliando os desempenhos das principais variantes de tal método. Para tanto, inicialmente são expostas adaptações do método bootstrap tendo como objetivo a realização de testes de hipóteses encaixadas e não encaixadas. Nesse cenário, propomos uma versão bootstrap duplo rápido para os testes com o objetivo de obter maior precisão nos resultados sem alto custo computacional. Adicionalmente, um estudo sobre a construção de intervalos de predição em modelos de regressão beta é realizado. Levando em conta os métodos percentil e BCa adaptados em Espinheira et al. (2014), propomos uma adaptação do método t-bootstrap e as versões bootstrap duplo do mesmo e do método percentil. O desempenho de cada método é então avaliado na busca de determinar a melhor abordagem para cada situação.
Introduced by Efron (1979), the bootstrap became an important statistical tool, being used to overcome inference problems on small samples or when the asymptotic theory is intractable. The method can be used, for example, for constructing conhdence intervals, for performing bias correction of estimators and for carrying out hypothesis testing inference. In the beta regression model, proposed by Ferrari and Cribari-Neto (2004) which is used to model continuous variables in (0,1), the bootstrap method plays an important role in the construction of prediction intervals and hypothesis testing. This thesis deals with the use of bootstrap methods for perfoming statistical inference in beta regression models. We present adaptations of the bootstrap method for perfoming nested and nonnested hypothesis testing inference. Next, we propose fast double bootstrap variants of the tests in order to achieve more accurate inferences without the high computational cost required by the Standard double bootstrap. Additionally, a study of prediction intervals in the class of beta regression models is performed. We introduce f-bootstrap prediction interval and the double bootstrap versions of the percentil and f-bootstrap prediction intervals. The performance of each method is then evaluated in the quest to determine the best approach for each situation.
Mendes, José Manuel Zorro. ""Bootstrap" iterativo: aplicação ao índice de Gini". Master's thesis, ISEG, 1990. http://hdl.handle.net/10400.5/21910.
Texto completo