Literatura académica sobre el tema "Cascaded-Anode plasma torch"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Cascaded-Anode plasma torch".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Cascaded-Anode plasma torch"

1

Zhukovskii, Rodion, Christophe Chazelas, Vincent Rat, Armelle Vardelle, and Ron Molz. "Model of a non-transferred arc cascaded-anode plasma torch: the two-temperature formulation." Journal of Physics D: Applied Physics 55, no. 6 (2021): 065202. http://dx.doi.org/10.1088/1361-6463/ac2cec.

Texto completo
Resumen
Abstract This study presents an analysis of a three-dimensional unsteady two-temperature simulation of atmospheric pressure direct current electric arc inside a commercial cascaded-anode plasma spray torch; it coupled the arc model with the torch electrodes and used an open-source computational fluid dynamics software (code_saturne). The previously published models of plasma spray torch either deal with conventional plasma torches or assume local thermodynamic equilibrium in cascaded-anode plasma torches. The paper presents the computation of the two-temperature argon plasma properties, compar
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ruelle, Céline, Simon Goutier, Vincent Rat, Alan Keromnes, Christophe Chazelas, and Érick Meillot. "Study of the electric arc dynamics in a cascaded-anode plasma torch." Surface and Coatings Technology 462 (June 2023): 129493. http://dx.doi.org/10.1016/j.surfcoat.2023.129493.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Zhukovskii, Rodion, Christophe Chazelas, Armelle Vardelle, and Vincent Rat. "Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode." Journal of Thermal Spray Technology 29, no. 1-2 (2019): 3–12. http://dx.doi.org/10.1007/s11666-019-00969-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Chen, Chao, Dongping Liu, and Weiyuan Ni. "Two-temperature chemical equilibrium modeling of nitrogen DC plasma torch with cascaded anode." Physica Scripta, March 5, 2025. https://doi.org/10.1088/1402-4896/adbd00.

Texto completo
Resumen
Abstract Compared to conventional plasma torch, the plasma torch with cascaded anode allows a reduction of the anode surface and a prolongation of the arc column, which improves the stability and specific enthalpy of the plasma jet. A two-dimensional (2D) hydrodynamic model with thermal nonequilibrium and chemical equilibrium is developed to investigate the arc characteristics of a cascaded-anode nitrogen DC plasma torch. The model calculates the current density, the density and temperature of heavy species and electrons, and the flow velocity in the nitrogen plasma torch. It is found that the
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Mauer, Georg. "Multiple Electrodes and Cascaded Nozzles: A Review of the Evolution of Modern Plasma Spray Torches." Journal of Thermal Spray Technology, December 20, 2024. https://doi.org/10.1007/s11666-024-01909-x.

Texto completo
Resumen
AbstractConventional one-cathode/anode plasma spray guns are susceptible to aging. One reason is the large power density, especially at the arc roots on the cathode tip and the anode wall. Anode wear results in a thinner boundary layer and a reduced arc root motion, which increases the local thermal load. This also results in a voltage drop, and thus a reduction in power level when the power source is operated in a constant current mode. In addition to electrode wear, the instantaneous arc morphology and the time-dependent voltage waveform are strongly correlated to each other, especially when
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Zhukovskii, Rodion, Christophe Chazelas, Vincent Rat, Armelle Vardelle, and Ron Molz. "Predicted Anode Arc Attachment by LTE (Local Thermodynamic Equilibrium) and 2-T (Two-Temperature) Arc Models in a Cascaded-Anode DC Plasma Spray Torch." Journal of Thermal Spray Technology, September 9, 2021. http://dx.doi.org/10.1007/s11666-021-01253-4.

Texto completo
Resumen
AbstractIn DC plasma spray torches, anode erosion is a common concern. It mainly depends on the heat flux brought by the arc and on the dimensions and residence time of the arc attachment to a given location on the anode wall. The latter depend, to a great extent, on the attachment mode of the arc on the anode wall. This paper compares the anode arc attachment modes predicted by an LTE (Local Thermodynamic Equilibrium) and 2-T (two-temperature) arc models that include the electrodes in the computational domain. It deals with a commercial cascaded-anode plasma torch operated at high current (50
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zhukovskii, Rodion, Christophe Chazelas, Vincent Rat, Armelle Vardelle, and Ronald J. Molz. "Effect of Cathode-Plasma Coupling on Plasma Torch Operation Predicted by a 3D Two-Temperature Electric Arc Model." Journal of Thermal Spray Technology, January 11, 2023. http://dx.doi.org/10.1007/s11666-022-01501-1.

Texto completo
Resumen
AbstractIn a DC plasma spray torch, the plasma-forming gas is the most intensively heated and accelerated at the cathode arc attachment due to the very high electric current density at this location. A proper prediction of the cathode arc attachment is, therefore, essential for understanding the plasma jet formation and cathode operation. However, numerical studies of the cathode arc attachment mostly deal with transferred arcs or conventional plasma torches with tapered cathodes. In this study, a 3D time-dependent two-temperature model of electric arc combined with a cathode sheath model is a
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Sleiman, Myriam, Geoffrey Darut, Ralph Seulin, et al. "Effect of Operating Parameters and Anode Configuration on Plasma Generated by a Modular Cascaded Torch." Journal of Thermal Spray Technology, November 12, 2024. http://dx.doi.org/10.1007/s11666-024-01867-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ruelle, Céline, Simon Goutier, Vincent Rat, et al. "Influence of Nozzle Diameter on Electric Arc Dynamics and Coating Properties in a Cascaded-Anode Plasma Torch." Journal of Thermal Spray Technology, January 2, 2024. http://dx.doi.org/10.1007/s11666-023-01706-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Cascaded-Anode plasma torch"

1

Ruelle, Céline. "Relations entre les caractéristiques d'un jet de plasma généré par une torche à plasma d'arc segmentée et les microstructures des dépôts associés." Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0011.

Texto completo
Resumen
La projection plasma consiste à faire fondre un matériau dans un jet de plasma et à le projeter à grande vitesse en direction d’un substrat pour y former un revêtement. Ce jet de plasma est généré par une torche à plasma d’arc suite à la formation d’un arc électrique entre deux électrodes. Les torches à plasma dites conventionnelles sont largement utilisées, mais leur design conduit à des instabilités de l’arc électrique et du jet de plasma pouvant affecter le traitement thermocinétique des particules. Des torches à plasma dites segmentées ont alors été développées : grâce à la présence d’un é
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Cascaded-Anode plasma torch"

1

Zhukovskii, Rodion, Christophe Chazelas, Armelle Vardelle, and Vincent Rat. "Control of Arc Motion in a dc Plasma Spray Torch with a Cascaded Anode." In ITSC2019, edited by F. Azarmi, K. Balani, H. Koivuluoto, et al. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.itsc2019p0059.

Texto completo
Resumen
Abstract Two common concerns in dc plasma torches are stability of plasma jet and anode erosion. The challenge is how to get a stable plasma jet with minimal anode erosion. This study tackles this question by using an external axial magnetic field applied to a cascaded plasma torch. A 3D, time-dependent model of the torch is used to predict the value of the magnetic field and its effect on heat flux to the anode as well as plasma jet stability. The model couples the gas phase and electrodes, making it possible to follow anode temperature evolution. For specific operating conditions, the model
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ruelle, Céline, Simon Goutier, Vincent Rat, et al. "Influence of Nozzle Diameter on Electric Arc Dynamics in a Cascaded-Anode Plasma Torch." In ITSC 2023. ASM International, 2023. http://dx.doi.org/10.31399/asm.cp.itsc2023p0127.

Texto completo
Resumen
Abstract Electric arc dynamics in plasma torch affects plasma jet stability and consequently, coating properties. Depending on plasma torch design, voltage fluctuations can vary from 100 % to only a few percent of the mean voltage. Particularly, cascaded-anode plasma torch leads to very low voltage fluctuation owing to the presence of neutrodes that limit the amplitude of arc fluctuations. However, electric arc dynamics and electrode erosion process in this type of plasma torch are still poorly understood. The aim of this work is to deepen the knowledge on the influence of nozzle diameter on e
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Zhukovskii, Rodion, Christophe Chazelas, Vincent Rat, Armelle Vardelle, and Ron Molz. "Predicted Anode Arc Attachment by Local Thermodynamic Equilibrium (LTE) and Two-Temperature Arc Models in a Cascaded-Anode dc Plasma Spray Torch." In ITSC2021, edited by F. Azarmi, X. Chen, J. Cizek, et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0360.

Texto completo
Resumen
Abstract Anode erosion is a common concern in dc plasma spray torches. It depends largely on the heat flux brought by the arc and the dimensions, residence time, and mode of the arc attachment to a given location on the anode wall. This paper compares anode arc attachment modes predicted by LTE (local thermodynamic equilibrium) and 2-T (two-temperature) arc models that include the electrodes in the computational domain. The analysis is based on a commercial cascaded-anode plasma torch operated at high current (500 A) and low gas flow rate (60 NLPM of argon). It shows that the LTE model predict
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Saito, Hiroki, Hikaru Matsumoto, and Takayasu Fujino. "Dynamic Behavior of Anode Arc Jets in a Cascade Plasma Torch with an External Magnetic Field." In ITSC2019, edited by F. Azarmi, K. Balani, H. Koivuluoto, et al. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.itsc2019p0199.

Texto completo
Resumen
Abstract This study evaluates the effect of an external magnetic field on arc fluctuations in a cascaded plasma torch. End-on images of anode arc jets are captured by high-speed photography while associated arc voltages are measured. The results are presented and discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Alaya, M., C. Chazelas, and A. Vardelle. "Parametric Study of Plasma Torch Operation Using a MHD Model Coupling the Arc and Electrodes." In ITSC2015, edited by A. Agarwal, G. Bolelli, A. Concustell, et al. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0627.

Texto completo
Resumen
Abstract Coupling of the electromagnetic and heat transfer phenomena in a non-transferred arc plasma torch is generally based on a current density profile and a temperature imposed on the cathode surface. However, it is not possible to observe the current density profile experimentally. To eliminate this boundary condition and be able to predict the arc dynamics in the plasma torch, the electrodes were included in the computational domain, the arc current was imposed on the rear surface of the cathode, and the electromagnetism and energy conservation equations for the fluid and the electrodes
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Darut, Geoffrey, Marie Pierre Planche, Hanlin Liao, Christian Adam, Armando Salito, and Manfred Rösli. "Study of the In-Flight Characteristics of Particles for Different Configurations of Cascade Plasma Torches." In ITSC2021, edited by F. Azarmi, X. Chen, J. Cizek, et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0499.

Texto completo
Resumen
Abstract Cascaded plasma torches are becoming increasingly common, but the influence of geometry, notably that of the anode, is relatively unexplored. This work investigates the relationship between anode-cathode distance and plasma voltage fluctuations. The study was conducted using cascaded torches that can be configured with different numbers of neutrodes and commercially available Al2O3 powders. The powders were sprayed at different gas flow rates and current intensities while monitoring voltage fluctuations as well as in-flight particle temperature and velocity. The resulting alumina coat
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zhukovskii, R., C. Chazelas, V. Rat, A. Vardelle, and R. Molz. "Effect of Cathode-Plasma Coupling on Plasma Torch Operation Predicted by a 3D Two-Temperature Electric Arc Model." In ITSC2022. DVS Media GmbH, 2022. http://dx.doi.org/10.31399/asm.cp.itsc2022p0395.

Texto completo
Resumen
Abstract In a DC plasma spray torch, the plasma-forming gas is the most intensively heated and accelerated at the cathode arc attachment due to the very high electric current density at this location. A proper prediction of the cathode arc attachment is, therefore, essential for understanding the plasma jet formation and cathode operation. However, numerical studies of the cathode arc attachment mostly deal with transferred arcs or conventional plasma torches with tapered cathodes. In this study, a 3-D time-dependent and two-temperature model of electric arc combined with a cathode sheath mode
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Barbezat, G., and K. Landes. "Plasma Technology TRIPLEX for the Deposition of Ceramic Coatings in the Industry." In ITSC 2000, edited by Christopher C. Berndt. ASM International, 2000. http://dx.doi.org/10.31399/asm.cp.itsc2000p0881.

Texto completo
Resumen
Abstract As a new plasma gun technology the TRIPLEX system has been introduced in the industrial field two years ago. The core of the TRIPLEX technology is a plasma gun with three cathodes and a long cascaded nozzle consisting of several insulated rings. Only the last ring with a relatively long distance to the cathode is operated as anode. Because of the equal and constant lengths of the three independent arcs, stretching from the three cathodes to the common anode, a stationary plasma jet is generated. Compared to conventional torches, the improved stability of the plasma jet allows a more u
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Barbezat, G. "The Evolution of the Plasma Spraying Technology During the Last Ten Years." In ITSC2001, edited by Christopher C. Berndt, Khiam A. Khor, and Erich F. Lugscheider. ASM International, 2001. http://dx.doi.org/10.31399/asm.cp.itsc2001p1273.

Texto completo
Resumen
Abstract The plasma spray technology has shown a considerably evolution during the last 10 years. Modeling and diagnostic methods also have shown a strong development and offer tools for a better characterization and simulation of the plasma spray processes. In the same time some new types of plasma torches were developed. The motivation for the development primarily was the productivity measured in spray rate and deposition efficiency. However the necessary level of energy used for the melting and the accelerating of the powder was not always considered as important factor. In the future this
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!