Artículos de revistas sobre el tema "CBRAM"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "CBRAM".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Cao, Haichao, and Hao Ren. "A 10-nm-thick silicon oxide based high switching speed conductive bridging random access memory with ultra-low operation voltage and ultra-low LRS resistance." Applied Physics Letters 120, no. 13 (2022): 133502. http://dx.doi.org/10.1063/5.0085045.
Texto completoAbbas, Haider, Jiayi Li, and Diing Shenp Ang. "Conductive Bridge Random Access Memory (CBRAM): Challenges and Opportunities for Memory and Neuromorphic Computing Applications." Micromachines 13, no. 5 (2022): 725. http://dx.doi.org/10.3390/mi13050725.
Texto completoCha, Jun-Hwe, Sang Yoon Yang, Jungyeop Oh, et al. "Conductive-bridging random-access memories for emerging neuromorphic computing." Nanoscale 12, no. 27 (2020): 14339–68. http://dx.doi.org/10.1039/d0nr01671c.
Texto completoKim, Hae Jin. "Recent Progress of the Cation Based Conductive Bridge Random Access Memory." Ceramist 26, no. 1 (2023): 90–105. http://dx.doi.org/10.31613/ceramist.2023.26.1.07.
Texto completoHsu, Chih-Chieh, Po-Tsun Liu, Kai-Jhih Gan, Dun-Bao Ruan, and Simon M. Sze. "Oxygen Concentration Effect on Conductive Bridge Random Access Memory of InWZnO Thin Film." Nanomaterials 11, no. 9 (2021): 2204. http://dx.doi.org/10.3390/nano11092204.
Texto completoGoux, Ludovic, Janaki Radhakrishnan, Attilio Belmonte, et al. "Key material parameters driving CBRAM device performances." Faraday Discussions 213 (2019): 67–85. http://dx.doi.org/10.1039/c8fd00115d.
Texto completoAziz, Jamal, Honggyun Kim, and Deok-Kee Kim. "(Digital Presentation) Power Efficient Transistors with Low Subthreshold Swing Using Abrupt Switching Devices." ECS Meeting Abstracts MA2022-02, no. 35 (2022): 1283. http://dx.doi.org/10.1149/ma2022-02351283mtgabs.
Texto completoMerkel, Cory, Dhireesha Kudithipudi, Manan Suri, and Bryant Wysocki. "Stochastic CBRAM-Based Neuromorphic Time Series Prediction System." ACM Journal on Emerging Technologies in Computing Systems 13, no. 3 (2017): 1–14. http://dx.doi.org/10.1145/2996193.
Texto completoSuri, Manan, Damien Querlioz, Olivier Bichler, et al. "Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses." IEEE Transactions on Electron Devices 60, no. 7 (2013): 2402–9. http://dx.doi.org/10.1109/ted.2013.2263000.
Texto completoRehman, Shania, Muhammad Farooq Khan, Sikandar Aftab, Honggyun Kim, Jonghwa Eom, and Deok-kee Kim. "Thickness-dependent resistive switching in black phosphorus CBRAM." Journal of Materials Chemistry C 7, no. 3 (2019): 725–32. http://dx.doi.org/10.1039/c8tc04538k.
Texto completoQin, Shengjun, Zhan Liu, Guo Zhang, et al. "Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory." Physical Chemistry Chemical Physics 17, no. 14 (2015): 8627–32. http://dx.doi.org/10.1039/c4cp04903a.
Texto completoSouchier, E., F. D'Acapito, P. Noé, P. Blaise, M. Bernard, and V. Jousseaume. "The role of the local chemical environment of Ag on the resistive switching mechanism of conductive bridging random access memories." Physical Chemistry Chemical Physics 17, no. 37 (2015): 23931–37. http://dx.doi.org/10.1039/c5cp03601a.
Texto completoChoi, Yeon-Joon, Suhyun Bang, Tae-Hyeon Kim, et al. "Analytically and empirically consistent characterization of the resistive switching mechanism in a Ag conducting-bridge random-access memory device through a pseudo-liquid interpretation approach." Physical Chemistry Chemical Physics 23, no. 48 (2021): 27234–43. http://dx.doi.org/10.1039/d1cp04637c.
Texto completoJameson, J. R., P. Blanchard, J. Dinh, et al. "(Invited) Conductive Bridging RAM (CBRAM): Then, Now, and Tomorrow." ECS Transactions 75, no. 5 (2016): 41–54. http://dx.doi.org/10.1149/07505.0041ecst.
Texto completoMuto, Satoshi, Ryota Yonesaka, Atsushi Tsurumaki-Fukuchi, Masashi Arita, and Yasuo Takahashi. "Observation of Conductive Filament in CBRAM at Switching Moment." ECS Transactions 80, no. 10 (2017): 895–902. http://dx.doi.org/10.1149/08010.0895ecst.
Texto completoShimeng Yu and H. S. Philip Wong. "Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM)." IEEE Transactions on Electron Devices 58, no. 5 (2011): 1352–60. http://dx.doi.org/10.1109/ted.2011.2116120.
Texto completoMahalanabis, Debayan, Rui Liu, Hugh J. Barnaby, et al. "Single Event Susceptibility Analysis in CBRAM Resistive Memory Arrays." IEEE Transactions on Nuclear Science 62, no. 6 (2015): 2606–12. http://dx.doi.org/10.1109/tns.2015.2478382.
Texto completoGonzalez-Velo, Yago, Adnan Mahmud, Wenhao Chen, et al. "Radiation Hardening by Process of CBRAM Resistance Switching Cells." IEEE Transactions on Nuclear Science 63, no. 4 (2016): 2145–51. http://dx.doi.org/10.1109/tns.2016.2569076.
Texto completoLatif, M. R., P. H. Davis, W. B. Knowton, and M. Mitkova. "CBRAM devices based on a nanotube chalcogenide glass structure." Journal of Materials Science: Materials in Electronics 30, no. 3 (2018): 2389–402. http://dx.doi.org/10.1007/s10854-018-0512-0.
Texto completoKwon, Ki-Hyun, Dong-Won Kim, Hea-Jee Kim, et al. "An electroforming-free mechanism for Cu2O solid-electrolyte-based conductive-bridge random access memory (CBRAM)." Journal of Materials Chemistry C 8, no. 24 (2020): 8125–34. http://dx.doi.org/10.1039/d0tc01325k.
Texto completoSimanjuntak, Firman Mangasa, Julianna Panidi, Fayzah Talbi, Adam Kerrigan, Vlado K. Lazarov, and Themistoklis Prodromakis. "Formation of a ternary oxide barrier layer and its role in switching characteristic of ZnO-based conductive bridge random access memory devices." APL Materials 10, no. 3 (2022): 031103. http://dx.doi.org/10.1063/5.0076903.
Texto completoKwon, Kyoung-Cheol, Myung-Jin Song, Ki-Hyun Kwon, et al. "Nanoscale CuO solid-electrolyte-based conductive-bridging-random-access-memory cell operating multi-level-cell and 1selector1resistor." Journal of Materials Chemistry C 3, no. 37 (2015): 9540–50. http://dx.doi.org/10.1039/c5tc01342a.
Texto completoCho, Hyojong, and Sungjun Kim. "Emulation of Biological Synapse Characteristics from Cu/AlN/TiN Conductive Bridge Random Access Memory." Nanomaterials 10, no. 9 (2020): 1709. http://dx.doi.org/10.3390/nano10091709.
Texto completoLee, Daeseok, Sami Oukassi, Gabriel Molas, Catherine Carabasse, Raphael Salot, and Luca Perniola. "Memory and Energy Storage Dual Operation in Chalcogenide-Based CBRAM." IEEE Journal of the Electron Devices Society 5, no. 4 (2017): 283–87. http://dx.doi.org/10.1109/jeds.2017.2693220.
Texto completoGan, Kai-Jhih, Po-Tsun Liu, Dun-Bao Ruan, Yu-Chuan Chiu, and Simon M. Sze. "Annealing effects on resistive switching of IGZO-based CBRAM devices." Vacuum 180 (October 2020): 109630. http://dx.doi.org/10.1016/j.vacuum.2020.109630.
Texto completoTan, Yung-Fang, Min-Chen Chen, Yu-Hsuan Yeh, et al. "Utilizing high pressure hydrogen annealing to realize forming free CBRAM." Materials Science and Engineering: B 296 (October 2023): 116619. http://dx.doi.org/10.1016/j.mseb.2023.116619.
Texto completoZhang, Bo, Vitezslav Zima, Tomas Mikysek, Veronika Podzemna, Pavel Rozsival, and Tomas Wagner. "Multilevel resistive switching in Cu and Ag doped CBRAM device." Journal of Materials Science: Materials in Electronics 29, no. 19 (2018): 16836–41. http://dx.doi.org/10.1007/s10854-018-9778-5.
Texto completoSenapati, Asim, Sourav Roy, Yu-Feng Lin, Mrinmoy Dutta, and Siddheswar Maikap. "Oxide-Electrolyte Thickness Dependence Diode-Like Threshold Switching and High on/off Ratio Characteristics by Using Al2O3 Based CBRAM." Electronics 9, no. 7 (2020): 1106. http://dx.doi.org/10.3390/electronics9071106.
Texto completoSu, Chaohui, Linbo Shan, Dongliang Yang, et al. "Effects of heavy ion irradiation on Cu/Al2O3/Pt CBRAM devices." Microelectronic Engineering 247 (July 2021): 111600. http://dx.doi.org/10.1016/j.mee.2021.111600.
Texto completoTaggart, J. L., W. Chen, Y. Gonzalez-Velo, H. J. Barnaby, K. Holbert, and M. N. Kozicki. "In Situ Synaptic Programming of CBRAM in an Ionizing Radiation Environment." IEEE Transactions on Nuclear Science 65, no. 1 (2018): 192–99. http://dx.doi.org/10.1109/tns.2017.2779860.
Texto completoSong, Jeonghwan, Jiyong Woo, Seokjae Lim, Solomon Amsalu Chekol, and Hyunsang Hwang. "Self-Limited CBRAM With Threshold Selector for 1S1R Crossbar Array Applications." IEEE Electron Device Letters 38, no. 11 (2017): 1532–35. http://dx.doi.org/10.1109/led.2017.2757493.
Texto completoZhao, Jiayi, Qin Chen, Xiaohu Zhao, Gaoqi Yang, Guokun Ma, and Hao Wang. "Self-compliance and high-performance GeTe-based CBRAM with Cu electrode." Microelectronics Journal 131 (January 2023): 105649. http://dx.doi.org/10.1016/j.mejo.2022.105649.
Texto completoZhao, Xiaolong, Sen Liu, Jiebin Niu, et al. "Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer." Small 13, no. 35 (2017): 1603948. http://dx.doi.org/10.1002/smll.201603948.
Texto completoYuan, Huanmei, Tianqing Wan, and Hao Bai. "Resistive Switching Characteristic of Cu Electrode-Based RRAM Device." Electronics 12, no. 6 (2023): 1471. http://dx.doi.org/10.3390/electronics12061471.
Texto completoBerco, Dan, and Tseung-Yuen Tseng. "A numerical study of multi filament formation in metal-ion based CBRAM." AIP Advances 6, no. 2 (2016): 025212. http://dx.doi.org/10.1063/1.4942209.
Texto completoRadhakrishnan, J., A. Belmonte, L. Nyns, et al. "Impact of La–OH bonds on the retention of Co/LaSiO CBRAM." Applied Physics Letters 117, no. 15 (2020): 151902. http://dx.doi.org/10.1063/5.0021250.
Texto completoLim, Seokjae, Myounghoon Kwak, and Hyunsang Hwang. "Improved Synaptic Behavior of CBRAM Using Internal Voltage Divider for Neuromorphic Systems." IEEE Transactions on Electron Devices 65, no. 9 (2018): 3976–81. http://dx.doi.org/10.1109/ted.2018.2857494.
Texto completoSankaran, K., L. Goux, S. Clima, et al. "Modeling of Copper Diffusion in Amorphous Aluminum Oxide in CBRAM Memory Stack." ECS Transactions 45, no. 3 (2012): 317–30. http://dx.doi.org/10.1149/1.3700896.
Texto completoGopalan, C., Y. Ma, T. Gallo, et al. "Demonstration of Conductive Bridging Random Access Memory (CBRAM) in logic CMOS process." Solid-State Electronics 58, no. 1 (2011): 54–61. http://dx.doi.org/10.1016/j.sse.2010.11.024.
Texto completoJeon, Yu-Rim, Yawar Abbas, Andrey Sergeevich Sokolov, Sohyeon Kim, Boncheol Ku, and Changhwan Choi. "Study of in Situ Silver Migration in Amorphous Boron Nitride CBRAM Device." ACS Applied Materials & Interfaces 11, no. 26 (2019): 23329–36. http://dx.doi.org/10.1021/acsami.9b05384.
Texto completoFujii, Shosuke, Jean Anne C. Incorvia, Fang Yuan, et al. "Scaling the CBRAM Switching Layer Diameter to 30 nm Improves Cycling Endurance." IEEE Electron Device Letters 39, no. 1 (2018): 23–26. http://dx.doi.org/10.1109/led.2017.2771718.
Texto completoShin, Jong Hoon, Qiwen Wang, and Wei D. Lu. "Self-Limited and Forming-Free CBRAM Device With Double Al2O3 ALD Layers." IEEE Electron Device Letters 39, no. 10 (2018): 1512–15. http://dx.doi.org/10.1109/led.2018.2868459.
Texto completoYuhao Wang, Hao Yu, and Wei Zhang. "Nonvolatile CBRAM-Crossbar-Based 3-D-Integrated Hybrid Memory for Data Retention." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22, no. 5 (2014): 957–70. http://dx.doi.org/10.1109/tvlsi.2013.2265754.
Texto completoArita, Masashi, Yuuki Ohno, and Yasuo Takahashi. "Switching of Cu/MoO x /TiN CBRAM at MoO x /TiN interface." physica status solidi (a) 213, no. 2 (2015): 306–10. http://dx.doi.org/10.1002/pssa.201532414.
Texto completoBelmonte, A., G. Reale, A. Fantini, et al. "Effect of the switching layer on CBRAM reliability and benchmarking against OxRAM devices." Solid-State Electronics 184 (October 2021): 108058. http://dx.doi.org/10.1016/j.sse.2021.108058.
Texto completoDietrich, Stefan, Michael Angerbauer, Milena Ivanov, et al. "A Nonvolatile 2-Mbit CBRAM Memory Core Featuring Advanced Read and Program Control." IEEE Journal of Solid-State Circuits 42, no. 4 (2007): 839–45. http://dx.doi.org/10.1109/jssc.2007.892207.
Texto completoTaggart, J. L., R. B. Jacobs-Gedrim, M. L. McLain, et al. "Failure Thresholds in CBRAM Due to Total Ionizing Dose and Displacement Damage Effects." IEEE Transactions on Nuclear Science 66, no. 1 (2019): 69–76. http://dx.doi.org/10.1109/tns.2018.2882529.
Texto completoDong, Zhipeng, Huan Zhao, Don DiMarzio, et al. "Atomically Thin CBRAM Enabled by 2-D Materials: Scaling Behaviors and Performance Limits." IEEE Transactions on Electron Devices 65, no. 10 (2018): 4160–66. http://dx.doi.org/10.1109/ted.2018.2830328.
Texto completoLiu, Yanming, Kunhe Yang, Xuefeng Wang, He Tian, and Tian-Ling Ren. "Lower Power, Better Uniformity, and Stability CBRAM Enabled by Graphene Nanohole Interface Engineering." IEEE Transactions on Electron Devices 67, no. 3 (2020): 984–88. http://dx.doi.org/10.1109/ted.2020.2968731.
Texto completoIshikawa, Ryusuke, Shuichiro Hirata, Atsushi Tsurumaki-Fukuchi, et al. "In-situElectron Microscopy of Cu Movement in MoOx/Al2O3Bilayer CBRAM during Cyclic Switching." ECS Transactions 80, no. 10 (2017): 903–10. http://dx.doi.org/10.1149/08010.0903ecst.
Texto completo