Siga este enlace para ver otros tipos de publicaciones sobre el tema: CBRAM.

Artículos de revistas sobre el tema "CBRAM"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "CBRAM".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Cao, Haichao, and Hao Ren. "A 10-nm-thick silicon oxide based high switching speed conductive bridging random access memory with ultra-low operation voltage and ultra-low LRS resistance." Applied Physics Letters 120, no. 13 (2022): 133502. http://dx.doi.org/10.1063/5.0085045.

Texto completo
Resumen
In this paper, a silicon oxide based conductive bridging random access memory (CBRAM) with an ultra-low operation voltage, a high switching speed, and an ultra-low resistance at low resistance state (LRS) is reported. The CBRAM has a sandwich structure with platinum and copper as electrode layers and an ultra-thin 10-nm-thick silicon oxide film as an insulating switching layer. The CBRAMs are fabricated with CMOS compatible materials and processes. DC I–V sweep characterizations show an ultra-low SET/RESET voltage of 0.35 V/−0.05 V, and the RESET voltage is the lowest among all ultra-low volta
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Abbas, Haider, Jiayi Li, and Diing Shenp Ang. "Conductive Bridge Random Access Memory (CBRAM): Challenges and Opportunities for Memory and Neuromorphic Computing Applications." Micromachines 13, no. 5 (2022): 725. http://dx.doi.org/10.3390/mi13050725.

Texto completo
Resumen
Due to a rapid increase in the amount of data, there is a huge demand for the development of new memory technologies as well as emerging computing systems for high-density memory storage and efficient computing. As the conventional transistor-based storage devices and computing systems are approaching their scaling and technical limits, extensive research on emerging technologies is becoming more and more important. Among other emerging technologies, CBRAM offers excellent opportunities for future memory and neuromorphic computing applications. The principles of the CBRAM are explored in depth
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Cha, Jun-Hwe, Sang Yoon Yang, Jungyeop Oh, et al. "Conductive-bridging random-access memories for emerging neuromorphic computing." Nanoscale 12, no. 27 (2020): 14339–68. http://dx.doi.org/10.1039/d0nr01671c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kim, Hae Jin. "Recent Progress of the Cation Based Conductive Bridge Random Access Memory." Ceramist 26, no. 1 (2023): 90–105. http://dx.doi.org/10.31613/ceramist.2023.26.1.07.

Texto completo
Resumen
Demand for new computing systems equipped with ultra-high-density memory storage and new computer architecture is rapidly increasing with the tremendous increment of the amount of data produced and/or reproduced. In particular, the requirement for technology development is growing as conventional storage devices face the physical limitations for scaling down and the data bottleneck that the Von Neumann architecture increases. Among the recent emerging memory devices, the conductive bridge random access memory (CBRAM) has superior switching properties and excellent scalability to be adopted as
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Hsu, Chih-Chieh, Po-Tsun Liu, Kai-Jhih Gan, Dun-Bao Ruan, and Simon M. Sze. "Oxygen Concentration Effect on Conductive Bridge Random Access Memory of InWZnO Thin Film." Nanomaterials 11, no. 9 (2021): 2204. http://dx.doi.org/10.3390/nano11092204.

Texto completo
Resumen
In this study, the influence of oxygen concentration in InWZnO (IWZO), which was used as the switching layer of conductive bridge random access memory, (CBRAM) is investigated. With different oxygen flow during the sputtering process, the IWZO film can be fabricated with different oxygen concentrations and different oxygen vacancy distribution. In addition, the electrical characteristics of CBRAM device with different oxygen concentration are compared and further analyzed with an atomic force microscope and X-ray photoelectron spectrum. Furthermore, a stacking structure with different bilayer
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Goux, Ludovic, Janaki Radhakrishnan, Attilio Belmonte, et al. "Key material parameters driving CBRAM device performances." Faraday Discussions 213 (2019): 67–85. http://dx.doi.org/10.1039/c8fd00115d.

Texto completo
Resumen
This study is focused on Conductive Bridging Random Access Memory (CBRAM) devices based on chalcogenide electrolyte and Cu-supply materials, and aims at identifying the key material parameters controlling memory properties.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Aziz, Jamal, Honggyun Kim, and Deok-Kee Kim. "(Digital Presentation) Power Efficient Transistors with Low Subthreshold Swing Using Abrupt Switching Devices." ECS Meeting Abstracts MA2022-02, no. 35 (2022): 1283. http://dx.doi.org/10.1149/ma2022-02351283mtgabs.

Texto completo
Resumen
With the rapid development of transparent integrated circuits, transistors with extremely low subthreshold swing (SS) is becoming a necessary requirement. Here, we fabricated three transparent device structures that show abrupt electrical switching and make their series connection to the source terminal of the conventional field effect transistors (FET) to lower the SS value. Firstly, we demonstrate an environment friendly, disposable, and transparent conductive bridge random access memory (CBRAM) device composed of a cellulose nanocrystals active layer. Our CBRAM consists of a silver (Ag) ele
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Merkel, Cory, Dhireesha Kudithipudi, Manan Suri, and Bryant Wysocki. "Stochastic CBRAM-Based Neuromorphic Time Series Prediction System." ACM Journal on Emerging Technologies in Computing Systems 13, no. 3 (2017): 1–14. http://dx.doi.org/10.1145/2996193.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Suri, Manan, Damien Querlioz, Olivier Bichler, et al. "Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses." IEEE Transactions on Electron Devices 60, no. 7 (2013): 2402–9. http://dx.doi.org/10.1109/ted.2013.2263000.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Rehman, Shania, Muhammad Farooq Khan, Sikandar Aftab, Honggyun Kim, Jonghwa Eom, and Deok-kee Kim. "Thickness-dependent resistive switching in black phosphorus CBRAM." Journal of Materials Chemistry C 7, no. 3 (2019): 725–32. http://dx.doi.org/10.1039/c8tc04538k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Qin, Shengjun, Zhan Liu, Guo Zhang, et al. "Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory." Physical Chemistry Chemical Physics 17, no. 14 (2015): 8627–32. http://dx.doi.org/10.1039/c4cp04903a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Souchier, E., F. D'Acapito, P. Noé, P. Blaise, M. Bernard, and V. Jousseaume. "The role of the local chemical environment of Ag on the resistive switching mechanism of conductive bridging random access memories." Physical Chemistry Chemical Physics 17, no. 37 (2015): 23931–37. http://dx.doi.org/10.1039/c5cp03601a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Choi, Yeon-Joon, Suhyun Bang, Tae-Hyeon Kim, et al. "Analytically and empirically consistent characterization of the resistive switching mechanism in a Ag conducting-bridge random-access memory device through a pseudo-liquid interpretation approach." Physical Chemistry Chemical Physics 23, no. 48 (2021): 27234–43. http://dx.doi.org/10.1039/d1cp04637c.

Texto completo
Resumen
A new physical analysis of the filament formation in a Ag conducting-bridge random-access memory (CBRAM) device in consideration of the existence of inter-atomic attractions caused by metal bonding is suggested.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Jameson, J. R., P. Blanchard, J. Dinh, et al. "(Invited) Conductive Bridging RAM (CBRAM): Then, Now, and Tomorrow." ECS Transactions 75, no. 5 (2016): 41–54. http://dx.doi.org/10.1149/07505.0041ecst.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Muto, Satoshi, Ryota Yonesaka, Atsushi Tsurumaki-Fukuchi, Masashi Arita, and Yasuo Takahashi. "Observation of Conductive Filament in CBRAM at Switching Moment." ECS Transactions 80, no. 10 (2017): 895–902. http://dx.doi.org/10.1149/08010.0895ecst.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Shimeng Yu and H. S. Philip Wong. "Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM)." IEEE Transactions on Electron Devices 58, no. 5 (2011): 1352–60. http://dx.doi.org/10.1109/ted.2011.2116120.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Mahalanabis, Debayan, Rui Liu, Hugh J. Barnaby, et al. "Single Event Susceptibility Analysis in CBRAM Resistive Memory Arrays." IEEE Transactions on Nuclear Science 62, no. 6 (2015): 2606–12. http://dx.doi.org/10.1109/tns.2015.2478382.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Gonzalez-Velo, Yago, Adnan Mahmud, Wenhao Chen, et al. "Radiation Hardening by Process of CBRAM Resistance Switching Cells." IEEE Transactions on Nuclear Science 63, no. 4 (2016): 2145–51. http://dx.doi.org/10.1109/tns.2016.2569076.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Latif, M. R., P. H. Davis, W. B. Knowton, and M. Mitkova. "CBRAM devices based on a nanotube chalcogenide glass structure." Journal of Materials Science: Materials in Electronics 30, no. 3 (2018): 2389–402. http://dx.doi.org/10.1007/s10854-018-0512-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Kwon, Ki-Hyun, Dong-Won Kim, Hea-Jee Kim, et al. "An electroforming-free mechanism for Cu2O solid-electrolyte-based conductive-bridge random access memory (CBRAM)." Journal of Materials Chemistry C 8, no. 24 (2020): 8125–34. http://dx.doi.org/10.1039/d0tc01325k.

Texto completo
Resumen
In a Cu<sub>x</sub>O solid-electrolyte-based CBRAM cell using an Ag top electrode, electroforming-free and electro-reset processes could be achieved at a specific ex situ annealing temperature of the solid electrolyte.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Simanjuntak, Firman Mangasa, Julianna Panidi, Fayzah Talbi, Adam Kerrigan, Vlado K. Lazarov, and Themistoklis Prodromakis. "Formation of a ternary oxide barrier layer and its role in switching characteristic of ZnO-based conductive bridge random access memory devices." APL Materials 10, no. 3 (2022): 031103. http://dx.doi.org/10.1063/5.0076903.

Texto completo
Resumen
The insertion of a metal layer between an active electrode and a switching layer leads to the formation of a ternary oxide at the interface. The properties of this self-formed oxide are found to be dependent on the Gibbs free energy of oxide formation of the metal ([Formula: see text]). We investigated the role of various ternary oxides in the switching behavior of conductive bridge random access memory (CBRAM) devices. The ternary oxide acts as a barrier layer that can limit the mobility of metal cations in the cell, promoting stable switching. However, too low (higher negative value) [Formul
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Kwon, Kyoung-Cheol, Myung-Jin Song, Ki-Hyun Kwon, et al. "Nanoscale CuO solid-electrolyte-based conductive-bridging-random-access-memory cell operating multi-level-cell and 1selector1resistor." Journal of Materials Chemistry C 3, no. 37 (2015): 9540–50. http://dx.doi.org/10.1039/c5tc01342a.

Texto completo
Resumen
Nanoscale non-volatile CBRAM-cells are developed by using a CuO solid-electrolyte, providing a ∼10<sup>2</sup>memory margin, ∼3 × 10<sup>6</sup>endurance cycles, ∼6.63-years retention time at 85 °C, ∼100 ns writing speed, and MLC operation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Cho, Hyojong, and Sungjun Kim. "Emulation of Biological Synapse Characteristics from Cu/AlN/TiN Conductive Bridge Random Access Memory." Nanomaterials 10, no. 9 (2020): 1709. http://dx.doi.org/10.3390/nano10091709.

Texto completo
Resumen
Here, we present the synaptic characteristics of AlN-based conductive bridge random access memory (CBRAM) as a synaptic device for neuromorphic systems. Both non-volatile and volatile memory are observed by simply controlling the strength of the Cu filament inside the AlN film. For non-volatile switching induced by high compliance current (CC), good retention with a strong Cu metallic filament is verified. Low-resistance state (LRS) and high-resistance state (HRS) conduction follow metallic Ohmic and trap-assisted tunneling (TAT), respectively, which are supported by I–V fitting and temperatur
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Lee, Daeseok, Sami Oukassi, Gabriel Molas, Catherine Carabasse, Raphael Salot, and Luca Perniola. "Memory and Energy Storage Dual Operation in Chalcogenide-Based CBRAM." IEEE Journal of the Electron Devices Society 5, no. 4 (2017): 283–87. http://dx.doi.org/10.1109/jeds.2017.2693220.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Gan, Kai-Jhih, Po-Tsun Liu, Dun-Bao Ruan, Yu-Chuan Chiu, and Simon M. Sze. "Annealing effects on resistive switching of IGZO-based CBRAM devices." Vacuum 180 (October 2020): 109630. http://dx.doi.org/10.1016/j.vacuum.2020.109630.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Tan, Yung-Fang, Min-Chen Chen, Yu-Hsuan Yeh, et al. "Utilizing high pressure hydrogen annealing to realize forming free CBRAM." Materials Science and Engineering: B 296 (October 2023): 116619. http://dx.doi.org/10.1016/j.mseb.2023.116619.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Zhang, Bo, Vitezslav Zima, Tomas Mikysek, Veronika Podzemna, Pavel Rozsival, and Tomas Wagner. "Multilevel resistive switching in Cu and Ag doped CBRAM device." Journal of Materials Science: Materials in Electronics 29, no. 19 (2018): 16836–41. http://dx.doi.org/10.1007/s10854-018-9778-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Senapati, Asim, Sourav Roy, Yu-Feng Lin, Mrinmoy Dutta, and Siddheswar Maikap. "Oxide-Electrolyte Thickness Dependence Diode-Like Threshold Switching and High on/off Ratio Characteristics by Using Al2O3 Based CBRAM." Electronics 9, no. 7 (2020): 1106. http://dx.doi.org/10.3390/electronics9071106.

Texto completo
Resumen
Diode-like threshold switching and high on/off ratio characteristics by using an Al/Ag/Al2O3/TiN conductive bridge resistive random access memories (CBRAM) have been obtained. The 5 nm-thick Al2O3 device shows superior memory parameters such as low forming voltage and higher switching uniformity as compared to the 20 nm-thick switching layer, owing to higher electric field across the material. Capacitance-voltage (CV) characteristics are observed for the Ag/Al2O3/TiN devices, suggesting the unipolar/bipolar resistive switching phenomena. Negative capacitance (NC) at low frequency proves induct
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Su, Chaohui, Linbo Shan, Dongliang Yang, et al. "Effects of heavy ion irradiation on Cu/Al2O3/Pt CBRAM devices." Microelectronic Engineering 247 (July 2021): 111600. http://dx.doi.org/10.1016/j.mee.2021.111600.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Taggart, J. L., W. Chen, Y. Gonzalez-Velo, H. J. Barnaby, K. Holbert, and M. N. Kozicki. "In Situ Synaptic Programming of CBRAM in an Ionizing Radiation Environment." IEEE Transactions on Nuclear Science 65, no. 1 (2018): 192–99. http://dx.doi.org/10.1109/tns.2017.2779860.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Song, Jeonghwan, Jiyong Woo, Seokjae Lim, Solomon Amsalu Chekol, and Hyunsang Hwang. "Self-Limited CBRAM With Threshold Selector for 1S1R Crossbar Array Applications." IEEE Electron Device Letters 38, no. 11 (2017): 1532–35. http://dx.doi.org/10.1109/led.2017.2757493.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Zhao, Jiayi, Qin Chen, Xiaohu Zhao, Gaoqi Yang, Guokun Ma, and Hao Wang. "Self-compliance and high-performance GeTe-based CBRAM with Cu electrode." Microelectronics Journal 131 (January 2023): 105649. http://dx.doi.org/10.1016/j.mejo.2022.105649.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Zhao, Xiaolong, Sen Liu, Jiebin Niu, et al. "Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer." Small 13, no. 35 (2017): 1603948. http://dx.doi.org/10.1002/smll.201603948.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Yuan, Huanmei, Tianqing Wan, and Hao Bai. "Resistive Switching Characteristic of Cu Electrode-Based RRAM Device." Electronics 12, no. 6 (2023): 1471. http://dx.doi.org/10.3390/electronics12061471.

Texto completo
Resumen
The conductive bridge random access memory (CBRAM) device has been widely studied as a promising candidate for next-generation nonvolatile memory applications, where Cu as an electrode plays an important role in the resistive switching (RS) process. However, most studies only use Cu as one electrode, either the top electrode (TE) or the bottom electrode (BE); it is rarely reported that Cu is used as both TE and BE at the same time. In this study, we fabricated CBRAM devices by using Cu as both the TE and BE, and studied the RS characteristic of these devices. With Al2O3 as the switching layer
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Berco, Dan, and Tseung-Yuen Tseng. "A numerical study of multi filament formation in metal-ion based CBRAM." AIP Advances 6, no. 2 (2016): 025212. http://dx.doi.org/10.1063/1.4942209.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Radhakrishnan, J., A. Belmonte, L. Nyns, et al. "Impact of La–OH bonds on the retention of Co/LaSiO CBRAM." Applied Physics Letters 117, no. 15 (2020): 151902. http://dx.doi.org/10.1063/5.0021250.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Lim, Seokjae, Myounghoon Kwak, and Hyunsang Hwang. "Improved Synaptic Behavior of CBRAM Using Internal Voltage Divider for Neuromorphic Systems." IEEE Transactions on Electron Devices 65, no. 9 (2018): 3976–81. http://dx.doi.org/10.1109/ted.2018.2857494.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Sankaran, K., L. Goux, S. Clima, et al. "Modeling of Copper Diffusion in Amorphous Aluminum Oxide in CBRAM Memory Stack." ECS Transactions 45, no. 3 (2012): 317–30. http://dx.doi.org/10.1149/1.3700896.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Gopalan, C., Y. Ma, T. Gallo, et al. "Demonstration of Conductive Bridging Random Access Memory (CBRAM) in logic CMOS process." Solid-State Electronics 58, no. 1 (2011): 54–61. http://dx.doi.org/10.1016/j.sse.2010.11.024.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Jeon, Yu-Rim, Yawar Abbas, Andrey Sergeevich Sokolov, Sohyeon Kim, Boncheol Ku, and Changhwan Choi. "Study of in Situ Silver Migration in Amorphous Boron Nitride CBRAM Device." ACS Applied Materials & Interfaces 11, no. 26 (2019): 23329–36. http://dx.doi.org/10.1021/acsami.9b05384.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Fujii, Shosuke, Jean Anne C. Incorvia, Fang Yuan, et al. "Scaling the CBRAM Switching Layer Diameter to 30 nm Improves Cycling Endurance." IEEE Electron Device Letters 39, no. 1 (2018): 23–26. http://dx.doi.org/10.1109/led.2017.2771718.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Shin, Jong Hoon, Qiwen Wang, and Wei D. Lu. "Self-Limited and Forming-Free CBRAM Device With Double Al2O3 ALD Layers." IEEE Electron Device Letters 39, no. 10 (2018): 1512–15. http://dx.doi.org/10.1109/led.2018.2868459.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Yuhao Wang, Hao Yu, and Wei Zhang. "Nonvolatile CBRAM-Crossbar-Based 3-D-Integrated Hybrid Memory for Data Retention." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22, no. 5 (2014): 957–70. http://dx.doi.org/10.1109/tvlsi.2013.2265754.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Arita, Masashi, Yuuki Ohno, and Yasuo Takahashi. "Switching of Cu/MoO x /TiN CBRAM at MoO x /TiN interface." physica status solidi (a) 213, no. 2 (2015): 306–10. http://dx.doi.org/10.1002/pssa.201532414.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Belmonte, A., G. Reale, A. Fantini, et al. "Effect of the switching layer on CBRAM reliability and benchmarking against OxRAM devices." Solid-State Electronics 184 (October 2021): 108058. http://dx.doi.org/10.1016/j.sse.2021.108058.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Dietrich, Stefan, Michael Angerbauer, Milena Ivanov, et al. "A Nonvolatile 2-Mbit CBRAM Memory Core Featuring Advanced Read and Program Control." IEEE Journal of Solid-State Circuits 42, no. 4 (2007): 839–45. http://dx.doi.org/10.1109/jssc.2007.892207.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Taggart, J. L., R. B. Jacobs-Gedrim, M. L. McLain, et al. "Failure Thresholds in CBRAM Due to Total Ionizing Dose and Displacement Damage Effects." IEEE Transactions on Nuclear Science 66, no. 1 (2019): 69–76. http://dx.doi.org/10.1109/tns.2018.2882529.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Dong, Zhipeng, Huan Zhao, Don DiMarzio, et al. "Atomically Thin CBRAM Enabled by 2-D Materials: Scaling Behaviors and Performance Limits." IEEE Transactions on Electron Devices 65, no. 10 (2018): 4160–66. http://dx.doi.org/10.1109/ted.2018.2830328.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Liu, Yanming, Kunhe Yang, Xuefeng Wang, He Tian, and Tian-Ling Ren. "Lower Power, Better Uniformity, and Stability CBRAM Enabled by Graphene Nanohole Interface Engineering." IEEE Transactions on Electron Devices 67, no. 3 (2020): 984–88. http://dx.doi.org/10.1109/ted.2020.2968731.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Ishikawa, Ryusuke, Shuichiro Hirata, Atsushi Tsurumaki-Fukuchi, et al. "In-situElectron Microscopy of Cu Movement in MoOx/Al2O3Bilayer CBRAM during Cyclic Switching." ECS Transactions 80, no. 10 (2017): 903–10. http://dx.doi.org/10.1149/08010.0903ecst.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!