Literatura académica sobre el tema "Claim detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Claim detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Claim detection"
Sai Santosh Goud Bandari. "Machine Learning (ML) based Anomaly Detection in Insurance Industries." Journal of Information Systems Engineering and Management 10, no. 32s (2025): 13–21. https://doi.org/10.52783/jisem.v10i32s.5182.
Texto completoK., P. PORKODI. "FRAUD CLAIM DETECTION USING SPARK." IJIERT - International Journal of Innovations in Engineering Research and Technology 4, no. 2 (2017): 10–13. https://doi.org/10.5281/zenodo.1462257.
Texto completoAgarwal, Shashank. "An Intelligent Machine Learning Approach for Fraud Detection in Medical Claim Insurance: A Comprehensive Study." Scholars Journal of Engineering and Technology 11, no. 09 (2023): 191–200. http://dx.doi.org/10.36347/sjet.2023.v11i09.003.
Texto completoPrakosa, Hendri Kurniawan, and Nur Rokhman. "Anomaly Detection in Hospital Claims Using K-Means and Linear Regression." IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 15, no. 4 (2021): 391. http://dx.doi.org/10.22146/ijccs.68160.
Texto completoGoutham, Bilakanti. "Enhancing Claim Processing Efficiency with Generative AI." International Journal of Leading Research Publication 3, no. 1 (2022): 1–11. https://doi.org/10.5281/zenodo.15196823.
Texto completoIKUOMOLA, A. J., and O. E. Ojo. "AN EFFECTIVE HEALTH CARE INSURANCE FRAUD AND ABUSE DETECTION SYSTEM." Journal of Natural Sciences Engineering and Technology 15, no. 2 (2017): 1–12. http://dx.doi.org/10.51406/jnset.v15i2.1662.
Texto completoFaseela, V. S., and Dr.P.Thangam. "A Review on Health Insurance Claim Fraud Detection." International Journal of Engineering Research & Science 4, no. 9 (2018): 26–28. https://doi.org/10.5281/zenodo.1441226.
Texto completoNortey, Ezekiel N. N., Reuben Pometsey, Louis Asiedu, Samuel Iddi, and Felix O. Mettle. "Anomaly Detection in Health Insurance Claims Using Bayesian Quantile Regression." International Journal of Mathematics and Mathematical Sciences 2021 (February 23, 2021): 1–11. http://dx.doi.org/10.1155/2021/6667671.
Texto completoSiva, Krishna Jampani. "Fraud Detection in Insurance Claims Using AI." Journal of Scientific and Engineering Research 6, no. 1 (2019): 302–10. https://doi.org/10.5281/zenodo.14637405.
Texto completoBakeyalakshmi, P., and S. K. Mahendran. "Enhanced replica detection scheme for efficient analysis of intrusion detection in MANET." International Journal of Engineering & Technology 7, no. 1.1 (2017): 565. http://dx.doi.org/10.14419/ijet.v7i1.1.10169.
Texto completoTesis sobre el tema "Claim detection"
Alamri, Abdulaziz. "The detection of contradictory claims in biomedical abstracts." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/15893/.
Texto completoYang, Li. "A comparison of unsupervised learning techniques for detection of medical abuse in automobile claims." California State University, Long Beach, 2013.
Buscar texto completoRoberts, Terisa. "The use of credit scorecard design, predictive modelling and text mining to detect fraud in the insurance industry / Terisa Roberts." Thesis, North-West University, 2011. http://hdl.handle.net/10394/10347.
Texto completoCeglia, Cesarina. "A comparison of parametric and non-parametric methods for detecting fraudulent automobile insurance claims." Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10147317.
Texto completoAzu, Irina Mateko. "Creating a green baloney detection kit for green claims made in the CNW report : Dust to Dust : the energy cost of new vehicles : from concept to disposal." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45787.
Texto completoBen, Gamra Siwar. "Contribution à la mise en place de réseaux profonds pour l'étude de tableaux par le biais de l'explicabilité : Application au style Tenebrisme ("clair-obscur")." Electronic Thesis or Diss., Littoral, 2023. http://www.theses.fr/2023DUNK0695.
Texto completoMukkananchery, Abey. "Iterative Methods for the Reconstruction of Tomographic Images with Unconventional Source-detector Configurations." VCU Scholars Compass, 2005. http://scholarscompass.vcu.edu/etd/1244.
Texto completoCHEN, YAN. "Comparisons and Applications of Quantitative Signal Detections for Adverse Drug Reactions (ADRs): An Empirical Study Based On The Food And Drug Administration (FDA) Adverse Event Reporting System (AERS) And A Large Medical Claims Database." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1203534085.
Texto completoChen, Yan. "Comparisons and applications of quantitative signal detections for adverse drug reactions (ADRs) an empirical study based On The food And drug administration (FDA) adverse event reporting system (AERS) and a large medical claims database /." Cincinnati, Ohio : University of Cincinnati, 2008. http://www.ohiolink.edu/etd/view.cgi?acc_num=ucin1203534085.
Texto completoBARACCHI, DANIELE. "Novel neural networks for structured data." Doctoral thesis, 2018. http://hdl.handle.net/2158/1113665.
Texto completoLibros sobre el tema "Claim detection"
Pronzini, Bill. Crazybone: A "nameless detective" novel. Thorndike Press, 2000.
Buscar texto completoHarris, Charlaine. Crimes au clair de lune: Une anthologie de nouvelles inédites. Édition du Club Québec loisirs, 2011.
Buscar texto completoPronzini, Bill. Crazy bone: A "nameless detective" novel. Carroll & Graf, 2000.
Buscar texto completoPhelan, Twist. Family claims: A Pinnacle Peak mystery. Poisoned Pen Press, 2006.
Buscar texto completoHoltschlag, David J. Detection of conveyance changes in St. Clair River using historical water-level and flow data with inverse one-dimensional hydrodynamic modeling. U.S. Dept. of the Interior, U.S. Geological Survey, 2009.
Buscar texto completoCapítulos de libros sobre el tema "Claim detection"
Cheema, Gullal S., Eric Müller-Budack, Christian Otto, and Ralph Ewerth. "Claim Detection in Social Media." In Event Analytics across Languages and Communities. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64451-1_11.
Texto completoDuan, Xueyu, Mingxue Liao, Xinwei Zhao, Wenda Wu, and Pin Lv. "An Unsupervised Joint Model for Claim Detection." In Communications in Computer and Information Science. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7983-3_18.
Texto completoPecher, Branislav, Ivan Srba, Robert Moro, Matus Tomlein, and Maria Bielikova. "FireAnt: Claim-Based Medical Misinformation Detection and Monitoring." In Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67670-4_38.
Texto completoPeddireddy, Bhargavi, P. V. Rohith Kumar Reddy, and B. Srisatya Kapardi. "Health Insurance Claim Fraud Detection Using Artificial Neural Networks." In Cognitive Science and Technology. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-9266-5_13.
Texto completoLippi, Marco, Francesca Lagioia, Giuseppe Contissa, Giovanni Sartor, and Paolo Torroni. "Claim Detection in Judgments of the EU Court of Justice." In Lecture Notes in Computer Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00178-0_35.
Texto completoHafid, Salim, Wassim Ammar, Sandra Bringay, and Konstantin Todorov. "Cite-worthiness Detection on Social Media: A Preliminary Study." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65794-8_2.
Texto completoAllein, Liesbeth, and Marie-Francine Moens. "Checkworthiness in Automatic Claim Detection Models: Definitions and Analysis of Datasets." In Disinformation in Open Online Media. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61841-4_1.
Texto completoPicardi, Ilenia, Luca Serafini, and Marco Serino. "Disentangling Discursive Spaces of Knowledge Refused by Science: An Analysis of the Epistemic Structures in the Narratives Repertoires on Health During the Covid-19 Pandemic." In Manufacturing Refused Knowledge in the Age of Epistemic Pluralism. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7188-6_6.
Texto completoIskender, Neslihan, Robin Schaefer, Tim Polzehl, and Sebastian Möller. "Argument Mining in Tweets: Comparing Crowd and Expert Annotations for Automated Claim and Evidence Detection." In Natural Language Processing and Information Systems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80599-9_25.
Texto completo(Mary) Tai, Hsueh-Yung. "Applications of Big Data and Artificial Intelligence." In Digital Health Care in Taiwan. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05160-9_11.
Texto completoActas de conferencias sobre el tema "Claim detection"
Kotitsas, Sotiris, Panagiotis Kounoudis, Eleni Koutli, and Haris Papageorgiou. "Leveraging fine-tuned Large Language Models with LoRA for Effective Claim, Claimer, and Claim Object Detection." In Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2024. https://doi.org/10.18653/v1/2024.eacl-long.156.
Texto completoSaha, Diya, Manjira Sinha, and Tirthankar Dasgupta. "EnClaim: A Style Augmented Transformer Architecture for Environmental Claim Detection." In Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024). Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.climatenlp-1.9.
Texto completoKaushik, Priyanka, Saurabh Pratap Singh Rathore, Anand Singh Bisen, and Rachna Rathore. "Enhancing Insurance Claim Fraud Detection Through Advanced Data Analytics Techniques." In 2024 IEEE Region 10 Symposium (TENSYMP). IEEE, 2024. http://dx.doi.org/10.1109/tensymp61132.2024.10752284.
Texto completoMajer, Laura, and Jan Šnajder. "Claim Check-Worthiness Detection: How Well do LLMs Grasp Annotation Guidelines?" In Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER). Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.fever-1.27.
Texto completoNi, Jingwei, Minjing Shi, Dominik Stammbach, Mrinmaya Sachan, Elliott Ash, and Markus Leippold. "AFaCTA: Assisting the Annotation of Factual Claim Detection with Reliable LLM Annotators." In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.acl-long.104.
Texto completoShah, Agam, Arnav Hiray, Pratvi Shah, et al. "Numerical Claim Detection in Finance: A New Financial Dataset, Weak-Supervision Model, and Market Analysis." In Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER). Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.fever-1.21.
Texto completoSalazar, Armida P., Rodolfo C. Raga, and Susan S. Caluya. "Detecting Anomalies in Medical Claims with Clustering Algorithm." In 2024 Asia Pacific Conference on Innovation in Technology (APCIT). IEEE, 2024. http://dx.doi.org/10.1109/apcit62007.2024.10673480.
Texto completoHardalov, Momchil, Anton Chernyavskiy, Ivan Koychev, Dmitry Ilvovsky, and Preslav Nakov. "CrowdChecked: Detecting Previously Fact-Checked Claims in Social Media." In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.aacl-main.22.
Texto completoP., Archana Reddy, Divya Jyothi G., Velumury Varshita, Chennupati Akshitha, and Aiswariya Milan K. "Understanding Graph Neural Networks Models for Healthcare Fraud Detection in Insurance Claims." In 2025 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE). IEEE, 2025. https://doi.org/10.1109/iitcee64140.2025.10915253.
Texto completoAbo El-Enen, Mohamed Ahmed, Dina Tbaishat, Mustafa AbdulRazek, Amril Nazir, Reem Muhammad, and Ahmed T. Sahlol. "Generative AI with Big Data for Better Detection of Fraud in Medical Claims." In 2024 IEEE International Conference on E-health Networking, Application & Services (HealthCom). IEEE, 2024. https://doi.org/10.1109/healthcom60970.2024.10880817.
Texto completoInformes sobre el tema "Claim detection"
Harman. PR-364-11706-R01 Testing In-Situ Coriolis Meter Verification Technology Detecting Corrosion and Erosion. Pipeline Research Council International, Inc. (PRCI), 2015. http://dx.doi.org/10.55274/r0010855.
Texto completoCT Lung Densitometry, Consensus QIBA Profile. Chair Charles Hatt and Miranda Kirby. • The Publisher is Radiological Society of North America (RSNA)/Quantitative Imaging Biomarkers Alliance (QIBA), 2020. https://doi.org/10.1148/qiba/20200904.
Texto completoGao, Krishnamurthy, and McNealy. L52313 Performance Improvements of Current ILI Technologies for Mechanical Damage Detection Phase 2. Pipeline Research Council International, Inc. (PRCI), 2009. http://dx.doi.org/10.55274/r0010681.
Texto completo99mTc SPECT-CT, Consensus QIBA Profile. Chair Yuni Dewaraja and Robert Miyaoka. Radiological Society of North America (RSNA)/Quantitative Imaging Biomarkers Alliance (QIBA), 2019. https://doi.org/10.1148/qiba/20191021.
Texto completoMcNealy. L52295 Fundamentals and Performance Improvements of ILI Technologies for Mechanical Damage Inspection. Pipeline Research Council International, Inc. (PRCI), 2008. http://dx.doi.org/10.55274/r0010677.
Texto completoJarram, Paul, Phil Keogh, and Dave Tweddle. PR-478-143723-R01 Evaluation of Large Stand Off Magnetometry Techniques. Pipeline Research Council International, Inc. (PRCI), 2015. http://dx.doi.org/10.55274/r0010841.
Texto completo