Tesis sobre el tema "Clovis points"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Clovis points".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Richard, Andrew Justin. "Clovis and Folsom Functionality Comparison". Thesis, The University of Arizona, 2015. http://hdl.handle.net/10150/556853.
Texto completoPrasciunas, Mary M. "Clovis first? an analysis of space, time, and technology /". Laramie, Wyo. : University of Wyoming, 2008. http://proquest.umi.com/pqdweb?did=1594497451&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Texto completoWerner, Angelia N. "Experimental assessment of proximal-lateral edge grinding on haft damage using replicated Clovis points". Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1492848811526633.
Texto completoGiraudot, Simon. "Reconstruction robuste de formes à partir de données imparfaites". Thesis, Nice, 2015. http://www.theses.fr/2015NICE4024/document.
Texto completoOver the last two decades, a high number of reliable algorithms for surface reconstruction from point clouds has been developed. However, they often require additional attributes such as normals or visibility, and robustness to defect-laden data is often achieved through strong assumptions and remains a scientific challenge. In this thesis we focus on defect-laden, unoriented point clouds and contribute two new reconstruction methods designed for two specific classes of output surfaces. The first method is noise-adaptive and specialized to smooth, closed shapes. It takes as input a point cloud with variable noise and outliers, and comprises three main steps. First, we compute a novel noise-adaptive distance function to the inferred shape, which relies on the assumption that this shape is a smooth submanifold of known dimension. Second, we estimate the sign and confidence of the function at a set of seed points, through minimizing a quadratic energy expressed on the edges of a uniform random graph. Third, we compute a signed implicit function through a random walker approach with soft constraints chosen as the most confident seed points. The second method generates piecewise-planar surfaces, possibly non-manifold, represented by low complexity triangle surface meshes. Through multiscale region growing of Hausdorff-error-bounded convex planar primitives, we infer both shape and connectivity of the input and generate a simplicial complex that efficiently captures large flat regions as well as small features and boundaries. Imposing convexity of primitives is shown to be crucial to both the robustness and efficacy of our approach
Truong, Quoc Hung. "Knowledge-based 3D point clouds processing". Phd thesis, Université de Bourgogne, 2013. http://tel.archives-ouvertes.fr/tel-00977434.
Texto completoKönig, Sören y Stefan Gumhold. "Robust Surface Reconstruction from Point Clouds". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-131561.
Texto completoFilho, Carlos André Braile Przewodowski. "Feature extraction from 3D point clouds". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30072018-111718/.
Texto completoVisão computacional é uma área de pesquisa em que as imagens são o principal objeto de estudo. Um dos problemas abordados é o da descrição de formatos (em inglês, shapes). Classificação de objetos é um importante exemplo de aplicação que usa descritores de shapes. Classicamente, esses processos eram realizados em imagens 2D. Com o desenvolvimento em larga escala de novas tecnologias e o barateamento dos equipamentos que geram imagens 3D, a visão computacional se adaptou para este novo cenário, expandindo os métodos 2D clássicos para 3D. Entretanto, estes métodos são, majoritariamente, dependentes da variação de iluminação e de cor, enquanto os sensores 3D fornecem informações de profundidade, shape 3D e topologia, além da cor. Assim, foram estudados diferentes métodos de classificação de objetos e extração de atributos robustos, onde a partir destes são propostos e descritos novos métodos de extração de atributos a partir de dados 3D. Os resultados obtidos utilizando bases de dados 3D públicas conhecidas demonstraram a eficiência dos métodos propóstos e que os mesmos competem com outros métodos no estado-da-arte: o RPHSD (um dos métodos propostos) atingiu 85:4% de acurácia, sendo a segunda maior acurácia neste banco de dados; o COMSD (outro método proposto) atingiu 82:3% de acurácia, se posicionando na sétima posição do ranking; e o CNSD (outro método proposto) em nono lugar. Além disso, os métodos RPHSD têm uma complexidade de processamento relativamente baixa. Assim, eles atingem uma alta acurácia com um pequeno tempo de processamento.
König, Sören y Stefan Gumhold. "Robust Surface Reconstruction from Point Clouds". Technische Universität Dresden, 2013. https://tud.qucosa.de/id/qucosa%3A27391.
Texto completoAronsson, Oskar y Julia Nyman. "Boundary Representation Modeling from Point Clouds". Thesis, KTH, Bro- och stålbyggnad, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278543.
Texto completoBesiktning av broar utförs i dagsläget okulärt av en inspektör som på en armlängds avstånd bedömer skadetillståndet. Okulär besiktning kräver därmed ofta speciell utrustning för att inspektören ska kunna nå samtliga delar av bron. Detta resulterar i att det nuvarande tillvägagångssättet för brobesiktning beaktas som tidkrävande, kostsamt samt riskfyllt för inspektören. Syftet med denna uppsats var att utveckla en metod för att modellera broar på ett automatiserat sätt utifrån punktmolnsdata. Punktmolnen skapades genom fotogrammetri, utifrån en samling bilder tagna med en drönare. Uppsatsen har varit en insats för att bidra till det långsiktiga målet att effektivisera brobesiktning genom drönarteknik. Flera metoder för att identifiera konstruktionselement i punktmoln har undersökts. Baserat på detta har en metod utvecklats som identifierar plana ytor med regressionsmetoden Random Sample Consensus (RANSAC). Den utvecklade metoden består av en samling algoritmer skrivna i programmeringsspråket Python. Metoden grundar sig i att beräkna skärningspunkter mellan plan samt använder konceptet k-Nearest-Neighbor (k-NN) för att identifiera konstruktionselementens hörnpunkter. Metoden har testats på både simulerade punktmolnsdata och på punktmoln av fysiska broar, där bildinsamling har skett med hjälp av en drönare. Resultatet från de simulerade punktmolnen visade att hörnpunkterna kunde identifieras med en medelavvikelse på 0,13 − 0,34 mm jämfört med de faktiska hörnpunkterna. För ett punktmoln av en rektangulär pelare lyckades algoritmerna identifiera alla relevanta ytor och skapa en rekonstruerad modell med en avvikelse på mindre än 2 % med avseende på dess bredd och längd. Metoden testades även på två punktmoln av riktiga broar. Algoritmerna lyckades identifiera många av de relevanta ytorna, men geometriernas komplexitet resulterade i bristfälligt rekonstruerade modeller.
Otepka, Johannes, Sajid Ghuffar, Christoph Waldhauser, Ronald Hochreiter y Norbert Pfeifer. "Georeferenced Point Clouds: A Survey of Features and Point Cloud Management". MDPI AG, 2013. http://dx.doi.org/10.3390/ijgi2041038.
Texto completoHedlund, Tobias. "Registration of multiple ToF camera point clouds". Thesis, Umeå University, Department of Physics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-34952.
Texto completoBuildings, maps and objects et cetera, can be modeled using a computer or reconstructed in 3D by data from different kinds of cameras or laser scanners. This thesis concerns the latter. The recent improvements of Time-of-Flight cameras have brought a number of new interesting research areas to the surface. Registration of several ToF camera point clouds is such an area.
A literature study has been made to summarize the research done in the area over the last two decades. The most popular method for registering point clouds, namely the Iterative Closest Point (ICP), has been studied. In addition to this, an error relaxation algorithm was implemented to minimize the accumulated error of the sequential pairwise ICP.
A few different real-world test scenarios and one scenario with synthetic data were constructed. These data sets were registered with varying outcome. The obtained camera poses from the sequential ICP were improved by loop closing and error relaxation.
The results illustrate the importance of having good initial guesses on the relative transformations to obtain a correct model. Furthermore the strengths and weaknesses of the sequential ICP and the utilized error relaxation method are shown.
Stålberg, Martin. "Reconstruction of trees from 3D point clouds". Thesis, Uppsala universitet, Avdelningen för systemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-316833.
Texto completoThomas, Hugues. "Apprentissage de nouvelles représentations pour la sémantisation de nuages de points 3D". Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEM048/document.
Texto completoIn the recent years, new technologies have allowed the acquisition of large and precise 3D scenes as point clouds. They have opened up new applications like self-driving vehicles or infrastructure monitoring that rely on efficient large scale point cloud processing. Convolutional deep learning methods cannot be directly used with point clouds. In the case of images, convolutional filters brought the ability to learn new representations, which were previously hand-crafted in older computer vision methods. Following the same line of thought, we present in this thesis a study of hand-crafted representations previously used for point cloud processing. We propose several contributions, to serve as basis for the design of a new convolutional representation for point cloud processing. They include a new definition of multiscale radius neighborhood, a comparison with multiscale k-nearest neighbors, a new active learning strategy, the semantic segmentation of large scale point clouds, and a study of the influence of density in multiscale representations. Following these contributions, we introduce the Kernel Point Convolution (KPConv), which uses radius neighborhoods and a set of kernel points to play the role of the kernel pixels in image convolution. Our convolutional networks outperform state-of-the-art semantic segmentation approaches in almost any situation. In addition to these strong results, we designed KPConv with a great flexibility and a deformable version. To conclude our argumentation, we propose several insights on the representations that our method is able to learn
Trillos, Nicolás Garcia. "Variational Limits of Graph Cuts on Point Clouds". Research Showcase @ CMU, 2015. http://repository.cmu.edu/dissertations/518.
Texto completoSalman, Nader. "From 3D point clouds to feature preserving meshes". Nice, 2010. http://www.theses.fr/2010NICE4086.
Texto completoMost of the current surface reconstruction algorithms target high quality data and can produce some intractable results when used with point clouds acquired through profitable 3D acquisitions methods. Our first contribution is a surface reconstruction, algorithm from stereo vision data copes with the data’s fuzziness using information from both the acquired D point cloud and the calibrated images. After pre-processing the point cloud, the algorithm builds, using the calibrated images, 3D triangular soup consistent with the surface of the scene through a combination of visibility and photo-consistency constraints. A mesh is then computed from the triangle soup using a combination of restricted Delaunay triangulation and Delaunay refinement methods. Our second contribution is an algorithm that builds, given a 3D point cloud sampled on a surface, an approximating surface mesh with an accurate representation of surface sharp edges, providing an enhanced trade-off between accuracy and mesh complexity. We first extract from the point cloud an approximation of the sharp edges of the underlying surface. Then a feature preserving variant of a Delaunay refinement process generates a mesh combining a faithful representation of the extracted sharp edges with an implicit surface obtained from the point cloud. The method is shown to be flexible, robust to noise and tuneable to adapt to the scale of the targeted mesh and to a user defined sizing field. We demonstrate the effectiveness of both contributions on a variety of scenes and models acquired with different hardware and show results that compare favourably, in terms of accuracy, with the current state of the art
Tosteberg, Patrik. "Semantic Segmentation of Point Clouds Using Deep Learning". Thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-136793.
Texto completoAvdiu, Blerta. "Matching Feature Points in 3D World". Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Data- och elektroteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-23049.
Texto completoAnagnostopoulos, Ioannis. "Generating As-Is BIMs of existing buildings : from planar segments to spaces". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/281699.
Texto completoGraehling, Quinn R. "Feature Extraction Based Iterative Closest Point Registration for Large Scale Aerial LiDAR Point Clouds". University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1607380713807017.
Texto completoBucksch, Alexander [Verfasser]. "Revealing the skeleton from imperfect point clouds / Alexander Bucksch". München : Verlag Dr. Hut, 2011. http://d-nb.info/1011442027/34.
Texto completoAsghar, Umair. "Landslide mapping from analysis of UAV-SFM point clouds". Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/63604.
Texto completoApplied Science, Faculty of
Engineering, School of (Okanagan)
Graduate
Staniaszek, Michal. "Feature-Feature Matching For Object Retrieval in Point Clouds". Thesis, KTH, Datorseende och robotik, CVAP, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170475.
Texto completoStrandell, Ebbe. "Computational Geometry and Surface Reconstruction from Unorganized Point Clouds". Thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-96279.
Texto completoTruax, Robert D. (Robert Denison). "Localization and tracking of parameterized objects in point clouds". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67805.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 43-46).
This thesis focuses on object recognition and tracking from three dimensional point cloud renderings of dense range and bearing data. Sensors like laser range-finders and depth cameras have become increasingly popular in autonomous robotic applications. A common task is to locate and track specific objects of interest located somewhere in the point cloud. This often introduces a tedious network of heuristics to build objects from identified primitives or an intractable high dimensional search space. Through a parameterized object model and certain relaxation functions, a likelihood based view of the data can be used to accomplish these goals with increased performance and reliability. Improvements in mathematics and convergence properties have shown that this method can be realized in real time.
by Robert Truax.
S.M.
Wang, Lei. "Reconstruction and Deformation of Objects from Sampled Point Clouds". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1404134905.
Texto completoGao, Ge [Verfasser]. "Learning 6D Object Pose from Point Clouds / Ge Gao". Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2021. http://d-nb.info/1237050510/34.
Texto completoBiasutti, Pierre. "2D Image Processing Applied to 3D LiDAR Point Clouds". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0161/document.
Texto completoThe ever growing demand for reliable mapping data, especially in urban environments, has motivated the development of "close-range" Mobile Mapping Systems (MMS). These systems acquire high precision data, and in particular 3D LiDAR point clouds and optical images. The large amount of data, along with their diversity, make MMS data processing a very complex task. This thesis lies in the context of 2D image processing applied to 3D LiDAR point clouds acquired with MMS.First, we focus on the projection of the LiDAR point clouds onto 2D pixel grids to create images. Such projections are often sparse because some pixels do not carry any information. We use these projections for different applications such as high resolution orthoimage generation, RGB-D imaging and visibility estimation in point clouds.Moreover, we exploit the topology of LiDAR sensors in order to create low resolution images, named range-images. These images offer an efficient and canonical representation of the point cloud, while being directly accessible from the point cloud. We show how range-images can be used to simplify, and sometimes outperform, methods for multi-modal registration, segmentation, desocclusion and 3D detection
Fucili, Mattia. "3D object detection from point clouds with dense pose voters". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17616/.
Texto completoWang, Yutao. "Outlier formation and removal in 3D laser scanned point clouds". Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/51265.
Texto completoApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Schindler, Falko [Verfasser]. "Man-made Surface Structures from Triangulated Point Clouds / Falko Schindler". Bonn : Universitäts- und Landesbibliothek Bonn, 2013. http://d-nb.info/1047216248/34.
Texto completoPEREIRA, TAIS DE SA. "SILHOUETTES AND LAPLACIAN LINES OF POINT CLOUDS VIA LOCAL RECONSTRUCTION". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2013. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=23504@1.
Texto completoCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
No presente trabalho propomos uma nova forma de extrair a silhueta de uma nuvem de pontos, via reconstrução local de uma superfície descrita implicitamente por uma função polinomial. Esta reconstrução é baseada nos métodos Gradient one fitting e Ridge regression. A curva silhueta fica definida implicitamente por um sistema de equações não-lineares e sua geração é feita por continuação numérica. Como resultado, verificamos que nosso método se mostrou adequado para tratar dados com ruídos. Além disso, apresentamos um método para a extração local de linhas laplacianas de uma nuvem de pontos baseado na reconstrução local utilizando a triangulação de Delaunay.
In this work we propose a new method for silhouette extraction of a point cloud, via local reconstruction of a surface described implicitly by a polynomial function. This reconstruction is based on the Gradient one fitting and Ridge regression methods. The curve silhouette is implicitly defined by a system of nonlinear equations, and is obtained using numerical continuation. As a result, we observe that our method is suitable to handle noisy data. In addition, we present a method for extracting Laplacian Lines of a point cloud based on local reconstruction using the Delaunay triangulation.
Goussard, Charl Leonard. "Semi-automatic extraction of primitive geometric entities from point clouds". Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52449.
Texto completoENGLISH ABSTRACT: This thesis describes an algorithm to extract primitive geometric entities (flat planes, spheres or cylinders, as determined by the user's inputs) from unstructured, unsegmented point clouds. The algorithm extracts whole entities or only parts thereof. The entity boundaries are computed automatically. Minimal user interaction is required to extract these entities. The algorithm is accurate and robust. The algorithm is intended for use in the reverse engineering environment. Point clouds created in this environment typically have normal error distributions. Comprehensive testing and results are shown as well as the algorithm's usefulness in the reverse engineering environment.
AFRIKAANSE OPSOMMING: Hierdie tesis beskryf 'n algoritme wat primitiewe geometriese entiteite (plat vlakke, sfere of silinders na gelang van die gebruiker se inset) pas op ongestruktureerde, ongesegmenteerde puntewolke. Die algoritme pas geslote geometriese entiteite of slegs dele daarvan. Die grense van hierdie entiteite word automaties bereken. Minimale gebruikersinteraksie word benodig om die geometriese entiteite te pas. Die algoritme is akkuraat en robuust. Die algoritme is ontwikkel vir gebruik in die truwaartse ingenieurswese omgewing. Puntewolke opgemeet in hierdie omgewing het tipies meetfoute met 'n normaal verdeling. Omvattende toetsing en resultate word getoon en daarmee ook die nut wat die algoritme vir die gebruiksomgewing inhou.
Oesterling, Patrick. "Visual Analysis of High-Dimensional Point Clouds using Topological Abstraction". Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-203056.
Texto completoLimberger, Frederico Artur. "Real-time detection of planar regions in unorganized point clouds". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/97001.
Texto completoAutomatic detection of planar regions in point clouds is an important step for many graphics, image processing, and computer vision applications. While laser scanners and digital photography have allowed us to capture increasingly larger datasets, previous techniques are computationally expensive, being unable to achieve real-time performance for datasets containing tens of thousands of points, even when detection is performed in a non-deterministic way. We present a deterministic technique for plane detection in unorganized point clouds whose cost is O(n log n) in the number of input samples. It is based on an efficient Hough-transform voting scheme and works by clustering approximately co-planar points and by casting votes for these clusters on a spherical accumulator using a trivariate Gaussian kernel. A comparison with competing techniques shows that our approach is considerably faster and scales significantly better than previous ones, being the first practical solution for deterministic plane detection in large unorganized point clouds.
Liao, Nilsson Sunny y Martin Norrbom. "CLASSIFICATION OF BRIDGES IN LASER POINT CLOUDS USING MACHINE LEARNING". Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55067.
Texto completoArvidsson, Simon y Marcus Gullstrand. "Predicting forest strata from point clouds using geometric deep learning". Thesis, Jönköping University, JTH, Avdelningen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-54155.
Texto completoChen, Shuo. "Robust Registration of ToF and RGB-D Camera Point Clouds". Thesis, KTH, Fastigheter och byggande, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299537.
Texto completoDenna avhandling presenterar en jämförelse av tre metoder för registrering av punktmoln: M-estimator, BLAVE och RANSAC. Jämförelsen utfördes empiriskt genom att använda alla metoder på simulerad data med brus och grova fel samt på ToF - och RGB-D -data. Tester visade att RANSAC-metoden är den snabbaste och mest robusta metoden. Vi har även jämfört tre metoder för extrahering av features från 2D-bilder: Harris hörndetektor, SIFT och SURF och en 3D extraheringsmetod ISS. Denna jämförelse utfördes md hjälp av verkliga data. SIFT -algoritmen har visat sig fungera bäst bland alla extraheringsmetoder: den har extraherat flesta features med högst precision. I slutändan användes ICP-algoritmen för att förfina registreringsresultatet baserat på uppskattningen av initial transformering.
Yanes, Luis. "Haptic Interaction with 3D oriented point clouds on the GPU". Thesis, University of East Anglia, 2015. https://ueaeprints.uea.ac.uk/58556/.
Texto completoBae, Kwang-Ho. "Automated registration of unorganised point clouds from terrestrial laser scanners". Thesis, Curtin University, 2006. http://hdl.handle.net/20.500.11937/946.
Texto completoBae, Kwang-Ho. "Automated registration of unorganised point clouds from terrestrial laser scanners". Curtin University of Technology, Department of Spatial Sciences, 2006. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=16596.
Texto completoIn addition, the rotational convergence region of the GP-ICPR on the order of 10°, which is much larger than the ICP or its variants, provides a window of opportunity to utilise this automated registration method in practical applications such as terrestrial surveying and deformation monitoring.
El, Sayed Abdul Rahman. "Traitement des objets 3D et images par les méthodes numériques sur graphes". Thesis, Normandie, 2018. http://www.theses.fr/2018NORMLH19/document.
Texto completoSkin detection involves detecting pixels corresponding to human skin in a color image. The faces constitute a category of stimulus important by the wealth of information that they convey because before recognizing any person it is essential to locate and recognize his face. Most security and biometrics applications rely on the detection of skin regions such as face detection, 3D adult object filtering, and gesture recognition. In addition, saliency detection of 3D mesh is an important pretreatment phase for many computer vision applications. 3D segmentation based on salient regions has been widely used in many computer vision applications such as 3D shape matching, object alignments, 3D point-point smoothing, searching images on the web, image indexing by content, video segmentation and face detection and recognition. The detection of skin is a very difficult task for various reasons generally related to the variability of the shape and the color to be detected (different hues from one person to another, orientation and different sizes, lighting conditions) and especially for images from the web captured under different light conditions. There are several known approaches to skin detection: approaches based on geometry and feature extraction, motion-based approaches (background subtraction (SAP), difference between two consecutive images, optical flow calculation) and color-based approaches. In this thesis, we propose numerical optimization methods for the detection of skins color and salient regions on 3D meshes and 3D point clouds using a weighted graph. Based on these methods, we provide 3D face detection approaches using Linear Programming and Data Mining. In addition, we adapted our proposed methods to solve the problem of simplifying 3D point clouds and matching 3D objects. In addition, we show the robustness and efficiency of our proposed methods through different experimental results. Finally, we show the stability and robustness of our methods with respect to noise
Ruhe, Jakob y Johan Nordin. "Classification of Points Acquired by Airborne Laser Systems". Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10485.
Texto completoDuring several years research has been performed at the Department of Laser Systems, the Swedish Defense Research Agency (FOI), to develop methods to produce high resolution 3D environment models based on data acquired with airborne laser systems. The 3D models are used for several purposes, both military and civilian applications, for example mission planning, crisis management analysis and planning of infrastructure.
We have implemented a new format to store laser point data. Instead of storing rasterized images of the data this new format stores the original location of each point. We have also implemented a new method to detect outliers, methods to estimate the ground surface and also to divide the remaining data into two classes: buildings and vegetation.
It is also shown that it is possible to get more accurate results by analyzing the points directly instead of only using rasterized images and image processing algorithms. We show that these methods can be implemented without increasing the computational complexity.
Nguyen, Van sinh. "3 D Modeling of elevation surfaces from voxel structured point clouds extracted from seismic cubes". Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4069/document.
Texto completoReconstructing surfaces with data coming from an automatic acquisition technique always entails the problem of mass of data. This implies that the usual processes cannot be applied directly. Therefore, it leads to a mandatory data reduction process. An effective algorithm for a rapid processing while keeping the original model is a valuable tool for constructing an optimal surface and managing the complex data.In this dissertation, we present methods for building an optimal geological surface from a huge amount of 3D points extracted from seismic cubes. Applying the process to the whole set of points induces an important risk of surface shrinking so that the initial boundary extraction is an important step permitting a simplification inside the surface. The global surface shape will then be better kept for the reconstruction of the final triangular surface. Our proposals are based on the regularity of data which permits, even if data are missing, to easily obtain the neighboring information. Firstly, we present a new method to extract and simplify the boundary of an elevation surface given as voxels in a large 3D volume having the characteristics to be sparse. Secondly, a method for simplifying the surface inside its boundary is presented with a rough optional simplification step followed by a finer one based on curvatures. We also keep into consideration that the density of data must gradually change in order to receive in the last step a triangulated surface with better triangles. Thirdly, we have proposed a new and fast method for triangulating the surface after simplification
Digne, Julie. "Inverse geometry : from the raw point cloud to the 3d surface : theory and algorithms". Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2010. http://tel.archives-ouvertes.fr/tel-00610432.
Texto completoStella, Federico. "Learning a Local Reference Frame for Point Clouds using Spherical CNNs". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20197/.
Texto completoIzatt, Gregory (Gregory Russell). "Robust object pose estimation with point clouds from vision and touch". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111867.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 75-81).
We present a study of object pose estimation performed with hybrid visuo-tactile sensing in mind. We propose that a tactile sensor can be treated as a source of dense local geometric information, and hence consider it to be a point cloud source analogous to an RGB-D camera. We incorporate the tactile geometric information directly into a conventional point-cloud-based articulated object tracker based on signed-distance functions. This tracker runs at 12 Hz using an online depth reconstruction algorithm for the GelSight tactile sensor and a modified second-order update for the tracking algorithm. The tracker provides robust pose estimates of small objects throughout manipulation, even when the objects are occluded by the robot's end effector. To address limitations in this tracker, we additionally present a formulation of the underlying point-cloud correspondence problem as a mixed-integer convex program, which we efficiently solve to optimality with an off-the-shelf branch and bound solver. We show that reasoning about object pose estimation in this way allows natural extension to point-to-mesh correspondence, multiple object estimation, and outlier rejection without losing the ability to obtain a globally optimal solution. We probe the extent to which rich problem-specific formulations typically tackled with unreliable nonlinear optimization can be rigorously treated in a global optimization framework.
by Gregory Izatt.
S.M.
Al, Hakim Ezeddin. "3D YOLO: End-to-End 3D Object Detection Using Point Clouds". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234242.
Texto completoFör att autonoma fordon ska ha en god uppfattning av sin omgivning används moderna sensorer som LiDAR och RADAR. Dessa genererar en stor mängd 3-dimensionella datapunkter som kallas point clouds. Inom utvecklingen av autonoma fordon finns det ett stort behov av att tolka LiDAR-data samt klassificera medtrafikanter. Ett stort antal studier har gjorts om 2D-objektdetektering som analyserar bilder för att upptäcka fordon, men vi är intresserade av 3D-objektdetektering med hjälp av endast LiDAR data. Därför introducerar vi modellen 3D YOLO, som bygger på YOLO (You Only Look Once), som är en av de snabbaste state-of-the-art modellerna inom 2D-objektdetektering för bilder. 3D YOLO tar in ett point cloud och producerar 3D lådor som markerar de olika objekten samt anger objektets kategori. Vi har tränat och evaluerat modellen med den publika träningsdatan KITTI. Våra resultat visar att 3D YOLO är snabbare än dagens state-of-the-art LiDAR-baserade modeller med en hög träffsäkerhet. Detta gör den till en god kandidat för kunna användas av autonoma fordon.
Spina, Sandro. "Graph-based segmentation and scene understanding for context-free point clouds". Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/76651/.
Texto completoLanda, Yanina. "Visibility of point clouds and exploratory path planning in unknown environments". Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1610049881&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Texto completoJosé, Silva Leite Pedro. "Massively parallel nearest neighbors searches in dynamic point clouds on GPU". Universidade Federal de Pernambuco, 2010. https://repositorio.ufpe.br/handle/123456789/2356.
Texto completoConselho Nacional de Desenvolvimento Científico e Tecnológico
Esta dissertação introduz uma estrutura de dados baseada em gride implementada em GPU. Ela foi desenvolvida para pesquisa dos vizinhos mais próximos em nuvens de pontos dinâmicas, de uma forma massivamente paralela. A implementação possui desempenho em tempo real e é executada em GPU, ambas construção do gride e pesquisas dos vizinhos mais próximos (exatos e aproximados). Dessa forma, a transferência de memória entre sistema e dispositivo é minimizada, aumentando o desempenho de uma forma geral. O algoritmo proposto pode ser usado em diferentes aplicações com cenários estáticos ou dinâmicos. Além disso, a estrutura de dados suporta nuvens de pontos tridimensionais e dada sua natureza dinâmica, o usuário pode mudar seus parâmetros em tempo de execução. O mesmo se aplica ao número de vizinhos pesquisados. Uma referência em CPU foi implementada e comparações de desempenho justificam o uso de GPUs como processadores massivamente paralelos. Em adição, o desempenho da estrutura de dados proposta é comparada com implementações em CPU e GPU de trabalhos anteriores. Finalmente, uma aplicação de renderização baseada em pontos foi desenvolvida de forma a verificar o potencial da estrutura de dados