Tesis sobre el tema "Cluster analysis Pattern recognition systems"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Cluster analysis Pattern recognition systems".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Frigui, Hichem. "New approaches for robust clustering and for estimating the optimal number of clusters /". free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9842528.
Texto completoZhang, Lin. "PATTERN RECOGNITION METHODS FOR THE ANALYSIS OF INFRARED IMAGING DATA AND MULTIVARIATE CALIBRATION STANDARDIZATION FOR NEAR-INFARED SPECTROSCOPY". Ohio : Ohio University, 2002. http://www.ohiolink.edu/etd/view.cgi?ohiou1013445546.
Texto completoNagaraja, Adarsh. "Feature pruning for action recognition in complex environment". Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4992.
Texto completoID: 030423225; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (M.S.)--University of Central Florida, 2011.; Includes bibliographical references (p. 40-41).
M.S.
Masters
Electrical Engineering and Computer Science
Engineering and Computer Science
Hill, Evelyn June. "Applying statistical and syntactic pattern recognition techniques to the detection of fish in digital images". University of Western Australia. School of Mathematics and Statistics, 2004. http://theses.library.uwa.edu.au/adt-WU2004.0070.
Texto completoLi, Na. "MMD and Ward criterion in a RKHS : application to Kernel based hierarchical agglomerative clustering". Thesis, Troyes, 2015. http://www.theses.fr/2015TROY0033/document.
Texto completoClustering, as a useful tool for unsupervised classification, is the task of grouping objects according to some measured or perceived characteristics of them and it has owned great success in exploring the hidden structure of unlabeled data sets. Kernel-based clustering algorithms have shown great prominence. They provide competitive performance compared with conventional methods owing to their ability of transforming nonlinear problem into linear ones in a higher dimensional feature space. In this work, we propose a Kernel-based Hierarchical Agglomerative Clustering algorithms (KHAC) using Ward’s criterion. Our method is induced by a recently arisen criterion called Maximum Mean Discrepancy (MMD). This criterion has firstly been proposed to measure difference between different distributions and can easily be embedded into a RKHS. Close relationships have been proved between MMD and Ward's criterion. In our KHAC method, selection of the kernel parameter and determination of the number of clusters have been studied, which provide satisfactory performance. Finally an iterative KHAC algorithm is proposed which aims at determining the optimal kernel parameter, giving a meaningful number of clusters and partitioning the data set automatically
Zhu, Tao. "Extended cluster weighted modeling methods for transient recognition control". Diss., Montana State University, 2006. http://etd.lib.montana.edu/etd/2006/zhu/ZhuT0806.pdf.
Texto completoDannenberg, Matthew. "Pattern Recognition in High-Dimensional Data". Scholarship @ Claremont, 2016. https://scholarship.claremont.edu/hmc_theses/76.
Texto completoEvans, Fiona H. "Syntactic models with applications in image analysis /". [Perth, W.A.] : [University of W.A.], 2006. http://theses.library.uwa.edu.au/adt-WU2007.0001.
Texto completoDobie, Mark Ralph. "Motion analysis in multimedia systems". Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359240.
Texto completoChang, Charles Chung 1962. "Partial discharge pattern analysis". Monash University, Dept. of Electrical and Computer Systems Engineering, 2001. http://arrow.monash.edu.au/hdl/1959.1/8400.
Texto completoLennartsson, Mattias. "Object Recognition with Cluster Matching". Thesis, Linköping University, Department of Electrical Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-51494.
Texto completoWithin this thesis an algorithm for object recognition called Cluster Matching has been developed, implemented and evaluated. The image information is sampled at arbitrary sample points, instead of interest points, and local image features are extracted. These sample points are used as a compact representation of the image data and can quickly be searched for prior known objects. The algorithm is evaluated on a test set of images and the result is surprisingly reliable and time efficient.
Wu, Zhili. "Kernel based learning methods for pattern and feature analysis". HKBU Institutional Repository, 2004. http://repository.hkbu.edu.hk/etd_ra/619.
Texto completoHobbs, Mike. "Genetic algorithms for spatial data analysis in geographical information systems". Thesis, University of Kent, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262636.
Texto completoJantan, Adznan Bin. "A comparative study of various analysis techniques for use in speech recognition systems". Thesis, Swansea University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292473.
Texto completoHosseini, Habib Mir Mohamad. "Analysis and recognition of Persian and Arabic handwritten characters /". Title page, contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phh8288.pdf.
Texto completoMICHNIUK, KAROLINA. "PATTERN RECOGNITION APPLIED TO CHART ANALYSIS. EVIDENCE FROM INTRADAY INTERNATIONAL STOCK MARKETS". Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/78837.
Texto completoEl análisis técnico es una forma sofisticada de técnica de predicción cuya popularidad ha ido variando en el mundo académico y de los negocios. En el pasado, los usuarios eran bastante escépticos respecto de las reglas técnicas de trading y su performance. Todo esto, se encuentra sustentado por la aceptación de la hipótesis del mercado eficiente y descubrimientos empíricos mixtos sobre el análisis técnico, que se mencionan en un número amplio de estudios. El patrón bandera es visto como uno de los patrones gráficos más significativo y difundido entre los analistas técnicos de mercado. El presente estudio valida una regla de trading basada en el desarrollo futuro del reconocimiento gráfico del patrón bandera. La pregunta de investigación se centra en si el análisis técnico basado en el patrón bandera puede batir los índices internacionales de mercado y probar, de esta manera, la ineficiencia de dichos mercados. Los mercados observados son representados por los correspondientes índices DAX (Alemania), DJIA (Estados Unidos) e IBEX (España). El diseño de la regla de trading presenta varios cambios y novedades con respecto a trabajos académicos previos. La amplia muestra usada al considerar los datos intradía, junto con la configuración de algunas variables y la consideración del riesgo, confirman que la regla de trading proporciona mejores, y más ajustadas al riesgo, rentabilidades positivas que la estrategia de buy-and-hold que se utiliza como referencia. Los resultados positivos corroboran la robustez de las conclusiones a las que también se llegan en otros trabajos.
L'anàlisi tècnica és una forma sofisticada de tècnica de predicció, la popularitat de la qual ha anat variant al món acadèmic i dels negocis. En el passat, els usuaris eren bastant escèptics respecte de les regles tècniques de trading i la seva performance. Tot això, es troba sustentat per l'acceptació de la hipòtesi del mercat eficient i descobriments empírics mixts sobre l'anàlisi tècnica, que s'esmenten en un nombre ampli d'estudis. El patró bandera és vist com un dels patrons gràfics més significatiu i difós entre els analistes tècnics de mercat. El present estudi valida una regla de trading basada en el desenvolupament futur del reconeixement gràfic del patró bandera. La pregunta de recerca se centra en si l'anàlisi tècnica basada en el patró bandera pot batre els índexs internacionals de mercat i provar, d'aquesta manera, la ineficiència d'aquests mercats. Els mercats observats són representats pels corresponents índexs DAX (Alemanya), *DJIA (Estats Units) i IBEX (Espanya). El disseny de la regla de trading presenta diversos canvis i novetats pel que fa a treballs acadèmics previs. L'àmplia mostra usada en considerar les dades intradia, juntament amb la configuració d'algunes variables i la consideració del risc, confirmen que la regla de trading proporciona millors, i més ajustades al risc, rendibilitats positives que l'estratègia de buy-and-hold que s'utilitza com a referència. Els resultats positius corroboren la robustesa de les conclusions a les quals també s'arriben en altres treballs.
Michniuk, K. (2017). PATTERN RECOGNITION APPLIED TO CHART ANALYSIS. EVIDENCE FROM INTRADAY INTERNATIONAL STOCK MARKETS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/78837
TESIS
Sukittanon, Somsak. "Modulation scale analysis : theory and application for nonstationary signal classification /". Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/5875.
Texto completoLiu, Chang. "Human motion detection and action recognition". HKBU Institutional Repository, 2010. http://repository.hkbu.edu.hk/etd_ra/1108.
Texto completoDjouadi, Abdelhamid. "Analysis of the performance of a parametric and nonparametric classification system : an application to feature selection and extraction in radar target identification /". The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487324944214317.
Texto completoZhu, Jia Jun. "A language for financial chart patterns and template-based pattern classification". Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3950603.
Texto completoSidiropoulos, Konstantinos. "Pattern recognition systems design on parallel GPU architectures for breast lesions characterisation employing multimodality images". Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/9190.
Texto completoLi, Jun. "Image texture decomposition and application in food quality analysis /". free to MU campus, to others for purchase, 2001. http://wwwlib.umi.com/cr/mo/fullcit?p3036842.
Texto completoHatem, Iyad. "Hybrid multivariate classification technique and its application in tissue image analysis /". free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p3091929.
Texto completoFredriksson, Tomas y Rickard Svensson. "Analysis of machine learning for human motion pattern recognition on embedded devices". Thesis, KTH, Mekatronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246087.
Texto completoAntalet uppkopplade enheter ökar och det senaste uppsvinget av ar-tificiell intelligens driver forskningen framåt till att kombinera de två teknologierna för att både förbättra existerande produkter och utveckla nya. Maskininlärning är traditionellt sett implementerat på kraftfulla system så därför undersöker den här masteruppsatsen potentialen i att utvidga maskininlärning till att köras på inbyggda system. Den här undersökningen av existerande maskinlärningsalgoritmer, implemen-terade på begränsad hårdvara, har utförts med fokus på att klassificera grundläggande mänskliga rörelser. Tidigare forskning och implemen-tation visar på att det ska vara möjligt med vissa begränsningar. Den här uppsatsen vill svara på vilken hårvarubegränsning som påverkar klassificering mest samt vilken klassificeringsgrad systemet kan nå på den begränsande hårdvaran. Testerna inkluderade mänsklig rörelsedata från ett existerande dataset och inkluderade fyra olika maskininlärningsalgoritmer på tre olika system. SVM presterade bäst i jämförelse med CART, Random Forest och AdaBoost. Den nådde en klassifikationsgrad på 84,69% på de sex inkluderade rörelsetyperna med en klassifikationstid på 16,88 ms per klassificering på en Cortex M processor. Detta är samma klassifikations-grad som en vanlig persondator når med betydligt mer beräknings-resurserresurser. Andra hårdvaru- och algoritm-kombinationer visar en liten minskning i klassificeringsgrad och ökning i klassificeringstid. Slutsatser kan dras att minnet på det inbyggda systemet påverkar vilka algoritmer som kunde köras samt komplexiteten i datan som kunde extraheras i form av attribut (features). Processeringshastighet påverkar mest klassificeringstid. Slutligen är prestandan för maskininlärningsy-stemet bunden till typen av data som ska klassificeras, vilket betyder att olika uppsättningar av algoritmer och hårdvara påverkar prestandan olika beroende på användningsområde.
Wang, Joshua Kevin. "Identification, Analysis, and Control of Power System Events Using Wide-Area Frequency Measurements". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/26250.
Texto completoPh. D.
Kaminskyj, Ian. "Automatic recognition of musical instruments using isolated monophonic sounds". Monash University, Dept. of Electrical and Computer Systems Engineering, 2004. http://arrow.monash.edu.au/hdl/1959.1/5212.
Texto completoCazzanti, Luca. "Generative models of similarity-based classification /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/5905.
Texto completoWang, Yongqiang. "A study on structured covariance modeling approaches to designing compact recognizers of online handwritten Chinese characters". Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B42664305.
Texto completoKasselman, Pieter Retief. "Analysis and design of cryptographic hash functions". Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-12202006-125340/.
Texto completoKoeppe, Ralf. "A comparative study of the performance of various image analysis methods for dimensional inspection with vision systems". PDXScholar, 1989. https://pdxscholar.library.pdx.edu/open_access_etds/3930.
Texto completoZhu, Manli. "A study of the generalized eigenvalue decomposition in discriminant analysis". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1152133627.
Texto completoHymér, Pontus. "Extraction and Application of Secondary Crease Information in Fingerprint Recognition Systems". Thesis, Linköping University, Department of Science and Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2951.
Texto completoThis thesis states that cracks and scars, referred to as Secondary Creases, in fingerprint images can be used as means for aiding and complementing fingerprint recognition, especially in cases where there is not enough clear data to use traditional methods such as minutiae based or correlation techniques. A Gabor filter bank is used to extract areas with linear patterns, where after the Hough Transform is used to identify secondary creases in a r, theta space. The methods proposed for Secondary Crease extraction works well, and provides information about what areas in an image contains usable linear pattern. Methods for comparison is however not as robust, and generates False Rejection Rate at 30% and False Acceptance Rate at 20% on the proposed dataset that consists of bad quality fingerprints. In short, our methods still makes it possible to make use of fingerprint images earlier considered unusable in fingerprint recognition systems.
Jain, Raja P. "Extraction and interaction analysis of foreground objects in panning video /". Link to online version, 2006. https://ritdml.rit.edu/dspace/handle/1850/1879.
Texto completoKong, Jun. "A Study of Computer Vision and Pattern Recognition in Medical Image Analysis: Digital Microscopy and Optical Coherent Tomography". Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1228075056.
Texto completoKoprnicky, Miroslav. "Towards a Versatile System for the Visual Recognition of Surface Defects". Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/888.
Texto completoThis thesis proposes a framework for generalizing and automating the design of the defect classification stage of an automated visual inspection system. It involves using an expandable set of features which are optimized along with the classifier operating on them in order to adapt to the application at hand. The particular implementation explored involves optimizing the feature set in disjoint sets logically grouped by feature type to keep search spaces reasonable. Operator input is kept at a minimum throughout this customization process, since it is limited only to those cases in which the existing feature library cannot adequately delineate the classes at hand, at which time new features (or pools) may have to be introduced by an engineer with experience in the domain.
Two novel methods are put forward which fit well within this framework: cluster-space and hybrid-space classifiers. They are compared in a series of tests against both standard benchmark classifiers, as well as mean and majority vote multi-classifiers, on feature sets comprised of just the logical feature subsets, as well as the entire feature sets formed by their union. The proposed classifiers as well as the benchmarks are optimized with both a progressive combinatorial approach and with an genetic algorithm. Experimentation was performed on true colour industrial lumber defect images, as well as binary hand-written digits.
Based on the experiments conducted in this work, it was found that the sequentially optimized multi hybrid-space methods are capable of matching the performances of the benchmark classifiers on the lumber data, with the exception of the mean-rule multi-classifiers, which dominated most experiments by approximately 3% in classification accuracy. The genetic algorithm optimized hybrid-space multi-classifier achieved best performance however; an accuracy of 79. 2%.
The numeral dataset results were less promising; the proposed methods could not equal benchmark performance. This is probably because the numeral feature-sets were much more conducive to good class separation, with standard benchmark accuracies approaching 95% not uncommon. This indicates that the cluster-space transform inherent to the proposed methods appear to be most useful in highly dependant or confusing feature-spaces, a hypothesis supported by the outstanding performance of the single hybrid-space classifier in the difficult texture feature subspace: 42. 6% accuracy, a 6% increase over the best benchmark performance.
The generalized framework proposed appears promising, because classifier performance over feature sets formed by the union of independently optimized feature subsets regularly met and exceeded those classifiers operating on feature sets formed by the optimization of the feature set in its entirety. This finding corroborates earlier work with similar results [3, 9], and is an aspect of pattern recognition that should be examined further.
Du, Preez Hercule. "GrailKnights : an automaton mass manipulation package for enhanced pattern analysis". Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/2902.
Texto completoThis thesis describes the design and implementation of an application names GrailKnights that allows for the mass manipulation of automata, with added visual pattern analysis features. It comprises a database-driven backend for automata storage, and a graphical user interface that allows for filtering the automata selected from the database with visual interpretation of visible patterns over the resulting automata.
Minnen, David. "Unsupervised discovery of activity primitives from multivariate sensor data". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24623.
Texto completoCommittee Chair: Thad Starner; Committee Member: Aaron Bobick; Committee Member: Bernt Schiele; Committee Member: Charles Isbell; Committee Member: Irfan Essa
Rathi, Yogesh. "Filtering for Closed Curves". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/13996.
Texto completoShao, Wenbin. "Automatic annotation of digital photos". Access electronically, 2007. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20080403.120857/index.html.
Texto completoWang, Yongqiang y 王永強. "A study on structured covariance modeling approaches to designing compact recognizers of online handwritten Chinese characters". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42664305.
Texto completoEvans, Fiona H. "Syntactic models with applications in image analysis". University of Western Australia. Dept. of Mathematics and Statistics, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0001.
Texto completoJanmohammadi, Siamak. "Classifying Pairwise Object Interactions: A Trajectory Analytics Approach". Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc801901/.
Texto completoLe, Faucheur Xavier Jean Maurice. "Statistical methods for feature extraction in shape analysis and bioinformatics". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33911.
Texto completoReyes, Estany Miguel. "Human Pose Analysis and Gesture Recognition from Depth Maps: Methods and Applications". Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/403985.
Texto completoEl análisis visual de personas es uno de los temas de investigación más activos en Visión Computacional. Varios enfoques para la recuperación de la postura corporal se han presentado recientemente, que permiten una mejor generalización de los sistemas de reconocimiento de gestos. La evaluación de los patrones de comportamiento humano en diferentes ambientes ha sido un problema de estudio en las ciencias sociales y cognitivas, pero actualmente se presenta como un reto para las ciencias informáticas, dada la complejidad de la extracción de datos y su análisis. Entre las principales dificultades del análisis visual de los datos n RGB está la discriminación de las formas, texturas, objetos de fondo, cambios en las condiciones de iluminación y puntos de vista. En contraste con las imágenes RGB comunes utilizadas en Visión Computacional, imágenes de rango aportan información adicional sobre mundo 3-D, lo que permite capturar la información de profundidad de cada pixel en la imagen. Además, el uso de mapas de profundidad es de creciente interés después de la llegada de los dispositivos multisensor baratos basados en luz estructurada, o la tecnología de Tiempo de Vuelo (TOF, por sus siglas en inglés). En este trabajo analizaremos el problema de la postura y el movimiento humano en imágenes RGB con profundidad, y en particular: 1) la actitud humana de recuperación de la postura, 2) descripción de posiciones de la mano, y 3) el reconocimiento de gestos. Vamos a tratar estas tres áreas mediante el uso de los datos RGB-Profundos con el fin de sacar provecho de la representación visual y la información geométrica en 3-D. El uso de los dos canales de información mejora la eficiencia de los métodos de análisis de movimiento y postura humanos. También presentamos un uso eficiente de los métodos propuestos en campos de aplicación real, como la salud y la interacción persona-ordenador (HCI). Nuestros principales objetivos son establecer la viabilidad del uso de mapa de profundidad en la estimación de pose de la mano y el cuerpo humano y, por otro lado, para el reconocimiento de gestos. Adicionalmente se presenta el impacto de éstas en aplicaciones reales con alto impacto social.
Cheng, Guangchun. "Video Analytics with Spatio-Temporal Characteristics of Activities". Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc799541/.
Texto completoPettersson, Johan. "Real-time Object Recognition on a GPU". Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10238.
Texto completoShape-Based matching (SBM) is a known method for 2D object recognition that is rather robust against illumination variations, noise, clutter and partial occlusion.
The objects to be recognized can be translated, rotated and scaled.
The translation of an object is determined by evaluating a similarity measure for all possible positions (similar to cross correlation).
The similarity measure is based on dot products between normalized gradient directions in edges.
Rotation and scale is determined by evaluating all possible combinations, spanning a huge search space.
A resolution pyramid is used to form a heuristic for the search that then gains real-time performance.
For SBM, a model consisting of normalized edge gradient directions, are constructed for all possible combinations of rotation and scale.
We have avoided this by using (bilinear) interpolation in the search gradient map, which greatly reduces the amount of storage required.
SBM is highly parallelizable by nature and with our suggested improvements it becomes much suited for running on a GPU.
This have been implemented and tested, and the results clearly outperform those of our reference CPU implementation (with magnitudes of hundreds).
It is also very scalable and easily benefits from future devices without effort.
An extensive evaluation material and tools for evaluating object recognition algorithms have been developed and the implementation is evaluated and compared to two commercial 2D object recognition solutions.
The results show that the method is very powerful when dealing with the distortions listed above and competes well with its opponents.
Kakarlapudi, Swarna. "APPLICATION OF IMAGE ANALYSIS TECHNIQUES IN FORWARD LOOKING SYNTHETIC VISION SYSTEM INTEGRITY MONITORS". Ohio University / OhioLINK, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1090265512.
Texto completoAgarwal, Virat. "Algorithm design on multicore processors for massive-data analysis". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34839.
Texto completoOh, Sang Min. "Switching linear dynamic systems with higher-order temporal structure". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29698.
Texto completoCommittee Chair: Dellaert, Frank; Committee Co-Chair: Rehg, James; Committee Member: Bobick, Aaron; Committee Member: Essa, Irfan; Committee Member: Smyth, Padhraic. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Kistner, Melissa. "Image texture analysis for inferential sensing in the process industries". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85791.
Texto completoENGLISH ABSTRACT: The measurement of key process quality variables is important for the efficient and economical operation of many chemical and mineral processing systems, as these variables can be used in process monitoring and control systems to identify and maintain optimal process conditions. However, in many engineering processes the key quality variables cannot be measured directly with standard sensors. Inferential sensing is the real-time prediction of such variables from other, measurable process variables through some form of model. In vision-based inferential sensing, visual process data in the form of images or video frames are used as input variables to the inferential sensor. This is a suitable approach when the desired process quality variable is correlated with the visual appearance of the process. The inferential sensor model is then based on analysis of the image data. Texture feature extraction is an image analysis approach by which the texture or spatial organisation of pixels in an image can be described. Two texture feature extraction methods, namely the use of grey-level co-occurrence matrices (GLCMs) and wavelet analysis, have predominated in applications of texture analysis to engineering processes. While these two baseline methods are still widely considered to be the best available texture analysis methods, several newer and more advanced methods have since been developed, which have properties that should theoretically provide these methods with some advantages over the baseline methods. Specifically, three advanced texture analysis methods have received much attention in recent machine vision literature, but have not yet been applied extensively to process engineering applications: steerable pyramids, textons and local binary patterns (LBPs). The purpose of this study was to compare the use of advanced image texture analysis methods to baseline texture analysis methods for the prediction of key process quality variables in specific process engineering applications. Three case studies, in which texture is thought to play an important role, were considered: (i) the prediction of platinum grade classes from images of platinum flotation froths, (ii) the prediction of fines fraction classes from images of coal particles on a conveyor belt, and (iii) the prediction of mean particle size classes from images of hydrocyclone underflows. Each of the five texture feature sets were used as inputs to two different classifiers (K-nearest neighbours and discriminant analysis) to predict the output variable classes for each of the three case studies mentioned above. The quality of the features extracted with each method was assessed in a structured manner, based their classification performances after the optimisation of the hyperparameters associated with each method. In the platinum froth flotation case study, steerable pyramids and LBPs significantly outperformed the GLCM, wavelet and texton methods. In the case study of coal fines fractions, the GLCM method was significantly outperformed by all four other methods. Finally, in the hydrocyclone underflow case study, steerable pyramids and LBPs significantly outperformed GLCM and wavelet methods, while the result for textons was inconclusive. Considering all of these results together, the overall conclusion was drawn that two of the three advanced texture feature extraction methods, namely steerable pyramids and LBPs, can extract feature sets of superior quality, when compared to the baseline GLCM and wavelet methods in these three case studies. The application of steerable pyramids and LBPs to further image analysis data sets is therefore recommended as a viable alternative to the traditional GLCM and wavelet texture analysis methods.
AFRIKAANSE OPSOMMING: Die meting van sleutelproseskwaliteitsveranderlikes is belangrik vir die doeltreffende en ekono-miese werking van baie chemiese– en mineraalprosesseringsisteme, aangesien hierdie verander-likes gebruik kan word in prosesmonitering– en beheerstelsels om die optimale prosestoestande te identifiseer en te handhaaf. In baie ingenieursprosesse kan die sleutelproseskwaliteits-veranderlikes egter nie direk met standaard sensors gemeet word nie. Inferensiële waarneming is die intydse voorspelling van sulke veranderlikes vanaf ander, meetbare prosesveranderlikes deur van ‘n model gebruik te maak. In beeldgebaseerde inferensiële waarneming word visuele prosesdata, in die vorm van beelde of videogrepe, gebruik as insetveranderlikes vir die inferensiële sensor. Hierdie is ‘n gepaste benadering wanneer die verlangde proseskwaliteitsveranderlike met die visuele voorkoms van die proses gekorreleer is. Die inferensiële sensormodel word dan gebaseer op die analise van die beelddata. Tekstuurkenmerkekstraksie is ‘n beeldanalisebenadering waarmee die tekstuur of ruimtelike organisering van die beeldelemente beskryf kan word. Twee tekstuurkenmerkekstraksiemetodes, naamlik die gebruik van grysskaalmede-aanwesigheidsmatrikse (GSMMs) en golfie-analise, is sterk verteenwoordig in ingenieursprosestoepassings van tekstuuranalise. Alhoewel hierdie twee grondlynmetodes steeds algemeen as die beste beskikbare tekstuuranalisemetodes beskou word, is daar sedertdien verskeie nuwer en meer gevorderde metodes ontwikkel, wat beskik oor eienskappe wat teoreties voordele vir hierdie metodes teenoor die grondlynmetodes behoort te verskaf. Meer spesifiek is daar drie gevorderde tekstuuranalisemetodes wat baie aandag in onlangse masjienvisieliteratuur geniet het, maar wat nog nie baie op ingenieursprosesse toegepas is nie: stuurbare piramiedes, tekstons en lokale binêre patrone (LBPs). Die doel van hierdie studie was om die gebruik van gevorderde tekstuuranalisemetodes te vergelyk met grondlyntekstuuranaliesemetodes vir die voorspelling van sleutelproseskwaliteits-veranderlikes in spesifieke prosesingenieurstoepassings. Drie gevallestudies, waarin tekstuur ‘n belangrike rol behoort te speel, is ondersoek: (i) die voorspelling van platinumgraadklasse vanaf beelde van platinumflottasieskuime, (ii) die voorspelling van fynfraksieklasse vanaf beelde van steenkoolpartikels op ‘n vervoerband, en (iii) die voorspelling van gemiddelde partikelgrootteklasse vanaf beelde van hidrosikloon ondervloeie. Elk van die vyf tekstuurkenmerkstelle is as insette vir twee verskillende klassifiseerders (K-naaste bure en diskriminantanalise) gebruik om die klasse van die uitsetveranderlikes te voorspeel, vir elk van die drie gevallestudies hierbo genoem. Die kwaliteit van die kenmerke wat deur elke metode ge-ekstraheer is, is op ‘n gestruktureerde manier bepaal, gebaseer op hul klassifikasieprestasie na die optimering van die hiperparameters wat verbonde is aan elke metode. In die platinumskuimflottasiegevallestudie het stuurbare piramiedes en LBPs betekenisvol beter as die GSMM–, golfie– en tekstonmetodes presteer. In die steenkoolfynfraksiegevallestudie het die GSMM-metode betekenisvol slegter as al vier ander metodes presteer. Laastens, in die hidrosikloon ondervloeigevallestudie het stuurbare piramiedes en LBPs betekenisvol beter as die GSMM– en golfiemetodes presteer, terwyl die resultaat vir tekstons nie beslissend was nie. Deur al hierdie resultate gesamentlik te beskou, is die oorkoepelende gevolgtrekking gemaak dat twee van die drie gevorderde tekstuurkenmerkekstraksiemetodes, naamlik stuurbare piramiedes en LBPs, hoër kwaliteit kenmerkstelle kan ekstraheer in vergelyking met die GSMM– en golfiemetodes, vir hierdie drie gevallestudies. Die toepassing van stuurbare piramiedes en LBPs op verdere beeldanalise-datastelle word dus aanbeveel as ‘n lewensvatbare alternatief tot die tradisionele GSMM– en golfietekstuuranalisemetodes.