Literatura académica sobre el tema "Complexe of oriented matroids"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Complexe of oriented matroids".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Complexe of oriented matroids"

1

Mücksch, Paul. "Modular flats of oriented matroids and poset quasi-fibrations." Transactions of the American Mathematical Society, Series B 11, no. 9 (2024): 306–28. http://dx.doi.org/10.1090/btran/168.

Texto completo
Resumen
We study the combinatorics of modular flats of oriented matroids and the topological consequences for their Salvetti complexes. We show that the natural map to the localized Salvetti complex at a modular flat of corank one is what we call a poset quasi-fibration – a notion derived from Quillen’s fundamental Theorem B from algebraic K K -theory. As a direct consequence, the Salvetti complex of an oriented matroid whose geometric lattice is supersolvable is a K ( π , 1 ) K(\pi ,1) -space – a generalization of the classical result for supersolvable hyperplane arrangements due to Falk, Randell and Terao. Furthermore, the fundamental group of the Salvetti complex of a supersolvable oriented matroid is an iterated semidirect product of finitely generated free groups – analogous to the realizable case. Our main tools are discrete Morse theory, the shellability of certain subcomplexes of the covector complex of an oriented matroid, a nice combinatorial decomposition of poset fibers of the localization map, and an isomorphism of covector posets associated to modular elements. We provide a simple construction of supersolvable oriented matroids. This gives many non-realizable supersolvable oriented matroids and by our main result aspherical CW-complexes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Chepoi, Victor, Kolja Knauer, and Manon Philibert. "Ample Completions of Oriented Matroids and Complexes of Uniform Oriented Matroids." SIAM Journal on Discrete Mathematics 36, no. 1 (2022): 509–35. http://dx.doi.org/10.1137/20m1355434.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bandelt, Hans-Jürgen, Victor Chepoi, and Kolja Knauer. "COMs: Complexes of oriented matroids." Journal of Combinatorial Theory, Series A 156 (May 2018): 195–237. http://dx.doi.org/10.1016/j.jcta.2018.01.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Webster, Julian. "Cell complexes, oriented matroids and digital geometry." Theoretical Computer Science 305, no. 1-3 (2003): 491–502. http://dx.doi.org/10.1016/s0304-3975(02)00712-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Fukuda, Komei, Hiroyuki Miyata, and Sonoko Moriyama. "Complete Enumeration of Small Realizable Oriented Matroids." Discrete & Computational Geometry 49, no. 2 (2012): 359–81. http://dx.doi.org/10.1007/s00454-012-9470-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Knauer, Kolja, and Tilen Marc. "On Tope Graphs of Complexes of Oriented Matroids." Discrete & Computational Geometry 63, no. 2 (2019): 377–417. http://dx.doi.org/10.1007/s00454-019-00111-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Bokowski, Jürgen, and Tomaž Pisanski. "Oriented matroids and complete-graph embeddings on surfaces." Journal of Combinatorial Theory, Series A 114, no. 1 (2007): 1–19. http://dx.doi.org/10.1016/j.jcta.2006.06.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Naimi, Ramin, and Elena Pavelescu. "Linear embeddings of K9 are triple linked." Journal of Knot Theory and Its Ramifications 23, no. 03 (2014): 1420001. http://dx.doi.org/10.1142/s0218216514200016.

Texto completo
Resumen
We use the theory of oriented matroids to show that any linear embedding of K9, the complete graph on nine vertices, into 3-space contains a non-split link with three components. This shows that Sachs' conjecture on linear, linkless embeddings of graphs, whether true or false, does not extend to 3-links.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Alfonsín, J. L. Ramírez. "On Linked Spatial Representations." Journal of Knot Theory and Its Ramifications 10, no. 01 (2001): 143–50. http://dx.doi.org/10.1142/s0218216501000780.

Texto completo
Resumen
What is the smallest positive integer m=m(L) such that every linear spatial representation of the complete graph with n vertices, n≥m contain cycles isotopic to link L? In this paper, we show that [Formula: see text]. The proof uses the well-known cyclic polytope and its combinatorial description in terms of oriented matroids.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Welsh, D. J. A. "ORIENTED MATROIDS." Bulletin of the London Mathematical Society 27, no. 5 (1995): 499–501. http://dx.doi.org/10.1112/blms/27.5.499.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!