Siga este enlace para ver otros tipos de publicaciones sobre el tema: Crop improvement.

Artículos de revistas sobre el tema "Crop improvement"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Crop improvement".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Choudhary, Mukesh, Vishal Singh, Vignesh Muthusamy, and Shabir Hussain Wani. "Harnessing Crop Wild Relatives for Crop Improvement." LS: International Journal of Life Sciences 6, no. 2 (2017): 73. http://dx.doi.org/10.5958/2319-1198.2017.00009.4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Merchán, Kelly. "Crop Improvement ≠ Plant Breeding." CSA News 66, no. 5 (2021): 28–31. http://dx.doi.org/10.1002/csan.20445.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

CLEGG, MICHAEL T. "Genetics of Crop Improvement." American Zoologist 26, no. 3 (1986): 821–34. http://dx.doi.org/10.1093/icb/26.3.821.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Gosal, Satbir S., Shabir H. Wani, and Manjit S. Kang. "Biotechnology and Crop Improvement." Journal of Crop Improvement 24, no. 2 (2010): 153–217. http://dx.doi.org/10.1080/15427520903584555.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Evans, Adrian. "Innovations in crop improvement." Crop Protection 12, no. 3 (1993): 237. http://dx.doi.org/10.1016/0261-2194(93)90116-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Smith, Steven M. "Crop improvement utilizing biotechnology." Agricultural Systems 36, no. 2 (1991): 246–47. http://dx.doi.org/10.1016/0308-521x(91)90032-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Praveen Rao, V. "Breeding for Crop Improvement." Current Science 114, no. 02 (2018): 256. http://dx.doi.org/10.18520/cs/v114/i02/256-257.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Springer, Nathan M. "Epigenetics and crop improvement." Trends in Genetics 29, no. 4 (2013): 241–47. http://dx.doi.org/10.1016/j.tig.2012.10.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ramulu, K. S., V. K. Sharma, T. N. Naumova, P. Dijkhuis, and M. M. van Lookeren Campagne. "Apomixis for crop improvement." Protoplasma 208, no. 1-4 (1999): 196–205. http://dx.doi.org/10.1007/bf01279090.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Sourdille, Pierre, and Pierre Devaux. "Crop Improvement: Now and Beyond." Biology 10, no. 5 (2021): 421. http://dx.doi.org/10.3390/biology10050421.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Singh, Arvinder, and Muskan Bokolia. "CRISPR/Cas for Crop Improvement." Resonance 26, no. 2 (2021): 227–40. http://dx.doi.org/10.1007/s12045-021-1121-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Shigeoka, S. "Transgenic approaches to crop improvement." Japanese journal of crop science 71, Supplement2 (2002): 318–21. http://dx.doi.org/10.1626/jcs.71.supplement2_318.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Lai, Kaitao, Michał T. Lorenc, and David Edwards. "Genomic Databases for Crop Improvement." Agronomy 2, no. 1 (2012): 62–73. http://dx.doi.org/10.3390/agronomy2010062.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Cody, Jon, Nathan Swyers, Morgan McCaw, Nathaniel Graham, Changzeng Zhao, and James Birchler. "Minichromosomes: Vectors for Crop Improvement." Agronomy 5, no. 3 (2015): 309–21. http://dx.doi.org/10.3390/agronomy5030309.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Shen, Lisha, and Hao Yu. "Epitranscriptome engineering in crop improvement." Molecular Plant 14, no. 9 (2021): 1418–20. http://dx.doi.org/10.1016/j.molp.2021.08.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Kumari, Rima. "Allele Mining for Crop Improvement." International Journal of Pure & Applied Bioscience 6, no. 1 (2018): 1456–65. http://dx.doi.org/10.18782/2320-7051.6073.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Bevan, Michael W., Cristobal Uauy, Brande B. H. Wulff, Ji Zhou, Ksenia Krasileva, and Matthew D. Clark. "Genomic innovation for crop improvement." Nature 543, no. 7645 (2017): 346–54. http://dx.doi.org/10.1038/nature22011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Evans, L. T. "Is Crop Improvement Still Needed?" Journal of Crop Improvement 14, no. 1-2 (2005): 1–7. http://dx.doi.org/10.1300/j411v14n01_01.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Sneller, Clay H., Randall L. Nelson, T. E. Carter, and Zhanglin Cui. "Genetic Diversity in Crop Improvement." Journal of Crop Improvement 14, no. 1-2 (2005): 103–44. http://dx.doi.org/10.1300/j411v14n01_06.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Zhang, Jingyu, Xin-Min Li, Hong-Xuan Lin, and Kang Chong. "Crop Improvement Through Temperature Resilience." Annual Review of Plant Biology 70, no. 1 (2019): 753–80. http://dx.doi.org/10.1146/annurev-arplant-050718-100016.

Texto completo
Resumen
Abnormal environmental temperature affects plant growth and threatens crop production. Understanding temperature signal sensing and the balance between defense and development in plants lays the foundation for improvement of temperature resilience. Here, we summarize the current understanding of cold signal perception/transduction as well as heat stress response. Dissection of plant responses to different levels of cold stresses (chilling and freezing) illustrates their common and distinct signaling pathways. Axillary bud differentiation in response to chilling is presented as an example of th
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Brennan, Charles. "Concise Encyclopaedia of Crop Improvement." International Journal of Food Science & Technology 44, no. 10 (2009): 2085. http://dx.doi.org/10.1111/j.1365-2621.2008.01771.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Gepts, Paul. "Biocultural diversity and crop improvement." Emerging Topics in Life Sciences 7, no. 2 (2023): 151–96. http://dx.doi.org/10.1042/etls20230067.

Texto completo
Resumen
Biocultural diversity is the ever-evolving and irreplaceable sum total of all living organisms inhabiting the Earth. It plays a significant role in sustainable productivity and ecosystem services that benefit humanity and is closely allied with human cultural diversity. Despite its essentiality, biodiversity is seriously threatened by the insatiable and inequitable human exploitation of the Earth's resources. One of the benefits of biodiversity is its utilization in crop improvement, including cropping improvement (agronomic cultivation practices) and genetic improvement (plant breeding). Crop
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Parry, M. A. J., P. J. Madgwick, C. Bayon, et al. "Mutation discovery for crop improvement." Journal of Experimental Botany 60, no. 10 (2009): 2817–25. http://dx.doi.org/10.1093/jxb/erp189.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Burgess, Darren J. "Branching out for crop improvement." Nature Reviews Genetics 18, no. 7 (2017): 393. http://dx.doi.org/10.1038/nrg.2017.48.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Martin, Gregory B. "Gene discovery for crop improvement." Current Opinion in Biotechnology 9, no. 2 (1998): 220–26. http://dx.doi.org/10.1016/s0958-1669(98)80119-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Dunwell, Jim M. "Transgenic approaches to crop improvement." Journal of Experimental Botany 51, suppl_1 (2000): 487–96. http://dx.doi.org/10.1093/jexbot/51.suppl_1.487.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Verhage, Leonie. "The colour of crop improvement." Plant Journal 103, no. 6 (2020): 1965–66. http://dx.doi.org/10.1111/tpj.14971.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Rafalski, Antoni. "Molecular techniques in crop improvement." Plant Science 163, no. 6 (2002): 1177. http://dx.doi.org/10.1016/s0168-9452(02)00330-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Brown, D. C. W., and T. A. Thorpe. "Crop improvement through tissue culture." World Journal of Microbiology & Biotechnology 11, no. 4 (1995): 409–15. http://dx.doi.org/10.1007/bf00364616.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Rafalski, J. Antoni. "Association genetics in crop improvement." Current Opinion in Plant Biology 13, no. 2 (2010): 174–80. http://dx.doi.org/10.1016/j.pbi.2009.12.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Varshney, Rajeev K., Pallavi Sinha, Vikas K. Singh, Arvind Kumar, Qifa Zhang, and Jeffrey L. Bennetzen. "5Gs for crop genetic improvement." Current Opinion in Plant Biology 56 (August 2020): 190–96. http://dx.doi.org/10.1016/j.pbi.2019.12.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Kerchev, Pavel, Barbara De Smet, Cezary Waszczak, Joris Messens, and Frank Van Breusegem. "Redox Strategies for Crop Improvement." Antioxidants & Redox Signaling 23, no. 14 (2015): 1186–205. http://dx.doi.org/10.1089/ars.2014.6033.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

St. Martin, S. K. "Plant Adaption and Crop Improvement." Crop Science 38, no. 1 (1998): 274–75. http://dx.doi.org/10.2135/cropsci1998.0011183x003800010047x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Lin, Rongshuang. "Concise Encyclopedia of Crop Improvement." Journal of Environmental Quality 38, no. 3 (2009): 1329. http://dx.doi.org/10.2134/jeq2008.0023br.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Hussain,, G., M. S. Wani,, M. A. Mir,, Z. A. Rather, and K. M. Bhat,. "Micrografting for fruit crop improvement." African Journal of Biotechnology 13, no. 25 (2014): 2474–83. http://dx.doi.org/10.5897/ajb2013.13602.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Heffner, Elliot L., Mark E. Sorrells, and Jean-Luc Jannink. "Genomic Selection for Crop Improvement." Crop Science 49, no. 1 (2009): 1–12. http://dx.doi.org/10.2135/cropsci2008.08.0512.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

GOODMAN, R. M., H. HAUPTLI, A. CROSSWAY, and V. C. KNAUF. "Gene Transfer in Crop Improvement." Science 236, no. 4797 (1987): 48–54. http://dx.doi.org/10.1126/science.236.4797.48.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Sane, P. V., and U. C. Lavania. "Innovative Approaches to Crop Improvement." Proceedings of the Indian National Science Academy 80, no. 1 (2014): 17. http://dx.doi.org/10.16943/ptinsa/2014/v80i1/55082.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

McCouch, Susan. "Wild Alleles for Crop Improvement." Nature Biotechnology 17, S5 (1999): 32. http://dx.doi.org/10.1038/70392.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Pauls, K. P. "Plant biotechnology for crop improvement." Biotechnology Advances 13, no. 4 (1995): 673–93. http://dx.doi.org/10.1016/0734-9750(95)02010-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Cramer, Rainer, Laurence Bindschedler, and Ganesh Agrawal. "Plant Proteomics in Crop Improvement." PROTEOMICS 13, no. 12-13 (2013): 1771. http://dx.doi.org/10.1002/pmic.201370104.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Cortés, Andrés J., María Ángeles Castillejo, and Roxana Yockteng. "‘Omics’ Approaches for Crop Improvement." Agronomy 13, no. 5 (2023): 1401. http://dx.doi.org/10.3390/agronomy13051401.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Murín, Gustáv, and Karol Mičieta. "Improvement of Crop Production by Means of a Storage Effect." International Journal of Environmental and Agriculture Research 3, no. 5 (2017): 12–25. http://dx.doi.org/10.25125/agriculture-journal-ijoear-apr-2017-26.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Goldman, I. L. "Principles of Crop Improvement. 2nd ed." HortTechnology 10, no. 3 (2000): 638b—640. http://dx.doi.org/10.21273/horttech.10.3.638b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Ward, Richard W. "Principles of Crop Improvement, 2nd Edition." Crop Science 40, no. 2 (2000): 562–63. http://dx.doi.org/10.2135/cropsci2000.0006br.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Kim, Hyeran, Sang-Tae Kim, Sang-Gyu Kim, and Jin-Soo Kim. "Targeted Genome Editing for Crop Improvement." Plant Breeding and Biotechnology 3, no. 4 (2015): 283–90. http://dx.doi.org/10.9787/pbb.2015.3.4.283.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Messina, Carlos D., Fred van Eeuwijk, Tom Tang, et al. "Crop Improvement for Circular Bioeconomy Systems." Journal of the ASABE 65, no. 3 (2022): 491–504. http://dx.doi.org/10.13031/ja.14912.

Texto completo
Resumen
HighlightsWe describe and demonstrate a multidimensional framework to integrate environmental and genomic predictors to enable crop improvement for a circular bioeconomy.A model training procedure based on multiple phenotypes is shown to improve predictive skill.The decision set comprised of model outputs can inform selection for both productivity and circularity metrics.Abstract. Contemporary agricultural systems are poised to transition from linear to circular, adopting concepts of recycling, repurposing, and regeneration. This transition will require changing crop improvement objectives to
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Messina, Carlos D., Fred van Eeuwijk, Tom Tang, et al. "Crop Improvement for Circular Bioeconomy Systems." Journal of the ASABE 65, no. 3 (2022): 491–504. http://dx.doi.org/10.13031/ja.14912.

Texto completo
Resumen
HighlightsWe describe and demonstrate a multidimensional framework to integrate environmental and genomic predictors to enable crop improvement for a circular bioeconomy.A model training procedure based on multiple phenotypes is shown to improve predictive skill.The decision set comprised of model outputs can inform selection for both productivity and circularity metrics.Abstract. Contemporary agricultural systems are poised to transition from linear to circular, adopting concepts of recycling, repurposing, and regeneration. This transition will require changing crop improvement objectives to
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Temesgen, Begna. "Speed breeding to accelerate crop improvement." International Journal of Agricultural Science and Food Technology 8, no. 2 (2022): 178–86. http://dx.doi.org/10.17352/2455-815x.000161.

Texto completo
Resumen
Global food security has become a major issue as the human population grows and the environment changes, with the current rate of improvement of several important crops inadequate to meet future demand. Crop plants have extended generation times, which contributes to the slow rate of progress. However, speed breeding has revolutionized the entire world by reducing generation time and speeding up breeding and research programs to improve crop varieties. In the absence of an integrated pre-breeding program, breeding new and high-performing cultivars with market-preferred traits can take more tha
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Soriano, Jose Miguel. "Molecular Marker Technology for Crop Improvement." Agronomy 10, no. 10 (2020): 1462. http://dx.doi.org/10.3390/agronomy10101462.

Texto completo
Resumen
Since the 1980s, agriculture and plant breeding have changed with the development of molecular marker technology. In recent decades, different types of molecular markers have been used for different purposes: mapping, marker-assisted selection, characterization of genetic resources, etc. These have produced effective genotyping, but the results have been costly and time-consuming, due to the small number of markers that could be tested simultaneously. Recent advances in molecular marker technologies such as the development of high-throughput genotyping platforms, genotyping by sequencing, and
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!