Artículos de revistas sobre el tema "Crowd dataset"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Crowd dataset".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Bhuiyan, Roman, Junaidi Abdullah, Noramiza Hashim, et al. "Deep Dilated Convolutional Neural Network for Crowd Density Image Classification with Dataset Augmentation for Hajj Pilgrimage." Sensors 22, no. 14 (2022): 5102. http://dx.doi.org/10.3390/s22145102.
Texto completoBhuiyan, Md Roman, Junaidi Abdullah, Noramiza Hashim, et al. "A deep crowd density classification model for Hajj pilgrimage using fully convolutional neural network." PeerJ Computer Science 8 (March 25, 2022): e895. http://dx.doi.org/10.7717/peerj-cs.895.
Texto completoAlafif, Tarik, Anas Hadi, Manal Allahyani, et al. "Hybrid Classifiers for Spatio-Temporal Abnormal Behavior Detection, Tracking, and Recognition in Massive Hajj Crowds." Electronics 12, no. 5 (2023): 1165. http://dx.doi.org/10.3390/electronics12051165.
Texto completoRen, Guoyin, Xiaoqi Lu, and Yuhao Li. "Research on Local Counting and Object Detection of Multiscale Crowds in Video Based on Time-Frequency Analysis." Journal of Sensors 2022 (August 12, 2022): 1–19. http://dx.doi.org/10.1155/2022/7247757.
Texto completoBHUIYAN, MD ROMAN, Dr Junaidi Abdullah, Dr Noramiza Hashim, et al. "Crowd density estimation using deep learning for Hajj pilgrimage video analytics." F1000Research 10 (January 14, 2022): 1190. http://dx.doi.org/10.12688/f1000research.73156.2.
Texto completoBHUIYAN, MD ROMAN, Dr Junaidi Abdullah, Dr Noramiza Hashim, et al. "Crowd density estimation using deep learning for Hajj pilgrimage video analytics." F1000Research 10 (November 24, 2021): 1190. http://dx.doi.org/10.12688/f1000research.73156.1.
Texto completoWu, Junfeng, Zhiyang Li, Wenyu Qu, and Yizhi Zhou. "One Shot Crowd Counting with Deep Scale Adaptive Neural Network." Electronics 8, no. 6 (2019): 701. http://dx.doi.org/10.3390/electronics8060701.
Texto completoKaya, Abdil, Stijn Denis, Ben Bellekens, Maarten Weyn, and Rafael Berkvens. "Large-Scale Dataset for Radio Frequency-Based Device-Free Crowd Estimation." Data 5, no. 2 (2020): 52. http://dx.doi.org/10.3390/data5020052.
Texto completoShao, Yanhua, Wenfeng Li, Hongyu Chu, Zhiyuan Chang, Xiaoqiang Zhang, and Huayi Zhan. "A Multitask Cascading CNN with MultiScale Infrared Optical Flow Feature Fusion-Based Abnormal Crowd Behavior Monitoring UAV." Sensors 20, no. 19 (2020): 5550. http://dx.doi.org/10.3390/s20195550.
Texto completoZhang, Cong, Kai Kang, Hongsheng Li, Xiaogang Wang, Rong Xie, and Xiaokang Yang. "Data-Driven Crowd Understanding: A Baseline for a Large-Scale Crowd Dataset." IEEE Transactions on Multimedia 18, no. 6 (2016): 1048–61. http://dx.doi.org/10.1109/tmm.2016.2542585.
Texto completoGong, Vincent X., Winnie Daamen, Alessandro Bozzon, and Serge P. Hoogendoorn. "Estimate Sentiment of Crowds from Social Media during City Events." Transportation Research Record: Journal of the Transportation Research Board 2673, no. 11 (2019): 836–50. http://dx.doi.org/10.1177/0361198119846461.
Texto completoCao, Houwei, David G. Cooper, Michael K. Keutmann, Ruben C. Gur, Ani Nenkova, and Ragini Verma. "CREMA-D: Crowd-Sourced Emotional Multimodal Actors Dataset." IEEE Transactions on Affective Computing 5, no. 4 (2014): 377–90. http://dx.doi.org/10.1109/taffc.2014.2336244.
Texto completoMasud, Mehedi, Parminder Singh, Gurjot Singh Gaba, et al. "CROWD: Crow Search and Deep Learning based Feature Extractor for Classification of Parkinson’s Disease." ACM Transactions on Internet Technology 21, no. 3 (2021): 1–18. http://dx.doi.org/10.1145/3418500.
Texto completoXiang, Jun, and Na Liu. "Crowd Density Estimation Method Using Deep Learning for Passenger Flow Detection System in Exhibition Center." Scientific Programming 2022 (February 18, 2022): 1–9. http://dx.doi.org/10.1155/2022/1990951.
Texto completoMiao, Yunqi, Zijia Lin, Guiguang Ding, and Jungong Han. "Shallow Feature Based Dense Attention Network for Crowd Counting." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 07 (2020): 11765–72. http://dx.doi.org/10.1609/aaai.v34i07.6848.
Texto completoBhuiyan, Md Roman, Junaidi Abdullah, Noramiza Hashim, et al. "Hajj pilgrimage video analytics using CNN." Bulletin of Electrical Engineering and Informatics 10, no. 5 (2021): 2598–606. http://dx.doi.org/10.11591/eei.v10i5.2361.
Texto completoLarson, Martha, Mohammad Soleymani, Maria Eskevich, Pavel Serdyukov, Roeland Ordelman, and Gareth Jones. "The Community and the Crowd: Multimedia Benchmark Dataset Development." IEEE MultiMedia 19, no. 3 (2012): 15–23. http://dx.doi.org/10.1109/mmul.2012.27.
Texto completoTahira, Memoona, Sobas Mehboob, Anis U. Rahman, and Omar Arif. "CrowdFix: An Eyetracking Dataset of Real Life Crowd Videos." IEEE Access 7 (2019): 179002–9. http://dx.doi.org/10.1109/access.2019.2956840.
Texto completoZhang, Jun, Jiaze Liu, and Zhizhong Wang. "Convolutional Neural Network for Crowd Counting on Metro Platforms." Symmetry 13, no. 4 (2021): 703. http://dx.doi.org/10.3390/sym13040703.
Texto completoMazzeo, Pier Luigi, Riccardo Contino, Paolo Spagnolo, et al. "MH-MetroNet—A Multi-Head CNN for Passenger-Crowd Attendance Estimation." Journal of Imaging 6, no. 7 (2020): 62. http://dx.doi.org/10.3390/jimaging6070062.
Texto completoIkeda, Kazushi, and Keiichiro Hoashi. "Utilizing Crowdsourced Asynchronous Chat for Efficient Collection of Dialogue Dataset." Proceedings of the AAAI Conference on Human Computation and Crowdsourcing 6 (June 15, 2018): 60–69. http://dx.doi.org/10.1609/hcomp.v6i1.13321.
Texto completoFerryman, James, and Anna-Louise Ellis. "Performance evaluation of crowd image analysis using the PETS2009 dataset." Pattern Recognition Letters 44 (July 2014): 3–15. http://dx.doi.org/10.1016/j.patrec.2014.01.005.
Texto completoGuo, Chunsheng, Hanwen Lin, Zhen He, Xiaohu Shu, and Xuguang Zhang. "Crowd Abnormal Event Detection Based on Sparse Coding." International Journal of Humanoid Robotics 16, no. 04 (2019): 1941005. http://dx.doi.org/10.1142/s0219843619410056.
Texto completoCoviello, Luca, Marco Cristoforetti, Giuseppe Jurman, and Cesare Furlanello. "GBCNet: In-Field Grape Berries Counting for Yield Estimation by Dilated CNNs." Applied Sciences 10, no. 14 (2020): 4870. http://dx.doi.org/10.3390/app10144870.
Texto completoBilal, Muhammad, Mohsen Marjani, Ibrahim Abaker Targio Hashem, Abdullah Gani, Misbah Liaqat, and Kwangman Ko. "Profiling and Predicting the Cumulative Helpfulness (Quality) of Crowd-Sourced Reviews." Information 10, no. 10 (2019): 295. http://dx.doi.org/10.3390/info10100295.
Texto completoLuo, Hongling, Jun Sang, Weiqun Wu, et al. "A High-Density Crowd Counting Method Based on Convolutional Feature Fusion." Applied Sciences 8, no. 12 (2018): 2367. http://dx.doi.org/10.3390/app8122367.
Texto completoShati, Narjis Mezaal. "Anomalous Behavior Detection Using the Geometrical Complex Moments in Crowd Scenes of Smart Surveillance Systems." Al-Mustansiriyah Journal of Science 28, no. 3 (2018): 174. http://dx.doi.org/10.23851/mjs.v28i3.35.
Texto completoZhang, Jun, Gaoyi Zhu, and Zhizhong Wang. "Multi-Column Atrous Convolutional Neural Network for Counting Metro Passengers." Symmetry 12, no. 4 (2020): 682. http://dx.doi.org/10.3390/sym12040682.
Texto completoLalit, Ruchika, and Ravindra Kumar Purwar. "Crowd Abnormality Detection Using Optical Flow and GLCM-Based Texture Features." Journal of Information Technology Research 15, no. 1 (2022): 1–15. http://dx.doi.org/10.4018/jitr.2022010110.
Texto completoGretz, Shai, Roni Friedman, Edo Cohen-Karlik, et al. "A Large-Scale Dataset for Argument Quality Ranking: Construction and Analysis." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 05 (2020): 7805–13. http://dx.doi.org/10.1609/aaai.v34i05.6285.
Texto completoSetti, Francesco, Davide Conigliaro, Paolo Rota, et al. "The S-Hock dataset: A new benchmark for spectator crowd analysis." Computer Vision and Image Understanding 159 (June 2017): 47–58. http://dx.doi.org/10.1016/j.cviu.2017.01.003.
Texto completoAbir, Intiaz, Hasan Firdaus Mohd Zaki, and Azhar Mohd Ibrahim. "EVALUATION OF SIMULTANEOUS IDENTITY, AGE AND GENDER RECOGNITION FOR CROWD FACE MONITORING." ASEAN Engineering Journal 13, no. 1 (2023): 11–20. http://dx.doi.org/10.11113/aej.v13.17612.
Texto completoKölle, M., V. Walter, S. Schmohl, and U. Soergel. "HYBRID ACQUISITION OF HIGH QUALITY TRAINING DATA FOR SEMANTIC SEGMENTATION OF 3D POINT CLOUDS USING CROWD-BASED ACTIVE LEARNING." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-2-2020 (August 3, 2020): 501–8. http://dx.doi.org/10.5194/isprs-annals-v-2-2020-501-2020.
Texto completoValeri, Beatrice, Shady Elbassuoni, and Sihem Amer-Yahia. "Acquiring Reliable Ratings from the Crowd." Proceedings of the AAAI Conference on Human Computation and Crowdsourcing 3 (September 23, 2015): 40–41. http://dx.doi.org/10.1609/hcomp.v3i1.13261.
Texto completoGhadi, Yazeed Yasin, Israr Akhter, Hanan Aljuaid, et al. "Extrinsic Behavior Prediction of Pedestrians via Maximum Entropy Markov Model and Graph-Based Features Mining." Applied Sciences 12, no. 12 (2022): 5985. http://dx.doi.org/10.3390/app12125985.
Texto completoRos-Candeira, Andrea, Ricardo Moreno-Llorca, Domingo Alcaraz-Segura, Francisco Javier Bonet-García, and Ana Sofia Vaz. "Social media photo content for Sierra Nevada: a dataset to support the assessment of cultural ecosystem services in protected areas." Nature Conservation 38 (March 13, 2020): 1–12. http://dx.doi.org/10.3897/natureconservation.38.38325.
Texto completoRos-Candeira, Andrea, Ricardo Moreno-Llorca, Domingo Alcaraz-Segura, Francisco Javier Bonet-García, and Ana Sofia Vaz. "Social media photo content for Sierra Nevada: a dataset to support the assessment of cultural ecosystem services in protected areas." Nature Conservation 38 (March 13, 2020): 1–12. http://dx.doi.org/10.3897/neobiota.38.38325.
Texto completoBurtsev, Mikhail, and Varvara Logacheva. "Conversational Intelligence Challenge: Accelerating Research with Crowd Science and Open Source." AI Magazine 41, no. 3 (2020): 18–27. http://dx.doi.org/10.1609/aimag.v41i3.5324.
Texto completoN, Sandeep, Ragul N.S, Nikil Dhas P, and Vaishnavi V. "Congestion Control early warning system using Deep Learning." International Journal of Computer Communication and Informatics 3, no. 2 (2021): 35–50. http://dx.doi.org/10.34256/ijcci2124.
Texto completoPetrén Bach Hansen, Victor, and Anders Søgaard. "What Do You Mean ‘Why?’: Resolving Sluices in Conversations." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 05 (2020): 7887–94. http://dx.doi.org/10.1609/aaai.v34i05.6295.
Texto completoZhu, Rui, Kangning Yin, Hang Xiong, Hailian Tang, and Guangqiang Yin. "Masked Face Detection Algorithm in the Dense Crowd Based on Federated Learning." Wireless Communications and Mobile Computing 2021 (October 4, 2021): 1–8. http://dx.doi.org/10.1155/2021/8586016.
Texto completoStylianou, Abby, Hong Xuan, Maya Shende, Jonathan Brandt, Richard Souvenir, and Robert Pless. "Hotels-50K: A Global Hotel Recognition Dataset." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 726–33. http://dx.doi.org/10.1609/aaai.v33i01.3301726.
Texto completoPatterson, Genevieve, Grant Van Horn, Serge Belongie, Pietro Perona, and James Hays. "Tropel: Crowdsourcing Detectors with Minimal Training." Proceedings of the AAAI Conference on Human Computation and Crowdsourcing 3 (September 23, 2015): 150–59. http://dx.doi.org/10.1609/hcomp.v3i1.13224.
Texto completoMayo, Hugo, Alastair Shipman, Daniele Giunchi, Riccardo Bovo, Anthony Steed, and Thomas Heinis. "VR Toolkit for Identifying Group Characteristics." Collective Dynamics 6 (February 3, 2022): 1. http://dx.doi.org/10.17815/cd.2021.119.
Texto completoCsönde, Gergely, Yoshihide Sekimoto, and Takehiro Kashiyama. "Crowd Counting with Semantic Scene Segmentation in Helicopter Footage." Sensors 20, no. 17 (2020): 4855. http://dx.doi.org/10.3390/s20174855.
Texto completoHameed, Mazhar, Fengbao Yang, Muhammad Imran Ghafoor, et al. "IOTA-Based Mobile Crowd Sensing: Detection of Fake Sensing Using Logit-Boosted Machine Learning Algorithms." Wireless Communications and Mobile Computing 2022 (April 23, 2022): 1–15. http://dx.doi.org/10.1155/2022/6274114.
Texto completoAbdullah, Faisal, Yazeed Yasin Ghadi, Munkhjargal Gochoo, Ahmad Jalal, and Kibum Kim. "Multi-Person Tracking and Crowd Behavior Detection via Particles Gradient Motion Descriptor and Improved Entropy Classifier." Entropy 23, no. 5 (2021): 628. http://dx.doi.org/10.3390/e23050628.
Texto completoHe, Eric, Fan Bai, Curtis Hay, Jinzhu Chen, and Vijayakumar Bhagavatula. "A Map Inference Approach Using Signal Processing from Crowd-sourced GPS Data." ACM Transactions on Spatial Algorithms and Systems 7, no. 2 (2021): 1–23. http://dx.doi.org/10.1145/3431785.
Texto completoNie, Pei, Cien Fan, Lian Zou, Liqiong Chen, and Xiaopeng Li. "Crowd Counting Guided by Attention Network." Information 11, no. 12 (2020): 567. http://dx.doi.org/10.3390/info11120567.
Texto completoCourty, Nicolas, Pierre Allain, Clement Creusot, and Thomas Corpetti. "Using the Agoraset dataset: Assessing for the quality of crowd video analysis methods." Pattern Recognition Letters 44 (July 2014): 161–70. http://dx.doi.org/10.1016/j.patrec.2014.01.004.
Texto completo