Literatura académica sobre el tema "Crystals Apatite"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Crystals Apatite".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Crystals Apatite"
Ren, Fu Zeng y Yang Leng. "Carbonated Apatite, Type-A or Type-B?" Key Engineering Materials 493-494 (octubre de 2011): 293–97. http://dx.doi.org/10.4028/www.scientific.net/kem.493-494.293.
Texto completoHong, S. I., K. H. Lee, M. E. Outslay y D. H. Kohn. "Ultrastructural analyses of nanoscale apatite biomimetically grown on organic template". Journal of Materials Research 23, n.º 2 (febrero de 2008): 478–85. http://dx.doi.org/10.1557/jmr.2008.0051.
Texto completoShimoda, S., T. Aoba, E. C. Moreno y Y. Miake. "Effect of Solution Composition on Morphological and Structural Features of Carbonated Calcium Apatites". Journal of Dental Research 69, n.º 11 (noviembre de 1990): 1731–40. http://dx.doi.org/10.1177/00220345900690110501.
Texto completoIshikawa, K., E. D. Eanes y M. S. Tung. "The Effect of Supersaturation on Apatite Crystal Formation in Aqueous Solutions at Physiologic pH and Temperature". Journal of Dental Research 73, n.º 8 (agosto de 1994): 1462–69. http://dx.doi.org/10.1177/00220345940730081101.
Texto completoPARK, JONGEE y ABDULLAH OZTURK. "BIOACTIVITY OF APATITE–WOLLASTONITE GLASS-CERAMICS PRODUCED BY MELTING CASTING". Surface Review and Letters 20, n.º 01 (febrero de 2013): 1350010. http://dx.doi.org/10.1142/s0218625x13500108.
Texto completoShevchyk, A. O., I. G. Svidrak, N. T. Bilyk y I. V. Poberezhska. "Crystallomorphological and physical properties of apatite from carbonatites". Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 23, n.º 95 (9 de abril de 2021): 25–32. http://dx.doi.org/10.32718/nvlvet-f9505.
Texto completoSimmelink, J. W. y S. C. Abrigo. "Crystal Morphology and Decalcification Patterns Compared in Rat and Human Enamel and Synthetic Hydroxyapatite". Advances in Dental Research 3, n.º 2 (septiembre de 1989): 241–48. http://dx.doi.org/10.1177/08959374890030022501.
Texto completoDeng, Chun Lin, Ying Jun Wang, Yao Wu, Xin Long Wang, Xiao Feng Chen, Hua De Zheng, Ji Yong Chen y Xing Dong Zhang. "Apatite Formation on Porous HA/TCP in Animals’ Serums In Vitro". Key Engineering Materials 330-332 (febrero de 2007): 955–58. http://dx.doi.org/10.4028/www.scientific.net/kem.330-332.955.
Texto completoRey, Christian, Christèle Combes, Christophe Drouet y Hocine Sfihi. "Chemical Diversity of Apatites". Advances in Science and Technology 49 (octubre de 2006): 27–36. http://dx.doi.org/10.4028/www.scientific.net/ast.49.27.
Texto completoMészárosová, Noemi, Roman Skála, Šárka Matoušková, Petr Mikysek, Jakub Plášil y Ivana Císařová. "Hydrothermal-to-metasomatic overprint of the neovolcanic rocks evidenced by composite apatite crystals: a case study from the Maglovec Hill, Slanské vrchy Mountains, Slovakia". Geologica Carpathica 69, n.º 5 (1 de octubre de 2018): 439–52. http://dx.doi.org/10.1515/geoca-2018-0025.
Texto completoTesis sobre el tema "Crystals Apatite"
Rulis, Paul Michael Ching Wai-Yim. "Computational studies of bioceramic crystals & related materials". Diss., UMK access, 2005.
Buscar texto completo"A dissertation in physics and computer networking." Advisor: Wai-Yim Ching. Typescript. Vita. Title from "catalog record" of the print edition Description based on contents viewed March 12, 2007. Includes bibliographical references (leaves 256-267). Online version of the print edition.
Kockan, Umit. "Prediction Of Hexagonal Lattice Parameters Of Stoichiometric And Non-stoichiometric Apatites By Artificial Neural Networks". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610311/index.pdf.
Texto completoB: As+5, Cr+5, P5+, V5+, Si+4
and C: F-, Cl-, OH-, Br-1 were predicted from their elemental ionic radii by artificial neural networks techniques. Using artificial neural network techniques, prediction models of lattice parameters a, c and hexagonal lattice volumes were developed. Various learning methods, neuron numbers and activation functions were used to predict lattice parameters of apatites. Best results were obtained with Bayesian regularization method with four neurons in the hidden layer with &lsquo
tansig&rsquo
activation function and one neuron in the output layer with &lsquo
purelin&rsquo
function. Accuracy of prediction was higher than 98% for the training dataset and average errors for outputs were less than 1% for dataset with multiple substitutions and different ionic charges at each site. Non-stoichiometric apatites were predicted with decreased accuracy. Formulas were derived by using ionic radii of apatites for lattice parameters a and c.
Luo, Yun. "Crystal Chemistry of U and Th in Apatite". Miami University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=miami1272635731.
Texto completoKelly, Sean R. "STRUCTURAL MECHANISMS OF (POLY)ANION SOLID SOLUTION IN SYNTHETIC OH-Cl BINARY APATITE AND NATURAL F-OH-Cl TERNARY APATITE". Miami University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=miami1480963439051542.
Texto completoVan, Hoose Ashley Elizabeth. "Apatite Crystal Populations of the 1991 Mount Pinatubo Eruption, Philippines: Implications for the Generation of High Sulfur Apatite in Silicic Melts". PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/123.
Texto completoBorkiewicz, Olaf J. "Formation of Precursor Calcium Phosphate Phases During Crystal Growth of Apatite and Their Role on the Sequestration of Heavy Metals and Radionuclides". Miami University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=miami1292008822.
Texto completoChappell, Joseph Caleb. "CHEMICAL AND STRUCTURAL CHARACTERIZATION OF FLUORAPATITE FROM THE POUDRETTE PEGMATITE, MONT SAINT-HILAIRE, QUEBEC, CANADA". Miami University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=miami1547221806721972.
Texto completoViswanath, B. "Understanding The Growth And Properties Of Functional Inorganic Nanostructures : An Interfacial Approach". Thesis, 2008. http://hdl.handle.net/2005/785.
Texto completoZheng-WeiChen y 陳正威. "Crystal Structure and Electrical Properties of La/Ge Based Apatite Ionic Conductors". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/xgnays.
Texto completo國立成功大學
資源工程學系
104
Apatite structures have the highest conductivity of all solid oxide fuel cell (SOFC) electrolytes because of their conduction mechanism. Among all apatite-type electrolytes, lanthanum germanates possess the highest conductivity. To observe the relationship between composition, crystal structure, and ionic conductivity, lanthanum germanates (La10-xGe6O27-1.5x, x = 0, 0.25, 0.5, 0.75, 1) were synthesized using the solid-state method. The XRD pattern showed that a single phase could be obtained for all compositions calcined at 1200°C/3 h. Crystal structure analysis using the Rietveld refinement approach indicated that x = 0.5, 0.75, 1 has a hexagonal structure (P63/m, #176) and x = 0, 0.25 has a triclinic structure (Pī, #2). These results show that five migration pathways could be established, assuming the interstitial oxygen passes the larger opening within the crystal structure. These five migration pathways are sinusoid-like three-dimensional routes along the c-axis. Since x = 0, 0.25 transforms to a triclinic phase, the migration opening becomes narrower and lowers the ionic conductivity. The Arrhenius plot of x = 0.25 demonstrated a sharp decrease in activation energy, indicating that the phase transition from triclinic to hexagonal occurred at around 650°C.
Yu-HsuanLin y 林鈺烜. "Crystal Structure and Ionic Conductivity of La9.5Ge6-xNixO26.25-x Electrolytes of Apatite Structure". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/71960743327093420609.
Texto completo國立成功大學
資源工程學系
103
Apatite materials based on lanthanum germanates and doped with nickel (La9.5Ge6−xNixO26.25−x, x = 0, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1) were prepared to synthesize a single phase through solid-state method. XRD patterns indicate that the second phase (LaNiO3) existed when x = 0.25. Accordingly, the limit of solid solubility (x) was approximately 0.25. A single phase could be obtained when the compositional range was 0 ≤ x ≤ 0.25. Crystal structure analysis refined through the Rietveld method distinctly showed that the sample when x = 0 has a hexagonal structure (P63/m). From this result, four possible migration pathways may be established if the interstitial oxygen passes through the largest region in the entire crystal structure. These four pathways are screwlike, three-dimensional routes around the c axis for nickel-doped samples, which have triclinic structure. Because of the complicated structure, migration of interstitial oxygen becomes very difficult. The relationship between the decrease in conductivity and the decrease in interstitial oxygens may be explained by Raman spectroscopy.
Libros sobre el tema "Crystals Apatite"
(Editor), Robert L. Wortmann, H. Ralph Schumacher (Editor), Michael A. Becker (Editor) y Lawrence M. Ryan (Editor), eds. Crystal-Induced Arthropathies: Gout, Pseudogout and Apatite-Associated Syndromes. Informa Healthcare, 2006.
Buscar texto completoMcConnell, Duncan. Apatite: "Its Crystal Chemistry, Mineralogy, Utilization, and Geologic and Biologic Occurrences". Springer, 2012.
Buscar texto completoDai, Yongshan. X-ray crystallographic studies: Part I, Crystal structures and crystal chemistry of lead-bearing apatites in the vanadinite-pyromorphite-mimetite ternary system, and, Part II, A preliminary study on thermally-induced al-si disorder in the crystal structure of sillimanite. 1990.
Buscar texto completoDai, Yongshan. X-ray crystallographic studies: Part I, Crystal structures and crystal chemistry of lead-bearing apatites in the vanadinite-pyromorphite-mimetite ternary system, and, Part II, A preliminary study on thermally-induced al-si disorder in the crystal structure of sillimanite. 1990.
Buscar texto completoCapítulos de libros sobre el tema "Crystals Apatite"
Riese, R., J. Wiessner, J. Kleinman, G. Mandel y N. Mandel. "Binding of Calcium Oxalate and Apatite Crystals to Renal Papillary Collecting Tubule Cells in Primary Culture". En Urolithiasis, 75–78. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-0873-5_24.
Texto completoZhou, Hong Hui, Hui Li y Ling Hong Guo. "Molecular and Crystal Structure Characterization of Calcium-Deficient Apatite". En Key Engineering Materials, 119–22. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.119.
Texto completoElliott, J. C. "Structure, Crystal Chemistry and Density of Enamel Apatites". En Ciba Foundation Symposium 205 - Dental Enamel, 54–72. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470515303.ch5.
Texto completoSuetsugu, Yasushi, Toshiyuki Ikoma, Masanori Kikuchi y Junzo Tanaka. "Single Crystal Growth and Structure Analysis of AB-Type Carbonate Apatite". En Advanced Biomaterials VI, 525–28. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-967-9.525.
Texto completoHughes, John M. y John Rakovan. "1. The Crystal Structure of Apatite, Ca5(PO4)3(F,OH,Cl)". En Phosphates, editado por Matthew J. Kohn, John Rakovan y John M. Hughes, 1–12. Berlin, Boston: De Gruyter, 2002. http://dx.doi.org/10.1515/9781501509636-004.
Texto completoTaki, A., Hideyuki Yoshimura y Mamoru Aizawa. "Microstructural Observation of Calcium-Deficient Single Crystal Apatite Fibers and Phase Changes during Heating". En Bioceramics 20, 147–50. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-457-x.147.
Texto completoSprio, Simone, Gian Carlo Celotti, Elena Landi y Anna Tampieri. "Activation of Hydroxyapatite Crystal Growth on the Surface of Biomimetic Synthetic Apatites through Electrical Polarization". En Bioceramics 17, 521–24. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-961-x.521.
Texto completoRoddy, Edward y Michael Doherty. "Crystal-related arthropathies". En Oxford Textbook of Medicine, editado por Richard A. Watts, 4482–94. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0451.
Texto completoMonma, H., Y. Kitami y M. Tsutsumi. "Characterization of electrolytically prepared calcium-deficient apatite single crystals". En Advanced Materials '93, 781–84. Elsevier, 1994. http://dx.doi.org/10.1016/b978-0-444-81991-8.50190-4.
Texto completoMoore, Robert C., Jim Szecsody, Michael J. Truex, Katheryn B. Helean, Ranko Bontchev y Calvin Ainsworth. "Formation of Nanosized Apatite Crystals in Sediment for Containment and Stabilization of Contaminants". En Environmental Applications of Nanomaterials, 89–108. IMPERIAL COLLEGE PRESS, 2012. http://dx.doi.org/10.1142/9781848168053_0004.
Texto completoActas de conferencias sobre el tema "Crystals Apatite"
KAWAGOE, D., K. IOKU, H. FUJIMORI y S. GOTO. "TRANSPARENT APATITE CERAMICS PREPARED FROM APATITE FINE CRYSTALS SYNTHESIZED HYDROTHERMALLY". En Proceedings of the Seventh International Symposium on Hydrothermal Reactions. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705228_0015.
Texto completoDeLoach, L. D., S. A. Payne, W. F. Krupke, L. K. Smith, W. L. Kway, J. B. Tassano y B. H. T. Chai. "Laser and Spectroscopic Properties of Yb-Doped Apatite Crystals". En Advanced Solid State Lasers. Washington, D.C.: OSA, 1993. http://dx.doi.org/10.1364/assl.1993.lm3.
Texto completoPayne, Stephen A., Laura D. DeLoach, Larry K. Smith, William F. Krupke, Bruce H. T. Chai y George Loutts. "New Ytterbium-Doped Apatite Crystals for Flexible Laser Design". En Advanced Solid State Lasers. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/assl.1994.yl3.
Texto completoDeuerling, Justin M., Weimin Yue, Alejandro A. Espinoza y Ryan K. Roeder. "Specimen Specific Multiscale Model for the Anisotropic Elastic Properties of Human Cortical Bone Tissue". En ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-175240.
Texto completoNoginov, M. A., G. B. Loutts, C. E. Bonner, S. Taylor, S. Stefanos, R. M. Wynne, B. A. Lasley, A. M. Anderson y J. C. Wang. "Bridging the gap between Yb3+ emission and Nd3+ emission in apatite crystals". En Advanced Solid State Lasers. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/assl.1999.wb16.
Texto completoNoginov, Mikhail A., George B. Loutts, B. Lucas, D. Fider, Patrick T. Higgins, A. Truong, Natalia E. Noginova, Norman P. Barnes y Stefan Kueck. "Crystal growth and spectroscopic studies of Nd-doped apatite crystals as active media for 944.11-nm laser". En Symposium on High-Power Lasers and Applications, editado por Richard Scheps. SPIE, 2000. http://dx.doi.org/10.1117/12.382788.
Texto completoBonich, Mariana B., Scott D. Samson, James R. Metcalf y Rebecca M. Flowers. "THERMOCHRONOLOGICAL AND ISOTOPIC CHARACTERIZATION OF SINGLE APATITE CRYSTALS: FROM MAGMA SOURCE TO EXHUMATION". En GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-284872.
Texto completoChaikina, Marina. "Structural and phase transformation of apatite and quartz in the indentation process single crystals". En INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS OF MULTILEVEL SYSTEMS 2014. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4898888.
Texto completoTampieri, A., M. Sandri, T. D’Alessandro, M. Banobre-Lopez y J. Rivas. "Innovative Biomimetic Hybrid Composites to Repair Multifunctional Anatomical Region". En ASME 2010 5th Frontiers in Biomedical Devices Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/biomed2010-32059.
Texto completoDeymier-Black, Alix C., Andrea G. Schwartz, Zhonghou Cai, Guy M. Genin y Stavros Thomopoulos. "Mineral Morphology at the Tendon-to-Bone Interface Observed via High Energy X-Ray Diffraction". En ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14731.
Texto completoInformes sobre el tema "Crystals Apatite"
Payne, S. A., L. D. DeLoach, L. K. Smith, W. F. Krupke, B. H. T. Chai y G. Loutts. New ytterbium-doped apatite crystals for flexible laser design. Office of Scientific and Technical Information (OSTI), marzo de 1994. http://dx.doi.org/10.2172/10166773.
Texto completoVan Hoose, Ashley. Apatite Crystal Populations of the 1991 Mount Pinatubo Eruption, Philippines: Implications for the Generation of High Sulfur Apatite in Silicic Melts. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.123.
Texto completo