Libros sobre el tema "Cubic Spline"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 22 mejores mejores libros para su investigación sobre el tema "Cubic Spline".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Hastie, Trevor. Generalized additive models, cubic splines and personalized likelihood. Toronto: University of Toronto, Dept. of Statistics, 1987.
Buscar texto completoPapamichael, Nicholas. An O(h6) cubic spline interpolating procedure for harmonic functions. Uxbridge, Middx: Department of Mathematics and Statistics, Brunel University, 1989.
Buscar texto completoBrunnett, Guido. Elastic curves on the sphere. Monterey, Calif: Naval Postgraduate School, 1992.
Buscar texto completoPapamichael, N. A class of cubic and quintic spline modified collocation methods for the solution of two-point boundary value problems. Uxbridge: Brunel University, Department of Mathematics and Statistics, 1987.
Buscar texto completoKnott, Gary D. Interpolating Cubic Splines. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1320-8.
Texto completoPollock, S. Smoothing with cubic splines. London: London University, Queen Mary and Westfield College, Department of Economics, 1993.
Buscar texto completoLiu, Chun. Geometric control of rational cubic B-splines. Birmingham: University of Birmingham, 1998.
Buscar texto completoSarfraz, Muhammad. The representation of curves and surfaces in computer aided geometric design using rational cubic splines. Uxbridge: Brunel University, 1990.
Buscar texto completoSoares, Maria Joana. A posteriori corrections for cubic and quintic interpolating splines with applications to the solution of two-point boundary value problems. Uxbridge: Brunel University, 1986.
Buscar texto completoTuen, Tuen. Characterization of the best approximations by classic cubic splines. 1990.
Buscar texto completoZeng, Zheng. Multigrid and cubic spline collocation methods for advection equations. 2005.
Buscar texto completoZeng, Zheng. Multigrid and cubic spline collocation methods for advection equations. 2005.
Buscar texto completoReview of three cubic spline methods in graphics applications. [Denver, Colo.?]: U.S. Dept. of the Interior, Geological Survey, 1989.
Buscar texto completoGeological Survey (U.S.), ed. Review of three cubic spline methods in graphics applications. [Denver, Colo.?]: U.S. Dept. of the Interior, Geological Survey, 1989.
Buscar texto completoInterpolating Cubic Splines (Progress in Computer Science and Applied Logic (PCS)). Birkhäuser Boston, 1999.
Buscar texto completoBoudreau, Joseph F. y Eric S. Swanson. Interpolation and extrapolation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0004.
Texto completoAchieving high data reduction with integral cubic B-splines. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1993.
Buscar texto completoFord, Natalie. An example of the use of cubic B-splines for interpolation and structural analysis. 1996.
Buscar texto completo