Literatura académica sobre el tema "DBD nanoseconde"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "DBD nanoseconde".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "DBD nanoseconde"

1

Zhao, Zi-Jie, Y. D. Cui, Jiun-Ming Li, Jian-Guo Zheng y B. C. Khoo. "On the boundary flow using pulsed nanosecond DBD plasma actuators". Modern Physics Letters B 32, n.º 12n13 (10 de mayo de 2018): 1840035. http://dx.doi.org/10.1142/s0217984918400353.

Texto completo
Resumen
Our previous studies in quiescent air environment [Z. J. Zhao et al., AIAA J. 53(5) (2015) 1336; J. G. Zheng et al., Phys. Fluids 26(3) (2014) 036102] reveal experimentally and numerically that the shock wave generated by the nanosecond pulsed plasma is fundamentally a microblast wave. The shock-induced burst perturbations (overpressure and induced velocity) are found to be restricted to a very narrow region (about 1 mm) behind the shock front and last only for a few microseconds. These results indicate that the pulsed nanosecond dielectric barrier discharge (DBD) plasma actuator has stronger local effects in time and spatial domain. In this paper, we further investigate the effects of pulsed plasma on the boundary layer flow over a flat plate. The present investigation reveals that the nanosecond pulsed plasma actuator generates intense perturbations and tends to promote the laminar boundary over a flat plate to turbulent flow. The heat effect after the pulsed plasma discharge was observed in the external flow, lasting a few milliseconds for a single pulse and reaching a quasi-stable state for multi-pulses.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Liu, Chong, Alexander Fridman y Danil Dobrynin. "Uniformity analysis of nanosecond and sub-nanosecond pulsed DBD in atmospheric air". Plasma Research Express 1, n.º 1 (28 de noviembre de 2018): 015007. http://dx.doi.org/10.1088/2516-1067/aaf067.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Rai, S. K., A. K. Dhakar y U. N. Pal. "A compact nanosecond pulse generator for DBD tube characterization". Review of Scientific Instruments 89, n.º 3 (marzo de 2018): 033505. http://dx.doi.org/10.1063/1.5017564.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Rethmel, Chris, Jesse Little, Keisuke Takashima, Aniruddha Sinha, Igor Adamovich y Mo Samimy. "Flow Separation Control Using Nanosecond Pulse Driven DBD Plasma Actuators". International Journal of Flow Control 3, n.º 4 (diciembre de 2011): 213–32. http://dx.doi.org/10.1260/1756-8250.3.4.213.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Fan, Yangyang, Jiushan Cheng y Qiang Chen. "Degradation of metronidazole simulated water by nanosecond pulsed DBD plasma". IOP Conference Series: Earth and Environmental Science 687, n.º 1 (1 de marzo de 2021): 012074. http://dx.doi.org/10.1088/1755-1315/687/1/012074.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Shahrbabaki, A. Nazarian, M. Bazazzadeh y R. Khoshkhoo. "Investigation on Supersonic Flow Control Using Nanosecond Dielectric Barrier Discharge Plasma Actuators". International Journal of Aerospace Engineering 2021 (14 de julio de 2021): 1–14. http://dx.doi.org/10.1155/2021/2047162.

Texto completo
Resumen
In this paper, the effects of streamwise Nanosecond Dielectric Barrier Discharge (NS-DBD) actuators on Shock Wave/Boundary Layer Interaction (SWBLI) are investigated in a Mach 2.5 supersonic flow. In this regard, the numerical investigation of NS-DBD plasma actuator effects on unsteady supersonic flow passing a 14° shock wave generator is performed using simulation of Navier-Stokes equations for 3D-flow, unsteady, compressible, and k ‐ ω SST turbulent model. In order to evaluate plasma discharge capabilities, the effects of plasma discharge length on the flow behavior are studied by investigating the flow friction factor, the region of separation bubble formation, velocity, and temperature distribution fields in the SWBLI region. The numerical results showed that plasma discharge increased the temperature of the discharge region and boundary layer temperature in the vicinity of flow separation and consequently reduced the Mach number in the plasma discharge region. Plasma excitation to the separation bubbles shifted the separation region to the upstream around 6 mm, increased SWBLI height, and increased the angle of the separation shock wave. Besides, the investigations on the variations of pressure recovery coefficient illustrated that plasma discharge to the separation bubbles had no impressive effect and decreased pressure recovery coefficient. The numerical results showed that although the NS-DBD plasma actuator was not effective in reducing the separation area in SWBLI, they were capable of shifting the separation shock position upstream. This feature can be used to modify the structure of the shock wave in supersonic intakes in off-design conditions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Elkholy, A., S. Nijdam, E. van Veldhuizen, N. Dam, J. van Oijen, U. Ebert y L. Philip H. de Goey. "Characteristics of a novel nanosecond DBD microplasma reactor for flow applications". Plasma Sources Science and Technology 27, n.º 5 (21 de mayo de 2018): 055014. http://dx.doi.org/10.1088/1361-6595/aabf49.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wu, Yun, Yifei Zhu, Wei Cui, Min Jia y Yinghong Li. "Simulation of Nanosecond Pulsed DBD Plasma Actuation with Different Rise Times". Plasma Processes and Polymers 12, n.º 7 (19 de enero de 2015): 642–54. http://dx.doi.org/10.1002/ppap.201400175.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Paulauskas, R., D. Martuzevičius, R. B. Patel, J. E. H. Pelders, S. Nijdam, N. J. Dam, M. Tichonovas, N. Striūgas y K. Zakarauskas. "Biogas combustion with various oxidizers in a nanosecond DBD microplasma burner". Experimental Thermal and Fluid Science 118 (octubre de 2020): 110166. http://dx.doi.org/10.1016/j.expthermflusci.2020.110166.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Miller, Vandana, Abraham Lin, Gregory Fridman, Alexander Fridman y Peter Friedman. "Nanosecond-Pulsed DBD Plasma For A Clinical Trial Of Actinic Keratosis". Clinical Plasma Medicine 9 (febrero de 2018): 44. http://dx.doi.org/10.1016/j.cpme.2017.12.068.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "DBD nanoseconde"

1

Dobbelaar, Martinus. "Conception et réalisation de systèmes d’exposition plasma nanoseconde pour des applications biomédicales". Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3040/document.

Texto completo
Resumen
Les plasmas froids dans l’air à pression atmosphérique ont trouvé de nombreuses applications ces dernières années. Grâce à une chimie très réactive, les plasmas froids offrent une solution prometteuse pour le traitement bio-médical. Dans ce contexte, deux dispositifs d’exposition au plasma sont présentés :• le premier dispositif permet de générer des DBD (Décharges à Barrière Diélectrique) sur une échelle de temps nanoseconde (ns-DBD). L’échantillon biologique joue le rôle d’une électrode. La décharge se développe dans l’intervalle d’air entre la surface du diélectrique et l’échantillon biologique.• le.second dispositif d’exposition permet de générer des DBD de surface sur une échelle de temps nanoseconde (ns-SDBD). La décharge se forme le long de la surface du diélectrique, à proximité de l’électrode active. Pendant l’exposition au plasma, l’échantillon est placé face à l’applicateur. Contrairement à l’applicateur DBD, la décharge n’est pas directement en contact avec la solution biologique.Les deux systèmes d’exposition au plasma sont conçus de façon similaire, leurs dimensions autorisent l’exposition d’un échantillon biologique placé dans une boite de Petri classique. La cible biologique est un ensemble de cellules cancéreuses placées dans une solution de culture. Le travail présenté est essentiellement expérimental. Il se concentre sur la caractérisation électrique des décharges. Le plasma est créé avec des impulsions haute tension (de 4 kV à 11 kV), sur des temps très courts (de 10 ns à 14 ns de largeur) et avec des temps de montée brefs (2,5 ns, en fonction du générateur utilisé). Dans la configuration ns-DBD, l’énergie déposée par le plasma par impulsion est de l’ordre du mJ. En configuration ns-SDBD, l’énergie déposée est calculée, elle est de l’ordre de quelques dizaines de μJ. Une étude préliminaire sur le traitement d’échantillons biologiques est réalisée dans la configuration ns-SDBD. La viabilité de cellules de glioblastome est présentée en fonction de l’énergie déposée dans le plasma par impulsion. Selon les résultats de cette première étude, le plasma ns-SDBD a un effet sur la viabilité des cellules exposées dans les conditions décrites
Cold plasmas in atmospheric pressure air have been used in many different applications in the past few years. Because of its high chemical reactivity, cold plasma treatment appears to be a promising solution for biomedical applications. In this context the study and realization of nanosecond plasma exposure devices for biomedical applications are presented :• the first exposure device generates DBD (Dielectric Barrier Discharge) on a nanosecond time scale (ns-DBD). The biological sample acts as an electrode. The discharges develops in the air gap be- tween the dielectric layer and the biological sample.• The second exposure device generates surface DBD on a nanosecond time scale (ns- SDBD). The discharge develops along the dielectric layer surface close to an active electrode. During plasma exposure, the biological sample faces the discharge device. By contrast to the DBD configuration, the discharge is not in direct contact with the surface of the solution.Both exposure devices are designed in a same way,. the dimensions allow plasma treatment of biological sample contained in a standard Petri dish. The biological targets are cancer cells in a liquid culture medium. The work is mainly experimental. It focuses on the electrical characterization of discharges. The plasma is created using short (10-14 ns of FWHM) high-voltage (up to 4 or 11 kV) pulses of fast rise times (2-5 ns depending on the pulse generator). In the ns-DBD configuration the energy deposited into plasma per pulse is in the order of millijoule. In the ns-SDBD configuration, we calculated the energy deposited into plasma per pulse in a range of tens of μJ. A preliminary study on treatment of biological samples by ns-SDBD plasma is performed. The glioblastoma cells viability was presented as a function of the energy deposited into plasma per pulse. According to this preliminary result the ns-SDBD plasma has an influence on the viability of the cells in the given conditions
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bayoda, Kossi Djidula. "Propriétés électriques, optiques et mécaniques d'une décharge de surface à barrière diélectrique nanoseconde pulsée. Application à la mesure de vitesse pariétale et au contrôle des écoulements aérodynamiques". Thesis, Poitiers, 2016. http://www.theses.fr/2016POIT2319/document.

Texto completo
Resumen
Cette thèse a pour but d'étudier une nouvelle décharge nanoseconde pulsée à barrière diélectrique basée sur 3 électrodes (SL-DBD pour « SLiding DBD » en anglais), de la comparer à la décharge nanoseconde conventionnelle utilisant 2 électrodes (NS-DBD), et d'évaluer sa capacité à être utilisée soit comme capteur de vitesse pariétale, soit comme actionneur électromécanique pour le contrôle d'écoulement. Dans la première partie, les propriétés électriques des deux décharges sont caractérisées, permettant ainsi d'identifier le paramètre électrique clé qui permet de passer d'un régime de décharge à un autre. Des visualisations par caméra intensifiée ont confirmé cette transition lorsque le champ électrique moyen devient supérieur à 6.5 kV/cm. Des diagnostiques mécaniques (Schlieren et mesures de pression) ont permis de caractériser précisément l'onde de pression générée par les deux décharges.Ensuite, l'influence d'un écoulement sur le comportement électrique de la SL-DBD a été étudiée, mettant en évidence que le courant « collecté » par l'électrode (3) était à peu près proportionnel à la vitesse de l'écoulement en proche paroi. Même s'il reste encore de nombreux points à vérifier, ce résultat encourageant permet d'envisager l'utilisation de la SL-DBD comme capteur de vitesse et/ou de frottement pariétal.Enfin, la troisième partie est consacrée à l'effet de la SL-DBD sur des écoulements aérodynamiques, dans le but de les manipuler. Plusieurs configurations ont été étudiées (profil d'aile, marche descendante, plaque plane) et les résultats ont permis de montrer la complexité des phénomènes physiques à l'origine du contrôle, sans pour autant pouvoir totalement les expliquer
This thesis aims to study new design of nanosecond pulsed dielectric barrier discharge in 3 electrodes configuration: the sliding discharge (SL-DBD), to compare it to the conventional nanosecond DBD in 2 electrodes geometry (NS-DBD) and to show also its capacity to be used as a friction velocity or wall shear stress sensor and to be used as electromechanical actuator for flow control.In its first part, the electrical properties of these two discharges are characterized and point out the key parameter governing the transition of one regime to another. The visualizations with an intensified camera confirm this transition when the mean electric field increases over 6.5 kV/cm. Therefore they extend further and cover the inter-electrode gap. Mechanical diagnostics (Schlieren and pressure measurements) characterize the pressure wave generated by these discharges. In the second part, the electrical characterization of the SL-DBD under flow conditions shows that the courant « collected » by the third electrode is almost proportional to the wall flow velocity. However, even if other studies needed to be performed, these encouraging results reveal the ability of the SL-DBD to be used as a friction velocity or a wall shear stress sensor. Finally, the third part is addressed to the effect of the SL-DBD on aerodynamics flows in order to manipulate them. Several configurations are studied (airfoil, backward facing step, flat plate) and the results have shown the complexity of the physicals phenomena governing the control authority, without being able to fully explain them
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Marinov, Ilya. "Plasmas in liquids and at the interfaces". Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00998381.

Texto completo
Resumen
Growing interest in biomedical applications of nonthermal plasmas inspires the development of new plasmas sources. Dielectric barrier (DBD) and corona discharges produced in ambient air or in noble gas flow are typically applied. Direct production of plasma in liquids has a great potential for sterilization of liquid substances and extracorporeal blood treatment. The physical mechanisms of discharge formation in liquid medium are not fully understood.The first part of this thesis deals with the initiation and development of the nanosecond discharge in liquid dielectrics (deionized water, ethanol and n-pentane). Time-resolved shadowgraph visualization, optical emission spectroscopy and electrical diagnostics are applied to investigate the discharge formation on point anode.We have shown that depending on the applied voltage amplitude three different scenario can occur in the polar dielectric, namely, cavitation of a bubble, discharge development in the gaseous cavity (bush-like mode) and initiation of the filamentary discharge (tree-like mode) propagating in bulk liquid. Formation of the bush-like and the tree-like discharges is governed by distinct physical mechanisms, resulting in strongly different plasma parameters.In the second part of this work we address the question of how cold atmospheric plasma interacts with living cells in-vitro and in-vivo, and what is the mechanism of plasma induced cell death. Flowcytometry based cell viability assay with two markers AnnexinV (AV) and Propidium iodide (PI), demonstrates a dose dependent induction of the apoptosis for human T lymphocyte (Jurkat) and epithelial (HMEC) cells treated with DBD plasma. In nude mice model, induction of apoptosis and necrosis in dose dependant manner is observed by electron microscopy in thin epidermis sections. Histological analysis shows significant lesions appeared in epidermis, dermis, hypodermis and muscle as a function of treatment duration. Production of hydrogen peroxide in culture medium (PBS) exposed to DBD plasma is measured using selective fluorescent probe (Amplex® Red). Cell viability of human thyroid epithelial (HTori-3) and melanoma (1205Lu) cells demonstrates nonmonotonous dependence on H2O2 concentration. The major role of plasma produced hydrogen peroxide and DBD electric field is suggested.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Rethmel, Christopher C. "Airfoil Leading Edge Flow Separation Control Using Nanosecond Pulse DBD Plasma Actuators". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306348260.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ghasemi, Esfahani Ata. "Physics and Control of Flow Over a Thin Airfoil using Nanosecond Pulse DBD Actuators". The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1503204430451055.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

(5930600), Aarthi Devarajan. "Development of plasma actuators for high-speed flow control based on nanosecond repetitively pulsed dielectric barrier discharges". Thesis, 2019.

Buscar texto completo
Resumen
Over the past few decades, surface dielectric barrier discharge (SDBD) actuators have been studied extensively as aerodynamic flow control devices. There has been extensive research on producing SDBD plasmas through excitation by sinusoidal high voltage in low-speed flows, resulting in local acceleration of the flow through the electrohydrodynamic (EHD) effect. However, high-speed flow control using SDBD actuators has not been considered to the same extent. Control through thermal perturbations appears more promising than using EHD effects. SDBDs driven by nanosecond repetitively pulsed (NRP) discharges (NRP SDBDs) can produce rapid localized heating and have been used to produce better flow reattachment in high-speed flows. While surface actuators based on NRP DBDs appear promising for high-speed flow control, the physics underlying the plasma/flow coupling are not well understood and the actuators have yet to be fully characterized or optimized. In particular, methods for tailoring the plasma characteristics by varying the actuator’s electrical or geometrical characteristics have not been thoroughly explored.
In the current work, NRP SDBD actuators for control of high-speed flows are developed and characterized. As discussed previously, it is believed that the mechanism for high-speed flow control by these plasmas is thermal perturbations from rapid localized heating. Therefore, the goal is to design actuators that produce well-defined filamentary discharges which provide controlled local heating. The electrical parameters (pulse duration, PRF, and polarity) and electrode geometries are varied and the optimal configurations for producing such plasma filaments over a range of ambient pressures are identified. In particular, single and double sawtooth shaped electrodes are investigated since the enhanced electric field at the electrode tips may permit easier production of “strong” (i.e. higher temperature) filaments with well-defined spacing, even at low pressure. Time-resolved measurements of the gas temperature in the plasma will be obtained using optical emission spectroscopy (OES) to assess the thermal perturbations produced by the actuators. To the author’s knowledge, these will be the first such measurements of temperature perturbations induced by NRP SDBDs. The plasma structure and temperature measurements will be correlated with schlieren visualization of the shock waves and localized flow field induced by the discharges. Finally, the optimized actuators will be integrated into a high-speed flat plate boundary layer and preliminary assessment of the effect of the plasma on the boundary layer will be conducted.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "DBD nanoseconde"

1

Zhang, Cheng, Tao Shao, Kaihua Long, Dongjue Wang, Da Xing, Dongdong Zhang, Jue Wang y Ping Yan. "Repetitive unipolar nanosecond-pulse DBD in atmospheric air". En 2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). IEEE, 2009. http://dx.doi.org/10.1109/icpadm.2009.5252349.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Peschke, Philip, Sami Goekce, Christoph Hollenstein, Penelope Leyland y Peter Ott. "Interaction Between Nanosecond Pulse DBD Actuators and Transonic Flow". En 42nd AIAA Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-3734.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Chae, Jeongheon, Sangjun Ahn, Hyung-Jin Kim, Kyu Hong Kim y Suk Young Jung. "Modeling of nanosecond pulsed DBD plasma actuator for flow control". En 2016 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2016. http://dx.doi.org/10.1109/plasma.2016.7534081.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Chae, Jeongheon, Sangjun Ahn, Hyung-Jin Kim y Kyu Hong Kim. "Unsteady Joule Heating Energy Model for Nanosecond Pulsed DBD Plasma Actuator". En 55th AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-1580.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Nishihara, Munetake, Keisuke Takashima, Joseph Rich y Igor Adamovich. "Mach 5 Bow shock Control by a Nanosecond Pulse Surface DBD". En 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-1144.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Han, Xuzhao, Huaxing Li, Xuanshi Meng, Feng Liu y Shijun Luo. "Effect of Voltage and Frequency on Starting Repetitive Nanosecond Pulsed DBD". En 46th AIAA Plasmadynamics and Lasers Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-2810.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Hu, Haiyang, Huaxing Li, Xuanshi Meng, Jianlei Wang, Feng Liu y Shijun Luo. "Phase-Locked Schlieren of Periodic Nanosecond-Pulsed DBD Actuation in Quiescent Air". En 54th AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1696.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Zhao, Zijie, Jiun-Ming Li, Jianguo Zheng, Boo Cheong Khoo y Yongdong Cui. "On the boundary and separated flow using pulsed nanosecond DBD plasma actuators". En 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1962.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Zhao, Zijie, Jiun-Ming Li, Jianguo Zheng, Yongdong Cui y Boo Cheong Khoo. "Study of shock and induced flow dynamics by pulsed nanosecond DBD plasma actuators". En 52nd Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0402.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Rethmel, Chris, Jesse Little, K. Takashima, A. Sinha, Igor Adamovich y Mo Samimy. "Flow Separation Control over an Airfoil with Nanosecond Pulse Driven DBD Plasma Actuators". En 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-487.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "DBD nanoseconde"

1

Dobrynin, Danil y Alexander Fridman. Experimental Investigation of Nanosecond and Subnanosecond Pulsed DBD in Atmospheric Air: Fast Imaging and Spectroscopy. Office of Scientific and Technical Information (OSTI), octubre de 2020. http://dx.doi.org/10.2172/1691468.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía