Artículos de revistas sobre el tema "Dispersion interaction density"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Dispersion interaction density".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Becke, Axel D. y Erin R. Johnson. "A density-functional model of the dispersion interaction". Journal of Chemical Physics 123, n.º 15 (15 de octubre de 2005): 154101. http://dx.doi.org/10.1063/1.2065267.
Texto completoTang, Hong y Jianmin Tao. "Long-range dispersion-corrected density functional for noncovalent interactions". International Journal of Modern Physics B 33, n.º 26 (20 de octubre de 2019): 1950300. http://dx.doi.org/10.1142/s0217979219503004.
Texto completoBARCI, DANIEL G., C. A. LINHARES, A. F. DE QUEIROZ y J. F. MEDEIROS NETO. "FUNCTIONAL BOSONIZATION OF NONRELATIVISTIC FERMIONS IN 2+1 DIMENSIONS". International Journal of Modern Physics A 15, n.º 29 (20 de noviembre de 2000): 4655–79. http://dx.doi.org/10.1142/s0217751x00002032.
Texto completoKooi, Derk Pieter y Paola Gori-Giorgi. "London dispersion forces without density distortion: a path to first principles inclusion in density functional theory". Faraday Discussions 224 (2020): 145–65. http://dx.doi.org/10.1039/d0fd00056f.
Texto completoPrakash, Ved, Suresh C. Sharma, Vijayshri y Ruby Gupta. "Surface wave excitation by a density modulated electron beam in a magnetized dusty plasma cylinder". Laser and Particle Beams 31, n.º 3 (17 de junio de 2013): 411–18. http://dx.doi.org/10.1017/s0263034612001048.
Texto completoCiuffoli, Emilio, Jarah Evslin, Xiaojun Bi y Xinmin Zhang. "Neutrino Splitting and Density-Dependent Dispersion Relations". ISRN High Energy Physics 2012 (4 de noviembre de 2012): 1–20. http://dx.doi.org/10.5402/2012/436580.
Texto completoYuan, Chengqian, Haiming Wu, Meiye Jia, Peifeng Su, Zhixun Luo y Jiannian Yao. "A theoretical study of weak interactions in phenylenediamine homodimer clusters". Physical Chemistry Chemical Physics 18, n.º 42 (2016): 29249–57. http://dx.doi.org/10.1039/c6cp04922b.
Texto completoStöhr, Martin y Alexandre Tkatchenko. "Quantum mechanics of proteins in explicit water: The role of plasmon-like solute-solvent interactions". Science Advances 5, n.º 12 (diciembre de 2019): eaax0024. http://dx.doi.org/10.1126/sciadv.aax0024.
Texto completoBriggs, Edward A. y Nicholas A. Besley. "Modelling excited states of weakly bound complexes with density functional theory". Phys. Chem. Chem. Phys. 16, n.º 28 (2014): 14455–62. http://dx.doi.org/10.1039/c3cp55361b.
Texto completoSahu, S., Y. Hardalupas y A. M. K. P. Taylor. "Interaction of droplet dispersion and evaporation in a polydispersed spray". Journal of Fluid Mechanics 846 (3 de mayo de 2018): 37–81. http://dx.doi.org/10.1017/jfm.2018.247.
Texto completoZhechkov, Lyuben, Thomas Heine, Serguei Patchkovskii, Gotthard Seifert y Helio A. Duarte. "An Efficienta PosterioriTreatment for Dispersion Interaction in Density-Functional-Based Tight Binding". Journal of Chemical Theory and Computation 1, n.º 5 (septiembre de 2005): 841–47. http://dx.doi.org/10.1021/ct050065y.
Texto completoMiao, Junjian, Shugui Hua y Shuhua Li. "Assessment of density functionals on intramolecular dispersion interaction in large normal alkanes". Chemical Physics Letters 541 (julio de 2012): 7–11. http://dx.doi.org/10.1016/j.cplett.2012.05.067.
Texto completoZheng, Kang, Danping Li, Liu Jiang, Xiaowei Li, Changjian Xie, Ling Feng, Jie Qin, Shaosong Qian y Qiuxiang Pang. "Revisiting stacking interactions in tetrathiafulvalene and selected derivatives using tight-binding quantum chemical calculations and local coupled-cluster method". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 77, n.º 3 (13 de mayo de 2021): 311–20. http://dx.doi.org/10.1107/s2052520621003085.
Texto completoGanesan, M. y S. Paranthaman. "Dispersion-corrected density functional theory studies on glycolic acid-metal complexes". Журнал структурной химии 62, n.º 8 (2021): 1251–69. http://dx.doi.org/10.26902/jsc_id78515.
Texto completoDu, Hongchen, Y. Liu y J. Liu. "THEORETICAL STUDY ON THE INTERMOLECULAR INTERACTIONS OF 1,1-DIAMINO-2,2-DINITROETHYLENE WITH NH3 AND H2O". Latin American Applied Research - An international journal 49, n.º 4 (21 de septiembre de 2019): 241–48. http://dx.doi.org/10.52292/j.laar.2019.121.
Texto completoFrigenti, Gabriele, Daniele Farnesi, Gualtiero Nunzi Conti y Silvia Soria. "Nonlinear Optics in Microspherical Resonators". Micromachines 11, n.º 3 (13 de marzo de 2020): 303. http://dx.doi.org/10.3390/mi11030303.
Texto completoFENG, CHAO, CHENSHENG LIN, XIAOHONG ZHANG y RUIQIN ZHANG. "π–π INTERACTION IN BENZENE DIMER STUDIED USING DENSITY FUNCTIONAL THEORY AUGMENTED WITH AN EMPIRICAL DISPERSION TERM". Journal of Theoretical and Computational Chemistry 09, supp01 (enero de 2010): 109–23. http://dx.doi.org/10.1142/s0219633610005578.
Texto completoSong, Yang, Omololu Akin-Ojo y Feng Wang. "Correcting for dispersion interaction and beyond in density functional theory through force matching". Journal of Chemical Physics 133, n.º 17 (7 de noviembre de 2010): 174115. http://dx.doi.org/10.1063/1.3503656.
Texto completoEgorov, S. A. y N. H. March. "Deformation of atomic density in a homonuclear diatomic molecule due to dispersion interaction". Physics Letters A 157, n.º 1 (julio de 1991): 57–59. http://dx.doi.org/10.1016/0375-9601(91)90408-z.
Texto completoAntony, Jens y Stefan Grimme. "Fully ab initio protein-ligand interaction energies with dispersion corrected density functional theory". Journal of Computational Chemistry 33, n.º 21 (9 de mayo de 2012): 1730–39. http://dx.doi.org/10.1002/jcc.23004.
Texto completoPrescott, David R. C. "The effects of habitat density and the spatial distribution of food on the social behaviour of captive wintering American Tree Sparrows". Canadian Journal of Zoology 65, n.º 3 (1 de marzo de 1987): 522–26. http://dx.doi.org/10.1139/z87-081.
Texto completoQUANG, NGUYEN HONG y NGUYEN MINH KHUE. "DENSITY-DEPENDENT PHONORITON STATES IN HIGHLY EXCITED SEMICONDUCTORS". International Journal of Modern Physics B 09, n.º 28 (30 de diciembre de 1995): 3725–33. http://dx.doi.org/10.1142/s0217979295001488.
Texto completoOntaneda, Jorge, Francesc Viñes, Francesc Illas y Ricardo Grau-Crespo. "Double-well potential energy surface in the interaction between h-BN and Ni(111)". Physical Chemistry Chemical Physics 21, n.º 21 (2019): 10888–94. http://dx.doi.org/10.1039/c8cp07880g.
Texto completoPalermo, Giovanna, Kandammathe Valiyaveedu Sreekanth y Giuseppe Strangi. "Hyperbolic dispersion metamaterials and metasurfaces". EPJ Applied Metamaterials 7 (2020): 11. http://dx.doi.org/10.1051/epjam/2020015.
Texto completoRIAHI, SIAVASH, SOLMAZ EYNOLLAHI y MOHAMMAD REZA GANJALI. "INTERACTION OF EMODIN WITH DNA BASES: A DENSITY FUNCTIONAL THEORY". Journal of Theoretical and Computational Chemistry 09, n.º 05 (octubre de 2010): 875–88. http://dx.doi.org/10.1142/s0219633610006055.
Texto completoCampi, D., M. Bernasconi, G. Benedek, A. P. Graham y J. P. Toennies. "Surface lattice dynamics and electron–phonon interaction in cesium ultra-thin films". Physical Chemistry Chemical Physics 19, n.º 25 (2017): 16358–64. http://dx.doi.org/10.1039/c7cp01572k.
Texto completoSawa, T. y M. Fujimoto. "Bisymmetric Spiral Magnetic Fields and Gravitational Instabilities of Galactic Disks". Symposium - International Astronomical Union 140 (1990): 125–26. http://dx.doi.org/10.1017/s0074180900189727.
Texto completoNoh, Ji-Young y Hanchul Kim. "Van der Waals interaction between P4 molecules: Density functional theory calculations with dispersion correction". Journal of the Korean Physical Society 60, n.º 3 (febrero de 2012): 410–14. http://dx.doi.org/10.3938/jkps.60.410.
Texto completoMukherjee, Sanchita, Senthilkumar Kailasam, Manju Bansal y Dhananjay Bhattacharyya. "Energy hyperspace for stacking interaction inAU/AUdinucleotide step: Dispersion-corrected density functional theory study". Biopolymers 101, n.º 1 (25 de octubre de 2013): 107–20. http://dx.doi.org/10.1002/bip.22289.
Texto completoFischer, Michael. "Interaction of water with (silico)aluminophosphate zeotypes: a comparative investigation using dispersion-corrected DFT". Physical Chemistry Chemical Physics 18, n.º 23 (2016): 15738–50. http://dx.doi.org/10.1039/c6cp02289h.
Texto completoBELOSLUDOV, V. R., M. Yu. LAVRENTIEV y S. A. SYSKIN. "LATTICE DYNAMICS OF YBa2Cu3O7 IN THE IONIC MODEL". International Journal of Modern Physics B 03, n.º 04 (abril de 1989): 611–15. http://dx.doi.org/10.1142/s0217979289000452.
Texto completoArya, Balwant Singh, Mahendra Aynyas y Sankar P. Sanyal. "Phonon Properties of Americium Sulphide". Journal of Metastable and Nanocrystalline Materials 28 (diciembre de 2016): 125–28. http://dx.doi.org/10.4028/www.scientific.net/jmnm.28.125.
Texto completoLiang, Zhiling, Houhe Liu, Nianjun Su, Dandan Song, Yun Zhang, Hong Huang, Jianqi Zheng, Cheng Zhong y Guodong Ye. "Study of the Deformation/Interaction Model: How Interactions Increase the Reaction Barrier". Journal of Chemistry 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/3106297.
Texto completoStein, Frederick, Jürg Hutter y Vladimir V. Rybkin. "Double-Hybrid DFT Functionals for the Condensed Phase: Gaussian and Plane Waves Implementation and Evaluation". Molecules 25, n.º 21 (6 de noviembre de 2020): 5174. http://dx.doi.org/10.3390/molecules25215174.
Texto completoDetmar, Eric, Valentin Müller, Daniel Zell, Lutz Ackermann y Martin Breugst. "Cobalt-catalyzed C–H cyanations: Insights into the reaction mechanism and the role of London dispersion". Beilstein Journal of Organic Chemistry 14 (25 de junio de 2018): 1537–45. http://dx.doi.org/10.3762/bjoc.14.130.
Texto completoProynov, Emil, Fenglai Liu, Zhengting Gan, Matthew Wang y Jing Kong. "Density-functional approach to the three-body dispersion interaction based on the exchange dipole moment". Journal of Chemical Physics 143, n.º 8 (28 de agosto de 2015): 084125. http://dx.doi.org/10.1063/1.4929581.
Texto completoKrishtal, Alisa, Kenno Vanommeslaeghe, András Olasz, Tamás Veszprémi, Christian Van Alsenoy y Paul Geerlings. "Accurate interaction energies at density functional theory level by means of an efficient dispersion correction". Journal of Chemical Physics 130, n.º 17 (7 de mayo de 2009): 174101. http://dx.doi.org/10.1063/1.3126248.
Texto completoDiLabio, Gino A., Erin R. Johnson y Alberto Otero-de-la-Roza. "Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies". Physical Chemistry Chemical Physics 15, n.º 31 (2013): 12821. http://dx.doi.org/10.1039/c3cp51559a.
Texto completoMandal, Swapan. "Effects of Field-Induced Coherence on Laser Without Population Inversion and on Absorptionless Dispersion for a V-Type Three Level System". International Journal of Modern Physics B 17, n.º 14 (10 de junio de 2003): 2715–33. http://dx.doi.org/10.1142/s0217979203018363.
Texto completoGhosh, S. y Apurva Muley. "Acousto–electric interaction in inhomogeneous semiconductor quantum plasma". International Journal of Modern Physics B 31, n.º 28 (9 de noviembre de 2017): 1750207. http://dx.doi.org/10.1142/s0217979217502071.
Texto completoSangameswaran, B. y M. Gomathi. "Enhancement of dissolution rate of Olmesartan medoxomil using urea as carrier by different solid dispersion techniques". International Journal of Research in Pharmaceutical Sciences and Technology 1, n.º 1 (14 de noviembre de 2018): 36–42. http://dx.doi.org/10.33974/ijrpst.v1i1.35.
Texto completoDey, Ram Chandra, Prasenjit Seal y Swapan Chakrabarti. "CH/π Interaction in Benzene and Substituted Derivatives with Halomethane: A Combined Density Functional and Dispersion-Corrected Density Functional Study". Journal of Physical Chemistry A 113, n.º 37 (17 de septiembre de 2009): 10113–18. http://dx.doi.org/10.1021/jp905078p.
Texto completoWest, J. R., I. Guymer, Y. Sangodoyin y K. O. K. Oduyemi. "Solute Dispersion and Sediment Transport in Estuaries". Water Science and Technology 18, n.º 4-5 (1 de abril de 1986): 93–100. http://dx.doi.org/10.2166/wst.1986.0184.
Texto completoMurashkevich, A. N. "Interaction of titanium oxide with sodium hydroxide at hydrothermal conditions". Proceedings of the National Academy of Sciences of Belarus, Chemical Series 56, n.º 2 (7 de junio de 2020): 150–57. http://dx.doi.org/10.29235/1561-8331-2020-56-2-150-157.
Texto completoSHUKLA, P. K. y L. STENFLO. "Dispersion relations for electromagnetic waves in a dense magnetized plasma". Journal of Plasma Physics 74, n.º 6 (diciembre de 2008): 719–23. http://dx.doi.org/10.1017/s0022377808007344.
Texto completoTao, Yaping, Ligang Han, Andong Sun, Kexi Sun, Qian Zhang, Wanqiang Liu, Jianbin Du y Zhaojun Liu. "Crystal Structure and Computational Study on Methyl-3-Aminothiophene-2-Carboxylate". Crystals 10, n.º 1 (1 de enero de 2020): 19. http://dx.doi.org/10.3390/cryst10010019.
Texto completoEsrafili, Mehdi D. y Mohammad Solimannejad. "On the strength and nature of intermolecular X···O interactions in CF2ClBr−O3 complexes (X = F, Cl, Br): an ab initio investigation". Canadian Journal of Chemistry 92, n.º 1 (enero de 2014): 33–39. http://dx.doi.org/10.1139/cjc-2013-0372.
Texto completoRossi Fernández, Ana C., Nicolás F. Domancich, Ricardo M. Ferullo y Norberto J. Castellani. "Aluminum adsorption on graphene: Theoretical study of dispersion effects". Journal of Theoretical and Computational Chemistry 18, n.º 04 (junio de 2019): 1950019. http://dx.doi.org/10.1142/s0219633619500196.
Texto completoWu, Chen-Huan. "Two-dimensional parabolic Dirac system in the presence of nonmagnetic and magnetic impurities". International Journal of Modern Physics B 35, n.º 12 (10 de mayo de 2021): 2150159. http://dx.doi.org/10.1142/s0217979221501599.
Texto completoEremin, Roman, Pavel Zolotarev y Ivan Bobrikov. "Delithiated states of layered cathode materials: doping and dispersion interaction effects on the structure". EPJ Web of Conferences 177 (2018): 02001. http://dx.doi.org/10.1051/epjconf/201817702001.
Texto completo