Literatura académica sobre el tema "Electromagnetic therapy"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Electromagnetic therapy".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Electromagnetic therapy"
Barker, A. T. "Electromagnetic therapy". Journal of Biomedical Engineering 12, n.º 1 (enero de 1990): 85. http://dx.doi.org/10.1016/0141-5425(90)90121-3.
Texto completoLightwood, R. "Electromagnetic therapy". Journal of Biomedical Engineering 12, n.º 1 (enero de 1990): 85–86. http://dx.doi.org/10.1016/0141-5425(90)90122-4.
Texto completoMarkov, Marko S. y Agata P. Colbert. "Magnetic and electromagnetic field therapy". Journal of Back and Musculoskeletal Rehabilitation 15, n.º 1 (1 de julio de 2000): 17–29. http://dx.doi.org/10.3233/bmr-2000-15103.
Texto completoKITAGAWA, Fumio. "Dovelopment of Pulsed Electromagnetic Therapy". Journal of the Society of Mechanical Engineers 94, n.º 876 (1991): 940–42. http://dx.doi.org/10.1299/jsmemag.94.876_940.
Texto completoLightwood, Ray. "Electromagnetic therapy: science or quackery?" Journal of Biomedical Engineering 11, n.º 4 (julio de 1989): 352. http://dx.doi.org/10.1016/0141-5425(89)90072-1.
Texto completoMclntosh, Jeanne. "Electromagnetic Energy Exonerated". Physiotherapy 80, n.º 4 (abril de 1994): 266. http://dx.doi.org/10.1016/s0031-9406(10)61322-3.
Texto completoLow, JL. "Pulsed Electromagnetic Fields". Physiotherapy 89, n.º 1 (enero de 2003): 71. http://dx.doi.org/10.1016/s0031-9406(05)60689-x.
Texto completoGeorge, Mark S. "Current state of electromagnetic neuromodulation therapy". Brain Stimulation 14, n.º 6 (noviembre de 2021): 1735. http://dx.doi.org/10.1016/j.brs.2021.10.487.
Texto completoDiLazzaro, Vincenzo. "Cellular mechanisms of electromagnetic neuromodulation therapy". Brain Stimulation 14, n.º 6 (noviembre de 2021): 1734. http://dx.doi.org/10.1016/j.brs.2021.10.485.
Texto completoGoats, G. C. "Pulsed electromagnetic (short-wave) energy therapy." British Journal of Sports Medicine 23, n.º 4 (1 de diciembre de 1989): 213–16. http://dx.doi.org/10.1136/bjsm.23.4.213.
Texto completoTesis sobre el tema "Electromagnetic therapy"
Jiang, Yuxiang. "A Unipolar Pulse Electromagnetic Field Apparatus for Magnetic Therapy: Design, Simulation and Development". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37854.
Texto completoBanyard, Henry. "Effects of pulsed electromagnetic field therapy on symptoms associated with eccentric exercise-induced muscle damage". Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2013. https://ro.ecu.edu.au/theses/705.
Texto completoSereni, Elettra. "Study on cellular and molecular mechanisms underline the biological effects of extremely low frequency electromagnetic fields (ELF EMFs)". Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1046221.
Texto completoHANNA, REEM. "ELECTROMAGNETIC MODELING FOR THE DEVELOPMENT AND OPTIMIZATION OF DIFFERENT DEVICES TO SUPPORT BONE REGENERATION". Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1002772.
Texto completoLIMA, FILHA ELIANA R. "Otimização de parâmetros de transferência in vivo do gene do hormônio de crescimento visando a correção fenotípica de camundongos anões". reponame:Repositório Institucional do IPEN, 2016. http://repositorio.ipen.br:8080/xmlui/handle/123456789/26805.
Texto completoMade available in DSpace on 2016-11-11T11:03:59Z (GMT). No. of bitstreams: 0
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
A deficiência de hormônio de crescimento (DGH) é tratada convencionalmente com repetidas injeções do hormônio recombinante. Este trabalho teve como objetivo estabelecer uma alternativa de tratamento baseada na transferência dos genes do hormônio de crescimento humano (hGH) ou de camundongo (mGH), em camundongos anões lit/lit ou lit/scid, mediante administração de DNA plasmidial associada à eletrotransferência, com a finalidade de atingir a máxima recuperação de crescimento em comparação ao camundongo normal (catch-up growth). Inicialmente foi realizada a administração do plasmídeo contendo o gene do mGH no músculo quadríceps exposto ou tibial anterior (TA) não exposto. Utilizando diferentes condições de eletrotransferência, baseadas em pulsos alternados de baixa (100 V/cm) e alta (1000 V/cm) voltagem (HV/LV, HV/8LV) ou em pulsos seguidos de baixa voltagem (8 pulsos de 150 V/cm), o músculo TA na condição HV/LV apresentou os maiores níveis de expressão de mGH: 6,7 ± 2,5 ng/mL. O tempo de exposição e a quantidade da enzima hialuronidase (HI) necessária para a eletrotransferência foram também analisados. O tempo de 30 minutos e a dose de 20 U de HI proporcionaram os melhores resultados de expressão. Diferentes quantidades de DNA foram também testadas, mas a administração de 50 μg DNA/animal foi confirmada como a melhor. Na padronização do volume de solução do plasmídeo administrado no TA, foi observado que a injeção de 20 μL de DNA apresentou expressão significativamente maior da proteína em comparação a de 10 μL. Buscando uma maior expressão de GH, foi realizado experimento adicionando poli-L-glutamato ao diluente do DNA, comparando também diferentes condições de eletrotransferência (HV/LV e 375 V/cm). A condição de 375 V/cm, sem a adição do polímero, proporcionou as maiores concentrações, tanto de hGH como de mGH, no soro de camundongos lit/scid e lit/lit, respectivamente. Quando utilizados 3 pulsos de 375 V/cm e a administração do plasmídeo com o gene do mGH em dois locais de cada músculo TA, foram obtidos os mais altos níveis de expressão atingindo 14,7 ± 3,7 ng mGH/mL. Estes foram os parâmetros utilizados em um bioensaio, no qual foi também determinada a medida do comprimento inicial e final do fêmur por radiografia. Neste bioensaio de 36 dias, a curva de crescimento dos camundongos lit/lit tratados foi similar a de camundongos heterozigotos não tratados e os níveis de mGH do grupo DNA foram significativamente maiores (P<0,0002) em relação ao grupo controle. Os camundongos tratados também apresentarem concentração de mIGF-I no soro superior a do grupo controle. Considerando os parâmetros de crescimento avaliados, o grupo tratado com DNA apresentou percentuais de incremento altamente significativos em relação ao grupo controle, com P<0,001 para o peso corpóreo e P<0,002 para o comprimento do corpo, da cauda e para ambos os fêmures, com valores de catch-up da ordem de 79% para o comprimento dos fêmures. Podemos concluir que foi estabelecida uma metodologia eficiente de transferência gênica não viral, que poderá levar a uma completa normalização de crescimento de camundongos anões mediante utilização de animais mais jovens, como mencionado na literatura e em trabalho recente do nosso grupo.
Dissertação (Mestrado em Tecnologia Nuclear)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
FAPESP: 14/07380-6
Peroz, Ingrid. "Untersuchungen zur Diskusverlagerung ohne Reposition am Kiefergelenk". Doctoral thesis, [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972589163.
Texto completoFlanagan, Shawn D. "Neurological Basis of Persistent Functional Deficits after Traumatic Musculoskeletal Injury". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469031876.
Texto completo"The effect of pulsed electromagnetic/magnetic field therapy on tendon inflammation (tendoachilles)". Chinese University of Hong Kong, 1993. http://library.cuhk.edu.hk/record=b5887781.
Texto completoThesis (M.Phil.)--Chinese University of Hong Kong, 1993.
Includes bibliographical references (leaves 115-125).
Acknowledgments --- p.I
List of figures --- p.II
List of tables --- p.III
List of graphs --- p.III
Abstract --- p.VIII
Chapter I.CHAPTER ONE --- Introduction --- p.1
Chapter 1.1 --- Electromagnetic / Magnetic field in biological interventions --- p.1
Chapter 1.2 --- Objective of the study --- p.4
Chapter 1.3 --- Hypothesis of the study --- p.5
Chapter II.CHAPTER TWO --- Literature Review --- p.6
Chapter 2.1 --- Inflammation
Chapter 2.1.1 --- Models of studying tendon injuries --- p.6
Chapter 2.1.2 --- Methods of measuring inflammation --- p.7
Chapter 2.1.3 --- Treatments of soft tissue inflammation --- p.9
Chapter 2.2 --- Aspects of electromagnetic and magnetic fields
Chapter 2.2.1 --- Applications of electromagnetic / magnetic fields in soft tissue inflammation --- p.12
Chapter 2.2.2 --- Physiological effects of electromagnetic/magnetic fields
Chapter 2.2.2.1 --- Experiments on inflammation --- p.16
Chapter 2.2.2.2 --- Experiments on soft tissue / tendon injuries --- p.16
Chapter 2.2.2.3 --- Experiments on blood circulation --- p.18
Chapter 2.2.3 --- Experiments with different parameter settings of PEMF / PMF in soft tissue inflammation --- p.19
Chapter 2.2.4 --- Proposed mechanisms of electromagnetic/magnetic fields --- p.22
Chapter III.CHAPTER THREE --- Methods and Materials --- p.23
Chapter 3.1 --- Animal models --- p.23
Chapter 3.2 --- Apparatus --- p.24
Chapter 3.3 --- Treatment Regimen --- p.27
Chapter 3.4 --- Assessments --- p.29
Chapter IV.CHAPTER FOUR --- Histological Assessment --- p.30
Chapter 4.1 --- Introduction --- p.30
Chapter 4.2 --- Methods --- p.31
Chapter 4.3 --- Results --- p.31
Chapter 4.4 --- Discussions --- p.45
Chapter V.CHAPTER FIVE --- Morphometrical analysis on tissue sections with immunochemical staining --- p.51
Chapter 5.1 --- Introduction
Chapter 5.1.1 --- Different approaches in identification of macrophages --- p.51
Chapter 5.1.2 --- Avidin-biotin enzyme complex assay --- p.52
Chapter 5.2 --- Methods --- p.54
Chapter 5.2.1 --- ABC method --- p.54
Chapter 5.2.2 --- Morphometric analysis of tissue sections --- p.55
Chapter 5.2.3 --- Statistical method --- p.56
Chapter 5.3 --- Results
Chapter 5.3.1 --- Immunochemical results --- p.56
Chapter 5.3.2 --- Morphometric results --- p.60
Chapter 5.4 --- Discussions --- p.64
Chapter VI.CHAPTER SIX --- Biochemical Assessments --- p.67
Chapter 6.1 --- Water content
Chapter 6.1.1 --- Introduction --- p.67
Chapter 6.1.2 --- Methods --- p.68
Chapter 6.1.2.1 --- Water content measurement --- p.68
Chapter 6.1.2.2 --- Statistical method --- p.69
Chapter 6.1.3 --- Results --- p.72
Chapter 6.1.4 --- Discussions --- p.77
Chapter 6.2 --- Total collagen content
Chapter 6.2.1 --- Introduction --- p.81
Chapter 6.2.1.1 --- Hydroxyproline as an indicator for collagen content assay --- p.81
Chapter 6.2.2 --- Methods
Chapter 6.2.2.1 --- Hydrolysis method --- p.82
Chapter 6.2.2.2 --- Standard-curve preparation --- p.83
Chapter 6.2.2.3 --- Statstical method --- p.84
Chapter 6.2.3 --- Results --- p.84
Chapter 6.2.4 --- Discussions --- p.89
Chapter VII.CHAPTER SEVEN --- Discussion --- p.92
Chapter VIII.CHAPTER EIGHT --- Summary and Conclusions --- p.103
Appendix A : Histological reagents preparations --- p.106
Appendix B : Staining procedures for standard H & E --- p.107
Appendix C : Immunochemical staining reagents preparations --- p.108
Appendix D : Staining procedure for StreptABComplex / HRP --- p.110
AppendixE : Biochemical reagents and preparations --- p.111
Appendix F : Hydrolysis method for the tendon --- p.112
Appendix G : Standard-curve of hydroxyproline --- p.113
Appendix H : Determination of optimal hours for collagen hydrolysis --- p.114
REFERENCES --- p.115
劉崇顯. "Hemostasis Plug for an Electromagnetic Thermo-therapy and Its Application for Liver Laceration". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/67146463685805300903.
Texto completoChing-HungLin y 林璟宏. "System Interface Design and Heating Analysis of Electromagnetic Therapy Needle Based Minimum Invasive Treatment in Biological Tissue". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/746nrh.
Texto completo國立成功大學
電機工程學系專班
101
The idea of minimally invasive electromagnetic thermal ablation therapy is to create an alternating magnetic field in vitro by high-frequency induction heater, and in the magnetic field, the metal needle surrounding the tumor cells can be heated, so as to kill tumor cells and achieve the effect of thermal therapy. The objective of this study was to analyze the temperature data of the metal needle end and point measured in the experiment in order to derive the temperature prediction equation for different currents and depths of therapy. In addition, a man-machine program was designed to allow the doctor to set the time of therapy, choose from the therapy options, monitor the temperature of the metal needle in therapy and preview the heating effect through a graphical interface. Based on the experimental results, we performed nonlinear regression analysis for the experimental data with statistical software and derived the temperature prediction equation for the thyroid needle. Then, the equation was set in the medical Human-Machine interface to allow the medical staff to predict the temperature rise of metal needle before therapy. During the course of the electromagnetic thermal therapy system, temperature feedback control could be performed automatically according to this equation, so as to ensure that the treatment temperature of the metal needle is controlled between 55℃ and 95℃, helping achieve the purpose of therapy more accurately and safely.
Libros sobre el tema "Electromagnetic therapy"
Crocco, Lorenzo, Irene Karanasiou, Michael L. James y Raquel Cruz Conceição, eds. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75007-1.
Texto completoNicky, Cullum y National Co-ordinating Centre for HTA (Great Britain), eds. Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy. Alton: Core research, on behalf of NCCHTA, 2001.
Buscar texto completoNicky, Cullum, Health Technology Assessment Programme, National Co-ordinating Centre for HTA (Great Britain) y HTA Commissioning Board, eds. Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy. Alton: Core Research on behalf of the NCCHTA, 2001.
Buscar texto completoElectricity, fields and waves in therapy. Marrickville, N.S.W: Science Press, 1986.
Buscar texto completoDr, Wasserman Eric, Epstein Charles M y Ziemann Ulf, eds. The Oxford handbook of transcranial stimulation. Oxford: Oxford University Press, 2008.
Buscar texto completoDr, Wasserman Eric, Epstein Charles M y Ziemann Ulf, eds. The Oxford handbook of transcranial stimulation. Oxford: Oxford University Press, 2008.
Buscar texto completoMorell, Franz. The MORA concept: Patients' own and coloured light oscillations : theory and practice. Heidelberg: Karl F. Haug Publishers, 1990.
Buscar texto completoConceição, Raquel Cruz, Lorenzo Crocco, Irene Karanasiou y Michael L. James. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy. Springer, 2018.
Buscar texto completoConceição, Raquel Cruz, Lorenzo Crocco, Irene Karanasiou y Michael L. James. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy. Springer, 2018.
Buscar texto completoCapítulos de libros sobre el tema "Electromagnetic therapy"
HAZLEWOOD, CARLTON, MARKO MARKOV y ARTHUR ERICSSON. "ELECTROMAGNETIC FIELD THERAPY: A ROLE FOR WATER?" En BIOELECTROMAGNETICS Current Concepts, 227–40. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4278-7_13.
Texto completoPersson, Bertil R. R. "Applications and Control of High Voltage Pulse Delivery for Tumor Therapy and Gene Therapy in vivo". En Advances in Electromagnetic Fields in Living Systems, 121–46. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4203-2_4.
Texto completoTekam, Chandra Kant Singh, Amit Kumar Tripathi, Gaurav Kumar y Ranjana Patnaik. "Emerging Role of Electromagnetic Field Therapy in Stroke". En Advancement in the Pathophysiology of Cerebral Stroke, 93–102. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1453-7_8.
Texto completoXiao, S., K. H. Schoenbach y C. E. Baum. "Focusing Pulsed Electromagnetic Radiation for Therapy and Imaging". En IFMBE Proceedings, 705–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03879-2_197.
Texto completoZouboulis, Christos C. "Physical Therapy in Dermatology: Cold, Heat, Electromagnetic Radiation". En Braun-Falco´s Dermatology, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-58713-3_118-1.
Texto completoLuzhnov, P. V., L. A. Shamkina y S. I. Shchukin. "Multilevel biofeedback technology for electromagnetic therapy of vascular diseases". En IFMBE Proceedings, 392–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03885-3_109.
Texto completoKaranasiou, Irene y Maria Koutsoupidou. "Towards Multispectral Multimodal Non-ionising Diagnosis and Therapy". En Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy, 211–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75007-1_8.
Texto completoZ’Graggen, Werner J. y Claudio Pollo. "Monitoring of Brain Function in Neurointensive Care: Current State and Future Requirements". En Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy, 1–6. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75007-1_1.
Texto completoScapaticci, Rosa, Mina Bjelogrlic, Jorge A. Tobon Vasquez, Francesca Vipiana, Michael Mattes y Lorenzo Crocco. "Microwave Technology for Brain Imaging and Monitoring: Physical Foundations, Potential and Limitations". En Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy, 7–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75007-1_2.
Texto completoÇayören, Mehmet y İbrahim Akduman. "Continuous Monitoring of Hemorrhagic Strokes via Differential Microwave Imaging". En Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy, 37–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75007-1_3.
Texto completoActas de conferencias sobre el tema "Electromagnetic therapy"
Zheng, Yuanjin, Fei Gao y Xiaohua Feng. "Electromagnetic acoustics towards revolutionary imaging and therapy". En 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2016. http://dx.doi.org/10.1109/iceaa.2016.7731567.
Texto completoPaulsen, Keith D., Alex Hartov y Paul M. Meaney. "Electromagnetic methods for thermal therapy monitoring and assessment". En Critical Review Collection. SPIE, 2000. http://dx.doi.org/10.1117/12.375220.
Texto completoSiyuan Jiang, Xian Zhang, Zhaoyang Yuan y Xiaokang Wu. "Design and optimization of wireless powered brain photodynamic therapy". En 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7735872.
Texto completoXi, Tingting, Yan Sun, Lixu Gu y Minjie Chen. "SurgView-RFT Electromagnetic Navigation System in Trigeminal Ganglion RF Therapy". En 2009 2nd International Conference on Biomedical Engineering and Informatics. IEEE, 2009. http://dx.doi.org/10.1109/bmei.2009.5305668.
Texto completoLu, Zichen, Xiwei Liu, Yonghong Ma, Jie Wang, Dong Zhang, Zongning Zhang y Hong Mo. "Study on power output of different wavelength electromagnetic waves in therapy". En 2014 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI). IEEE, 2014. http://dx.doi.org/10.1109/soli.2014.6960685.
Texto completoSmith, Ryan L., Kristen Lechleiter, Kathleen Malinowski y Parag Parikh. "Incorporating electromagnetic tracking into respiratory correlated imaging for high precision radiation therapy". En Medical Imaging, editado por Michael I. Miga y Kevin R. Cleary. SPIE, 2008. http://dx.doi.org/10.1117/12.772379.
Texto completoEtheridge, Michael L. y John C. Bischof. "Investigating Electromagnetic Field, Nanoparticle Design, and Treatment Volume for Magnetic Nanoparticle Thermal Therapy". En ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80779.
Texto completoWang, Pengyu, Jinxing Zheng y Wuquan Zhang. "Research on the Design of Scanning Magnets for Proton Therapy Nozzle". En 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE, 2018. http://dx.doi.org/10.1109/asemd.2018.8558946.
Texto completoZhao, Zhuo, Sheng Xu, Bradford Wood y Zion Tsz Ho Tse. "An Electromagnetic Tracking Needle Clip: An Enabling Design for Low-Cost Image-Guided Therapy". En 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dmd2018-6892.
Texto completoNoh, Si-Cheol, Hae-Ki Min, Woo-Jin Yu, Moon-Kyu Park, Jang-Woo Kwon, Hong-Ki Min y Heung-Ho Choi. "Development of Electromagnetic Therapy System with Individually Patterned Protocol for Urine Incontinence Patients". En 2008 International Conference on Biomedical Engineering And Informatics (BMEI). IEEE, 2008. http://dx.doi.org/10.1109/bmei.2008.218.
Texto completo