Literatura académica sobre el tema "Entropic/rubber elasticity"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Entropic/rubber elasticity".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Entropic/rubber elasticity"
Weiner, J. H. y J. Gao. "TKIE ENTROPIC SPRING IN RUBBER ELASTICITY". Journal of Thermal Stresses 15, n.º 2 (abril de 1992): 329. http://dx.doi.org/10.1080/01495739208946140.
Texto completoWeiner, J. H. "Entropic versus kinetic viewpoints in rubber elasticity". American Journal of Physics 55, n.º 8 (agosto de 1987): 746–49. http://dx.doi.org/10.1119/1.15034.
Texto completoPérez-Aparicio, Roberto, Arnaud Vieyres, Pierre-Antoine Albouy, Olivier Sanséau, Loïc Vanel, Didier R. Long y Paul Sotta. "Reinforcement in Natural Rubber Elastomer Nanocomposites: Breakdown of Entropic Elasticity". Macromolecules 46, n.º 22 (5 de noviembre de 2013): 8964–72. http://dx.doi.org/10.1021/ma401910c.
Texto completoMorawetz, Herbert. "History of Rubber Research". Rubber Chemistry and Technology 73, n.º 3 (1 de julio de 2000): 405–26. http://dx.doi.org/10.5254/1.3547599.
Texto completoDrozdov, A. D. "Non-entropic theory of rubber elasticity: Flexible chains grafted on a rigid surface". International Journal of Engineering Science 43, n.º 13-14 (septiembre de 2005): 1121–37. http://dx.doi.org/10.1016/j.ijengsci.2005.03.010.
Texto completoConrad, Nathaniel, Tynan Kennedy, Deborah K. Fygenson y Omar A. Saleh. "Increasing valence pushes DNA nanostar networks to the isostatic point". Proceedings of the National Academy of Sciences 116, n.º 15 (26 de marzo de 2019): 7238–43. http://dx.doi.org/10.1073/pnas.1819683116.
Texto completoZeng, Nianning y Henry W. Haslach. "Thermoelastic Generalization of Isothermal Elastic Constitutive Models for Rubber-Like Materials". Rubber Chemistry and Technology 69, n.º 2 (1 de mayo de 1996): 313–24. http://dx.doi.org/10.5254/1.3538375.
Texto completoDung, T. A., N. T. Nhan, N. T. Thuong, D. Q. Viet, N. H. Tung, P. T. Nghia, S. Kawahara y T. T. Thuy. "Dynamic Mechanical Properties of Vietnam Modified Natural Rubber via Grafting with Styrene". International Journal of Polymer Science 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/4956102.
Texto completoWang, Run, Yanan Shen, Dong Qian, Jinkun Sun, Xiang Zhou, Weichao Wang y Zunfeng Liu. "Tensile and torsional elastomer fiber artificial muscle by entropic elasticity with thermo-piezoresistive sensing of strain and rotation by a single electric signal". Materials Horizons 7, n.º 12 (2020): 3305–15. http://dx.doi.org/10.1039/d0mh01003k.
Texto completoChen, Pinzhang, Yuanfei Lin, Jingyun Zhao, Lingpu Meng, Daoliang Wang, Wei Chen y Liangbin Li. "Reconstructing the mechanical response of polybutadiene rubber based on micro-structural evolution in strain-temperature space: entropic elasticity and strain-induced crystallization as the bridges". Soft Matter 16, n.º 2 (2020): 447–55. http://dx.doi.org/10.1039/c9sm02029b.
Texto completoTesis sobre el tema "Entropic/rubber elasticity"
Petrenko, Roman. "Computer Simulations of Resilin-like Peptides". University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1267737157.
Texto completoCaborgan, Rodica. "Contribution à l’analyse expérimentale du comportement thermomécanique du caoutchouc naturel". Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20203/document.
Texto completoAn analysis of the thermomechanical behavior of the natural rubber is carried out by combining two quantitative imaging techniques. The digital image correlation of visible images is used to estimate the strain and then the deformation energy whereas infrared images make it possible to estimate, via the heat equation, the amounts of heat involved in the material transformation. The construction of energy balance enables us to determine the relative importance of the dissipative and thermomechanical coupling mechanisms. For low frequency and low extension ratio, the results show the famous thermoelastic inversion effect. From an energy standpoint, a competition between entropic elasticity and stress-induced crystallization/fusion mechanisms is observed for more significant extension ratios. No significant dissipative effect can be detected at low or high loading frequency whereas in each case, a stress-strain hysteresis characterizes the cyclic response of the material
Capítulos de libros sobre el tema "Entropic/rubber elasticity"
Fukuhara, M., A. Inoue y N. Nishiyama. "Rubber-Like Entropy Elasticity of a Glassy Alloy [1]". En Frontiers in Materials Research, 227–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77968-1_17.
Texto completoErman, Burak y James E. Mark. "Overview and Some Fundamental Information". En Structures and Properties of Rubberlike Networks. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195082371.003.0003.
Texto completoAkutagawa, Keizo. "Constitutive equation for rubber elasticity with the change in internal energy and entropy". En Constitutive Models for Rubber IV, 185–90. Routledge, 2017. http://dx.doi.org/10.1201/9781315140216-30.
Texto completoActas de conferencias sobre el tema "Entropic/rubber elasticity"
Morovati, Vahid y Roozbeh Dargazany. "An Improved Non-Gaussian Statistical Theory of Rubber Elasticity for Short Chains". En ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88234.
Texto completo