Literatura académica sobre el tema "Epitopes, B-Lymphocyte"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Epitopes, B-Lymphocyte".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Epitopes, B-Lymphocyte"

1

Lu, Y. J., D. Sh Chen, W. T. Hao, H. W. Xu, Y. W. Zhang, F. F. Sun y W. Pan. "In silico characterization of Echinococcus granulosus paramyosin nucleotide sequence for the development of epitope vaccine against cystic echinococcosis". Helminthologia 54, n.º 4 (1 de diciembre de 2017): 275–83. http://dx.doi.org/10.1515/helm-2017-0041.

Texto completo
Resumen
Summary The paramyosin (Pmy) protein has been presented as a potential vaccine candidate against Schistosoma spp. However, it remains elusive whether it works in controlling cystic echinococcosis (CE), which is caused by the larval stages of Echinococcus granulosus (E. granulosus). This study investigated the characteristics of E. granulosus Pmy (EgPmy) using in silico analysis and evaluated its potential as an epitope vaccine. The secondary structure was predicted by SOPMA software and linear B-cell epitopes were screened by the Kolaskar and Tongaonkar’s method on IEBD while conformational B-cell epitopes were predicted by the Ellipro. Additionally, the epitopes of cytotoxic T lymphocyte (CTL) were analyzed by the NetCTL-1.2 server. The results showed that α-helices, extended strands, random coils and β-turns accounted for 84.82 %, 6.60 %, 5.56 % and 3.01 % in EgPmy’s secondary structure, respectively. A total of 29 linear B-cell epitopes and 6 conformational epitopes were identified together with 25 CTL epitopes. The CTL epitope 709KLEEAEAFA717 showed a high potential to elicit CTL response. These results suggested that EgPmy has a strong immunogenicity, which could serve as a reference for the development of EgPmy-based epitope vaccine against CE.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

He, Shudong, Jinlong Zhao, Walid Elfalleh, Mohamed Jemaà, Hanju Sun, Xianbao Sun, Mingming Tang, Qian He, Zeyu Wu y Florian Lang. "In Silico Identification and in Vitro Analysis of B and T-Cell Epitopes of the Black Turtle Bean (Phaseolus Vulgaris L.) Lectin". Cellular Physiology and Biochemistry 49, n.º 4 (2018): 1600–1614. http://dx.doi.org/10.1159/000493496.

Texto completo
Resumen
Background/Aims: The incidence of lectin allergic disease is increasing in recent decades, and definitive treatment is still lacking. Identification of B and T-cell epitopes of allergen will be useful in understanding the allergen antibody responses as well as aiding in the development of new diagnostics and therapy regimens for lectin poisoning. In the current study, we mainly addressed these questions. Methods: Three-dimensional structure of the lectin from black turtle bean (Phaseolus vulgaris L.) was modeled using the structural template of Phytohemagglutinin from P. vulgaris (PHA-E, PDB ID: 3wcs.1.A) with high identity. The B and T-cell epitopes were screened and identified by immunoinformatics and subsequently validated by ELISA, lymphocyte proliferation and cytokine profile analyses. Results: Seven potential B-cell epitopes (B1 to B7) were identified by sequence and structure based methods, while three T-cell epitopes (T1 to T3) were identified by the predictions of binding score and inhibitory concentration. The epitope peptides were synthesized. Significant IgE binding capability was found in B-cell epitopes (B2, B5, B6 and B7) and T2 (a cryptic B-cell epitope). T1 and T2 induced significant lymphoproliferation, and the release of IL-4 and IL-5 cytokine confirmed the validity of T-cell epitope prediction. Abundant hydrophobic amino acids were found in B-cell epitope and T-cell epitope regions by amino acid analysis. Positively charged amino acids, such as His residue, might be more favored for B-cell epitope. Conclusion: The present approach can be applied for the identification of epitopes in novel allergen proteins and thus for designing diagnostics and therapies in lectin allergy.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Depla, Erik, Annegret Van der Aa, Brian D. Livingston, Claire Crimi, Koen Allosery, Veronique De Brabandere, Jonathan Krakover et al. "Rational Design of a Multiepitope Vaccine Encoding T-Lymphocyte Epitopes for Treatment of Chronic Hepatitis B Virus Infections". Journal of Virology 82, n.º 1 (17 de octubre de 2007): 435–50. http://dx.doi.org/10.1128/jvi.01505-07.

Texto completo
Resumen
ABSTRACT Protein sequences from multiple hepatitis B virus (HBV) isolates were analyzed for the presence of amino acid motifs characteristic of cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes with the goal of identifying conserved epitopes suitable for use in a therapeutic vaccine. Specifically, sequences bearing HLA-A1, -A2, -A3, -A24, -B7, and -DR supertype binding motifs were identified, synthesized as peptides, and tested for binding to soluble HLA. The immunogenicity of peptides that bound with moderate to high affinity subsequently was assessed using HLA transgenic mice (CTL) and HLA cross-reacting H-2bxd (BALB/c × C57BL/6J) mice (HTL). Through this process, 30 CTL and 16 HTL epitopes were selected as a set that would be the most useful for vaccine design, based on epitope conservation among HBV sequences and HLA-based predicted population coverage in diverse ethnic groups. A plasmid DNA-based vaccine encoding the epitopes as a single gene product, with each epitope separated by spacer residues to enhance appropriate epitope processing, was designed. Immunogenicity testing in mice demonstrated the induction of multiple CTL and HTL responses. Furthermore, as a complementary approach, mass spectrometry allowed the identification of correctly processed and major histocompatibility complex-presented epitopes from human cells transfected with the DNA plasmid. A heterologous prime-boost immunization with the plasmid DNA and a recombinant MVA gave further enhancement of the immune responses. Thus, a multiepitope therapeutic vaccine candidate capable of stimulating those cellular immune responses thought to be essential for controlling and clearing HBV infection was successfully designed and evaluated in vitro and in HLA transgenic mice.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Brown, Wendy C., Guy H. Palmer, Harris A. Lewin y Travis C. McGuire. "CD4+ T Lymphocytes from Calves Immunized withAnaplasma marginale Major Surface Protein 1 (MSP1), a Heteromeric Complex of MSP1a and MSP1b, Preferentially Recognize the MSP1a Carboxyl Terminus That Is Conserved among Strains". Infection and Immunity 69, n.º 11 (1 de noviembre de 2001): 6853–62. http://dx.doi.org/10.1128/iai.69.11.6853-6862.2001.

Texto completo
Resumen
ABSTRACT Native major surface protein 1 (MSP1) of the ehrlichial pathogenAnaplasma marginale induces protective immunity in calves challenged with homologous and heterologous strains. MSP1 is a heteromeric complex of a single MSP1a protein covalently associated with MSP1b polypeptides, of which at least two (designated MSP1F1 and MSP1F3) in the Florida strain are expressed. Immunization with recombinant MSP1a and MSP1b alone or in combination fails to provide protection. The protective immunity in calves immunized with native MSP1 is associated with the development of opsonizing and neutralizing antibodies, but CD4+ T-lymphocyte responses have not been evaluated. CD4+ T lymphocytes participate in protective immunity to ehrlichial pathogens through production of gamma interferon (IFN-γ), which promotes switching to high-affinity immunoglobulin G (IgG) and activation of phagocytic cells to produce nitric oxide. Thus, an effective vaccine for A. marginaleand related organisms should contain both T- and B-lymphocyte epitopes that induce a strong memory response that can be recalled upon challenge with homologous and heterologous strains. This study was designed to determine the relative contributions of MSP1a and MSP1b proteins, which contain both variant and conserved amino acid sequences, in stimulating memory CD4+ T-lymphocyte responses in calves immunized with native MSP1. Peripheral blood mononuclear cells and CD4+ T-cell lines from MSP1-immunized calves proliferated vigorously in response to the immunizing strain (Florida) and heterologous strains of A. marginale. The conserved MSP1-specific response was preferentially directed to the carboxyl-terminal region of MSP1a, which stimulated high levels of IFN-γ production by CD4+ T cells. In contrast, there was either weak or no recognition of MSP1b proteins. Paradoxically, all calves developed high titers of IgG antibodies to both MSP1a and MSP1b polypeptides. These findings suggest that in calves immunized with MSP1 heteromeric complex, MSP1a-specific T lymphocytes may provide help to MSP1b-specific B lymphocytes. The data provide a basis for determining whether selected MSP1a CD4+ T-lymphocyte epitopes and selected MSP1a and MSP1b B-lymphocyte epitopes presented on the same molecule can stimulate a protective immune response.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Gao, Yi, Chong Wang y Gary A. Splitter. "Mapping T and B lymphocyte epitopes of bovine herpesvirus-1 glycoprotein B". Journal of General Virology 80, n.º 10 (1 de octubre de 1999): 2699–704. http://dx.doi.org/10.1099/0022-1317-80-10-2699.

Texto completo
Resumen
Glycoprotein B (gB) is a major envelope protein of bovine herpesvirus-1 (BHV-1). As a subunit vaccine, the extracellular domain of recombinant gB induces neutralizing antibody and T cell responses that engender protection against virus challenge. Here, lymphocytes from animals of different parentage were analysed for T cell proliferation to the gB extracellular domain for immune recognition. Four truncated overlapping gB gene segments encoding 742 amino acids were expressed from a baculovirus vector to identify antigenic regions. One immunodominant region (amino acids 254–532) was recognized by T cells from immune individuals of different parentage. Serial synthetic peptides spanning this region localized the T cell (amino acids 319–340 and 415–436) and B cell (amino acids 331–352, 475–496 and 487–508) epitopes. Elucidation of gB epitopes indicates the diverse and distinctive recognition by T cells and antibodies of this envelope glycoprotein by cattle, the natural host of BHV-1.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Li, Zhen, C. Marcela Díaz-Montero, Gustavo Valbuena, Xue-Jie Yu, Juan P. Olano, Hui-Min Feng y David H. Walker. "Identification of CD8 T-Lymphocyte Epitopes in OmpB of Rickettsia conorii". Infection and Immunity 71, n.º 7 (julio de 2003): 3920–26. http://dx.doi.org/10.1128/iai.71.7.3920-3926.2003.

Texto completo
Resumen
ABSTRACT The 1.2-kb DNA fragment of the Rickettsia conorii outer membrane protein B gene (OmpB451-846) was subcloned using site-specific PCR primers and expressed as six smaller fragments: OmpB458-652, OmpB595-744, OmpB595-654, OmpB645-692, OmpB689-744, and OmpB739-848. NCTC cells transfected with a mammalian expression vector expressing the fragments OmpB689-744 and OmpB739-848 stimulated immune anti-R. conorii CD8 T lymphocytes, suggesting the presence of CD8 T-lymphocyte-stimulating epitopes on these fragments. In order to further characterize the CD8 T-lymphocyte-stimulatory elements, CD8 T-lymphocyte epitopes on OmpB689-744 and OmpB739-848 were mapped by overlapping synthetic peptides. The ability of these synthetic peptides to stimulate immune CD8 T lymphocytes was determined by gamma interferon (IFN-γ) production and cell proliferation after incubation with simian virus 40-transformed murine vascular endothelial cells in the presence of a 20 μM solution of each synthetic peptide. Five synthetic peptides, SKGVNVDTV (OmpB708-716), ANVGSFVFN (OmpB735-743), IVSGTVGGQ (OmpB749-757), ANSTLQIGG (OmpB789-797), and IVEFVNTGP (OmpB812-820), induced secretion of IFN-γ at significantly higher levels than the controls. Three of these five peptides, SKGVNVDTV (OmpB708-716), ANSTLQIGG (OmpB789-797), and IVEFVNTGP (OmpB812-820), also stimulated the proliferation of immune CD8 T lymphocytes. Significantly higher levels of specific cytotoxic T-lymphocyte killing were observed with the same three synthetic peptides, SKGVNVDTV (OmpB708-716), ANSTLQIGG (OmpB789-797), and IVEFVNTGP (OmpB812-820).
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Westover, Kristi M. y Austin L. Hughes. "Evolution of cytotoxic T-lymphocyte epitopes in hepatitis B virus". Infection, Genetics and Evolution 7, n.º 2 (marzo de 2007): 254–62. http://dx.doi.org/10.1016/j.meegid.2006.10.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Song, Xiaojie, Guanghui Zhao y Meiling Ding. "Antigen Epitope Developed Based on Acinetobacter baumannii MacB Protein Can Provide Partial Immune Protection in Mice". BioMed Research International 2020 (20 de octubre de 2020): 1–11. http://dx.doi.org/10.1155/2020/1975875.

Texto completo
Resumen
Acinetobacter baumannii (A. baumannii) is an important opportunistic pathogen widely present in medical environment. Given its complex drug resistance, A. baumannii poses a serious threat to the safety of critically ill patients. Given the limited alternative antibiotics, nonantibiotic-based functional anti-A. baumannii infection proteins must be developed. In this study, we firstly used a series of biological software to predict potential epitopes in the MacB protein sequence and verified them by antibody recognition and lymphocyte proliferation tests. We finally screened out B cell epitope 2, CD8+ T cell epitope 7, and CD4+ T cell epitope 11 and connected them to construct a recombinant antigen epitope (RAE). The determination of IgG in the serum of immunised mice and cytokines in the supernatant of lymphocytes showed that the constructed epitope induced an immune response mediated by Th-1 cells. Finally, the challenge experiment of A. baumannii infection in mice confirmed that the epitope developed based on MacB, especially RAE, provided incomplete immune protection for mice.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Sominskaya, Irina, Dace Skrastina, Andris Dislers, Denis Vasiljev, Marija Mihailova, Velta Ose, Dzidra Dreilina y Paul Pumpens. "Construction and Immunological Evaluation of Multivalent Hepatitis B Virus (HBV) Core Virus-Like Particles Carrying HBV and HCV Epitopes". Clinical and Vaccine Immunology 17, n.º 6 (21 de abril de 2010): 1027–33. http://dx.doi.org/10.1128/cvi.00468-09.

Texto completo
Resumen
ABSTRACT A multivalent vaccine candidate against hepatitis B virus (HBV) and hepatitis C virus (HCV) infections was constructed on the basis of HBV core (HBc) virus-like particles (VLPs) as carriers. Chimeric VLPs that carried a virus-neutralizing HBV pre-S1 epitope corresponding to amino acids (aa) 20 to 47 in the major immunodominant region (MIR) and a highly conserved N-terminal HCV core epitope corresponding to aa 1 to 60 at the C terminus of the truncated HBcΔ protein (N-terminal aa 1 to 144 of full-length HBc) were produced in Escherichia coli cells and examined for their antigenicity and immunogenicity. The presence of two different foreign epitopes within the HBc molecule did not interfere with its VLP-forming ability, with the HBV pre-S1 epitope exposed on the surface and the HCV core epitope buried within the VLPs. After immunization of BALB/c mice, specific T-cell activation by both foreign epitopes and a high-titer antibody response against the pre-S1 epitope were found, whereas an antibody response against the HBc carrier was notably suppressed. Both inserted epitopes also induced a specific cytotoxic-T-lymphocyte (CTL) response, as shown by the gamma interferon (IFN-γ) production profile.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

B., Jesvin Bency y Mary Helen P. A. "Novel epitope based peptides for vaccine against SARS-CoV-2 virus: immunoinformatics with docking approach". International Journal of Research in Medical Sciences 8, n.º 7 (26 de junio de 2020): 2385. http://dx.doi.org/10.18203/2320-6012.ijrms20202875.

Texto completo
Resumen
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative viral strain for the contagious pandemic respiratory illness in humans which is a public health emergency of international concern. There is a desperate need for vaccines and antiviral strategies to combat the rapid spread of SARS-CoV-2 infection.Methods: The present study based on computational methods has identified novel conserved cytotoxic T-lymphocyte epitopes as well as linear and discontinuous B-cell epitopes on the SARS-CoV-2 spike (S) protein. The predicted MHC class I and class II binding peptides were further checked for their antigenic scores, allergenicity, toxicity, digesting enzymes and mutation.Results: A total of fourteen linear B-cell epitopes where GQSKRVDFC displayed the highest antigenicity-score and sixteen highly antigenic 100% conserved T-cell epitopes including the most potential vaccine candidates MHC class-I peptide KIADYNYKL and MHC class-II peptide VVFLHVTYV were identified. Furthermore, the potential peptide QGFSALEPL with high antigenicity score attached to larger number of human leukocyte antigen alleles. Docking analyses of the allele HLA-B*5201 predicted to be immunogenic to several of the selected epitopes revealed that the peptides engaged in strong binding with the HLA-B*5201 allele.Conclusions: Collectively, this research provides novel candidates for epitope-based peptide vaccine design against SARS-CoV-2 infection.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Epitopes, B-Lymphocyte"

1

Yin, Liusong. "Studies of HLA-DM in Antigen Presentation and CD4+ T Cell Epitope Selection: A Dissertation". eScholarship@UMMS, 2014. http://escholarship.umassmed.edu/gsbs_diss/700.

Texto completo
Resumen
Antigen presented to CD4+ T cells by major histocompatibility complex class II molecules (MHCII) plays a key role in adaptive immunity. Antigen presentation is initiated by the proteolytic cleavage of pathogenic or self proteins and loading of resultant peptides to MHCII. The loading and exchange of peptides to MHCII is catalyzed by a nonclassical MHCII molecule, HLA-DM (DM). It is well established that DM promotes peptide exchange in vitro and in vivo. However, the mechanism of DM-catalyzed peptide association and dissociation, and how this would affect epitope selection in human responses to infectious disease remain unclear. The work presented in this thesis was directed towards the understanding of mechanism of DM-mediated peptide exchange and its role in epitope selection. In Chapter II, I measured the binding affinity, intrinsic dissociation half-life and DM-mediated dissociation half-life for a large set of peptides derived from vaccinia virus and compared these properties to the peptide-specific CD4+ T cell responses. These data indicated that DM shapes the peptide repertoire during epitope selection by favoring the presentation of peptides with greater DM-mediated kinetic stability, and DM-susceptibility is a strong and independent factor governing peptide immunogenicity. In Chapter III, I computationally simulated peptide binding competition reactions and found that DM influences the IC50 (50% inhibition concentration) of peptides based on their susceptibility to DM, which was confirmed by experimental data. Therefore, I developed a novel fluorescence polarization-based method to measure DM-susceptibility, reported as a IC50 (change in IC50 in the absence and presence of DM). Traditional assays to measure DM-susceptibility based on differential peptide dissociation rates are cumbersome because each test peptide has to be individually labeled and multiple time point samples have to be collected. However, in this method developed here only single probe peptide has to be labeled and only single reading have to be done, which allows for fast and high throughput measure of DM-susceptibility for a large set of peptides. In Chapter IV, we generated a series of peptide and MHCII mutants, and investigated their interactions with DM. We found that peptides with non-optimal P1 pocket residues exhibit low MHCII affinity, low kinetic stability and high DM-susceptibility. These changes were accompanied with conformational alterations detected by surface plasmon resonance, gel filtration, dynamic light scattering, small-angle X-ray light scattering, antibody-binding, and nuclear magnetic resonance assays. Surprisingly, all these kinetic and conformational changes could be reversed by reconstitution with a more optimal P9 pocket residue. Taken together, our data demonstrated that conformation of MHCII-peptide complex constrained by interactions throughout the peptide binding groove is a key determinant of DM-susceptibility. B cells recognizing cognate antigen on the virion can internalize and process the whole virion for antigen presentation to CD4+ T cells specific for an epitope from any of the virion proteins. In turn, the epitope-specific CD4+ T cells provide intermolecular (also known as noncognate or heterotypic) help to B cells to generate antibody responses against any protein from the whole virion. This viral intermolecular help model in which CD4+ T cells provide help to B cells with different protein specificities was established in small size influenza virus, hepatitis B virus and viral particle systems. For large and complex pathogens such as vaccinia virus and bacteria, the CD4+ T cell-B cell interaction model may be complicated because B cells might not be able to internalize the large whole pathogen. Recently, a study in mice observed that CD4+ T cell help is preferentially provided to B cells with the same protein specificity to generate antibody responses against vaccinia virus. However, for larger pathogens such as vaccinia virus and bacteria the CD4+ T cell-B cell interaction model has yet to be tested in humans. In Chapter V, I measured in 90 recently vaccinated and 7 long-term vaccinia-immunized human donors the CD4+ T cell responses and antibody responses against four vaccinia viral proteins (A27L, A33R, B5R and L1R) known to be strongly targeted by cellular and humoral responses. We found that there is no direct linkage between antibody and CD4+ T cell responses against each protein. However, the presence of immune responses against these four proteins is linked together within donors. Taken together, our data indicated that individual viral proteins are not the primary recognition unit and CD4+ T cells provide intermolecular help to B cells to generate robust antibody responses against large and complicated vaccinia virus in humans.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Townsley, Elizabeth. "CD8+ T Cell and NK Responses to a Novel Dengue Epitope: A Possible Role for KIR3DL1 in Dengue Pathogenesis: A Dissertation". eScholarship@UMMS, 2004. http://escholarship.umassmed.edu/gsbs_diss/709.

Texto completo
Resumen
Variation in the sequence of T cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T cell responses during second heterologous infections contributing to pathology following DENV infection. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein, NS126-34. We predicted higher frequencies of NS126-34-specific CD8+ T cells in PBMC from individuals undergoing secondary, rather than primary, DENV infection due to the expansion of memory CD8+T cells. We generated a tetramer against this epitope (B57-NS126-34TET) and used it to assess the frequencies and phenotype of antigen-specific T cells in samples from a clinical cohort of children with acute DENV infection established in Bangkok, Thailand. High tetramer-positive T cell frequencies during acute infection were seen in only 1 of 9 subjects with secondary infection. B57-NS126-34-specific, other DENV epitope-specific CD8+ T cells, as well as total CD8+ T cells, expressed an activated phenotype (CD69+ and/or CD38+) during acute infection. In contrast, expression of CD71 was largely limited to DENV-specific CD8+ T cells. In vitro stimulation of CD8+ T cell lines, generated against three different DENV epitopes, indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides with substantial upregulation of CD71 detected to peptides which also elicited strong functional responses. CD71 may therefore represent a useful marker of antigenspecific T cell activation. During the course of our analysis we found substantial binding of B57-NS126-34 TET to CD8- cells. We demonstrated that the B57-NS126-34 TET bound KIR3DL1, an inhibitory receptor on natural killer (NK) cells. NK sensitive target cells presenting the NS126-34 peptide in the context of HLA-B57 were able to dampen functional responses of only KIR3DL1+ NK cells. Analysis of the activation of an NK enriched population in our Thai cohort revealed peak activation during the critical time phase in patients with severe dengue illness, dengue hemorrhagic fever, compared to people with mild illness. Our data identified CD71 as biologically useful marker to study DENV-specific CD8+ T cell responses and highlighted the role of viral peptides in modulating NK cell activation through KIR-MHC class I interactions during DENV infection.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Townsley, Elizabeth. "CD8+ T Cell and NK Responses to a Novel Dengue Epitope: A Possible Role for KIR3DL1 in Dengue Pathogenesis: A Dissertation". eScholarship@UMMS, 2014. https://escholarship.umassmed.edu/gsbs_diss/709.

Texto completo
Resumen
Variation in the sequence of T cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T cell responses during second heterologous infections contributing to pathology following DENV infection. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein, NS126-34. We predicted higher frequencies of NS126-34-specific CD8+ T cells in PBMC from individuals undergoing secondary, rather than primary, DENV infection due to the expansion of memory CD8+T cells. We generated a tetramer against this epitope (B57-NS126-34TET) and used it to assess the frequencies and phenotype of antigen-specific T cells in samples from a clinical cohort of children with acute DENV infection established in Bangkok, Thailand. High tetramer-positive T cell frequencies during acute infection were seen in only 1 of 9 subjects with secondary infection. B57-NS126-34-specific, other DENV epitope-specific CD8+ T cells, as well as total CD8+ T cells, expressed an activated phenotype (CD69+ and/or CD38+) during acute infection. In contrast, expression of CD71 was largely limited to DENV-specific CD8+ T cells. In vitro stimulation of CD8+ T cell lines, generated against three different DENV epitopes, indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides with substantial upregulation of CD71 detected to peptides which also elicited strong functional responses. CD71 may therefore represent a useful marker of antigenspecific T cell activation. During the course of our analysis we found substantial binding of B57-NS126-34 TET to CD8- cells. We demonstrated that the B57-NS126-34 TET bound KIR3DL1, an inhibitory receptor on natural killer (NK) cells. NK sensitive target cells presenting the NS126-34 peptide in the context of HLA-B57 were able to dampen functional responses of only KIR3DL1+ NK cells. Analysis of the activation of an NK enriched population in our Thai cohort revealed peak activation during the critical time phase in patients with severe dengue illness, dengue hemorrhagic fever, compared to people with mild illness. Our data identified CD71 as biologically useful marker to study DENV-specific CD8+ T cell responses and highlighted the role of viral peptides in modulating NK cell activation through KIR-MHC class I interactions during DENV infection.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Apostolico, Juliana de Souza. "Influência da imunização inicial com a vacina codificando epítopos para linfócitos T CD4 + do HIV na resposta imune direcionada a proteína env". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/5/5146/tde-04122013-162031/.

Texto completo
Resumen
A epidemia causada pelo vírus da imunodeficiência humana (HIV) é a mais importante das ultimas décadas. A despeito dos avanços no conhecimento da patogenia do vírus e da resposta imune à infecção, até o momento não existe uma vacina eficaz contra a aquisição do HIV. Diversas linhas de evidência indicam que anticorpos neutralizantes ou ligadores, linfócitos T CD4+ e T CD8+ desempenham um papel importante na imunidade contra o HIV. Os anticorpos que são capazes de neutralizar o HIV são direcionados principalmente à glicoproteína do envelope do vírus (env), mas os candidatos vacinais baseados na proteína de envelope gp120 monomérica testados até hoje falharam em induzir proteção nos ensaios de eficácia. Avanços no entendimento da estrutura e função da glicoproteína env tem facilitado o desenvolvimento de uma nova geração de imunógenos baseada em trímeros mais estáveis e solúveis da glicoproteína gp140. Em uma formulação vacinal além da escolha do antígeno, os adjuvantes desempenham um papel fundamental. Os adjuvantes são conhecidos por aumentar a imunogenicidade das vacinas, e nos últimos anos vários compostos, incluindo agonistas de receptores do tipo Toll (TLR) e NOD (NLR) têm demonstrado eficácia em ensaios clínicos. Em estudos prévios, nosso grupo demonstrou que a imunização de camundongos com uma vacina de DNA codificando 18 epítopos para linfócitos T CD4+ do HIV-1 (HIVBr18), foi capaz de induzir resposta específica e ampla de linfócitos T CD4+ e T CD8+. Devido ao importante papel do efeito auxiliar de linfócitos T CD4+ na resposta humoral nas imunizações assistidas por diversos adjuvantes, o objetivo central do trabalho foi verificar se a imunização inicial com a vacina de DNA HIVBr18 seria capaz de aumentar a magnitude/qualidade de resposta imune humoral e celular induzida pelo trímero de gp140 na presença de diferentes adjuvantes. Para tal, camundongos BALB/c foram imunizados inicialmente com a vacina HIVBr18 ou com o vetor vazio e posteriormente com a proteína gp140 na presença dos adjuvantes: completo de Freund (ACF), poly IC, CpG ODN 1826, Monofosforil lipídeo A (MPL), Muramildipeptídeo (MDP), Imiquimod (R837), e Resiquimod (R848). Observamos que a imunização inicial com HIVBr18 foi capaz de fornecer um auxílio cognato para a proliferação específica de linfócitos T CD4+ e T CD8+ e também para a produção da citocina IFNy. A análise da xx resposta humoral mostrou que a imunização inicial com a vacina HIVBr18, foi capaz de influenciar a produção das subclasses de imunoglobulinas, independente do adjuvante testado. No presente trabalho, também analisamos a influência dos adjuvantes na imunogenicidade da gp140. Os animais que receberam os adjuvantes MPL, poly IC e CpG ODN 1826 apresentaram títulos de anticorpos estatisticamente superiores quando comparados aos animais que receberam os adjuvantes Alum, MDP, R837 e R848. Observamos que os animais imunizados com a gp140 na presença dos diferentes adjuvantes desenvolveram células B do centro germinativo e células TCD4+ auxiliar foliculares. Estes resultados nos permitem concluir que a imunização inicial com HIVBr18 é capaz de alterar a qualidade da resposta humoral e celular gp140- específica. Assim, essa formulação poderia ser utilizada para auxiliar e/ou direcionar a resposta imune induzida por outros imunógenos como por exemplo o trímero de gp140. Podemos concluir também que diferentes formulações de adjuvantes que se encontram em ensaios clínicos como poly IC, CpG ODN e MPL podem ser capazes de induzir um resposta imune humoral e celular tão ou mais potente que aquela induzida pelo ACF
The epidemic caused by the human immunodeficiency virus (HIV) is the most important in the last decades. Despite advances in the knowledge about virus pathogenesis and immune response to infection, until now there is not an effective vaccine against HIV acquisition. Several evidences indicate that neutralizing or binding antibodies, CD4+ and CD8+ T lymphocytes play an important role in immunity against HIV. The antibodies that are able to neutralize HIV are primarily directed against the virus envelope glycoprotein (env), but the vaccine candidates based on monomeric gp120 envelope protein tested so far failed to induce protection in efficacy trials. Advances in understanding the structure and function of the env glycoprotein have facilitated the development of a new generation of immunogens based on trimers, a more stable and soluble form of gp140 glycoprotein. In a vaccine formulation, in addition to the antigen, adjuvants play a pivotal role. Adjuvants are known to increase the immunogenicity of vaccines and, in the last years, several compounds, including agonists of Toll-like receptors (TLR) and NOD (NLR), have presented efficacy in clinical trials. In previous work, our group demonstrated that immunization of mice with a DNA vaccine (HIVBr18) encoding 18 CD4+ T cells epitopes from HIV-1 was able to induce a broad CD4+ T and CD8+ T cells specific response.. Given the important role of CD4+ T cells in the humoral response after adjuvant-assisted immunization, the aim of the study was to verify whether an initial immunization with the DNA vaccine HIVBr18 could increase the magnitude/quality of humoral and cellular immune response induced by gp140 trimer in the presence of different adjuvants. Therefore, BALB/c mice were initially immunized with the vaccine HIVBr18 or empty vector and then with gp140 in the presence of the following adjuvants: Freund\'s complete (CFA), poly IC, CpG ODN 1826, monophosphoryl lipid A (MPL), Muramyl dipeptide (MDP), Imiquimod (R837), and Resiquimod (R848). We observed that initial immunization with HIVBr18 was able to provide cognate help for specific CD4+ and CD8+ T cells proliferation and also for IFN-y production. Analysis of humoral response showed that initial immunization with the HIVBr18 vaccine was able to alter the production of immunoglobulin subclasses independent of the adjuvant tested. This work also analyzed the influence of adjuvants on the immunogenicity of gp140. Mice that received the adjuvant MPL, poly IC and CpG ODN 1826 presented higher antibody titers when compared to animals that received Alum, MDP, R837 and R848. We observed that mice immunized with gp140 in the presence of all adjuvants tested developed germinal center B cells and follicular helper T cells (TFH). We conclude that initial immunization with HIVBr18 is able to alter the quality of specific humoral and cellular immune responses.. Therefore, this formulation could be used in combination with other immunogens, such as gp140, to help/redirect the immune response. We also conclude that the adjuvants that are in clinical trials such as poly IC, MPL and CpG ODN 1826 may be able to induce stronger humoral and cellular response than CFA
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Yaciuk, Jane Cherie. "Mechanisms of T cell tolerance to the RNA-binding nuclear autoantigen human La/SS-B". Oklahoma City : [s.n.], 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Estienne, Valérie. "Etudes structurales et fonctionnelles des auto-épitopes B de la thyroperoxydase humaine". Aix-Marseille 2, 1999. http://theses.univ-amu.fr.lama.univ-amu.fr/1999AIX20675.pdf.

Texto completo
Resumen
La thyroperoxydase (TPO) est un autoantigène impliqué dans les maladies autoimmunes thyroïdiennes (MAIT). Nous avons localisé un autoépitope B à l'extrémité C-terminale de la TPO entre les acides aminés (aa) 742-933. L'épitope contenu dans cette région est conformationnel et une tyrosine participe à la liaison les autoanticorps (aAc). Ceci nous a permis de conclure que l'épitope est extra-cellulaire et donc contenu dans la région 742-848. L'étude de la structure primaire de cette région a mis en évidence qu'elle contenait deux domaines; un domaine sushi et un domaine EGF. L'homologie avec d'autres protéines contenant ces domaines nous a permis de construire un modèle structural de cette région. De plus la présence d'un site de fixation du calcium dans le domaine EGF nous a amené à étudier le rôle de celui-ci dans la fixation des aAc. Il a été trouvé que le calcium inhibait la fixation d'un anticorps monoclonal spécifique de la région 742-848 et montrant une réactivité croisée avec les aAc. Nous avons montré par mutagénèse dirigée, que c'est la tyrosine 772 du domaine sushi, qui est impliquée dans la liaison avec les aAc. Associée avec le rôle du calcium, l'implication de cette tyrosine nous a amené à localiser l'épitope dans la région interdomaine décrite comme hyperflexible. Ceci a permis d'émettre plusieurs hypothèses sur le rôle du calcium et sur la relation entre la conformation de cette région et la fixation des aAc. Des expérience de compétition croisées avec des anticorps spécifiques ont mis l'accent sur la la nature hautement conformationnelle de la région immunodominante de la TPO. L'étude de sérums individuels de patients a révélé que cet épitope était spécifique de la thyroïdite d'Hashimoto, constituant ainsi, le premier marqueur positif de cette maladie. Il pourrait donc aider au diagnostic et servir à la mise au point de nouvelles stratégies thérapeutiques.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Borgo, Adriana Coutinho. "Caracterização fenotípica e funcional de linfócitos T de memória de indivíduos infectados pelo HIV reativos a epitopos T CD4+ derivados de sequências do consenso B do HIV-1". Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/5/5146/tde-28042010-171033/.

Texto completo
Resumen
A persistência de células T de memória funcionais é importante para garantir uma imunidade protetora na infecção pelo Vírus da Imunodeficiência Humana (HIV). As células T de memória têm sido subdivididas em memória central (TCM), memória efetora (TEM) e memória efetora altamente diferenciada (TEMRA) com base na expressão de moléculas de superfície como CCR7 e CD45RA, e na capacidade de produzir citocinas e proliferar. Recentemente, identificamos 18 peptídeos derivados de seqüências do consenso B do HIV-1, ligadores de múltiplas moléculas HLA-DR e amplamente reconhecidos por linfócitos T de sangue periférico de pacientes infectados pelo HIV. Diante disso e considerando a importância das células T de memória na manutenção da resposta imune específica, nosso objetivo foi caracterizar fenotípica e funcionalmente as subpopulações de células T de memória de indivíduos infectados pelo HIV envolvidas no reconhecimento in vitro desses epitopos. Foram incluídos 14 indivíduos controles sadios e 61 pacientes HIV+ com contagem de linfócitos T CD4+ maior que 250 células/mm3. Os pacientes HIV+ foram divididos em seis diferentes grupos clínicos de acordo com o estágio da infecção, carga viral (CV) plasmática e uso de terapia anti-retroviral (ART): não progressores por longo tempo (LTNP), avirêmicos em uso de ART (AV-ART), virêmicos em uso de ART (VI-ART), virêmicos sem uso de ART (VI sem ART), virêmicos recéminfectados sem uso de ART (VI-RI) e controladores. Células mononucleares do sangue periférico dos indivíduos do estudo foram estimuladas com o conjunto de peptídeos do HIV-1 e com um conjunto de peptídeos do Citomegalovírus (CMV). A freqüência de células de memória produtoras de IFN- e IL-2 e a proliferação celular antígeno-específica foram detectadas por citometria de fluxo de multiparâmetros. Nossos resultados mostraram que o conjunto de peptídeos do HIV-1 foi capaz de ativar subpopulações funcionais de memória TCM, TEM e TEMRA secretoras de IFN- e IL-2 em 100% dos pacientes HIV+ dos diferentes grupos clínicos. O conjunto de peptídeos do HIV-1 também induziu proliferação das subpopulações de linfócitos T de memória. As freqüências de TEMRA CD4+IFN-+, TEMRA CD4+IFN-+ total, TCM CD8+IFN-+, TCM CD8+IFN-+ total, TEM CD8+IFN-+, TEM CD8+IFN-+ total e TEMRA CD8+IFN-+ correlacionaram-se negativamente com a carga viral do HIV em pacientes virêmicos. Esses dados sugerem que essas subpopulações de memória funcionais são importantes no controle da viremia. Comparando as respostas HIV e CMVespecíficas observamos freqüências mais elevadas de células T de memória produtoras de IL-2, IFN-/IL-2 e IFN- em respostas ao pool de peptídeos do HIV. Esses dados sugerem que esse conjunto de peptídeos derivados de seqüências do HIV-1 ativa respostas polifuncionais de subpopulações de linfócitos T de memória. Nossos resultados mostraram que o conjunto de peptídeos do HIV-1 foi capaz de estimular diferentes subpopulações distintas de linfócitos T de memória produtores de IFN-, IFN-,/IL-2 e IL-2 de indivíduos em diferentes estágios da infecção pelo HIV e sugerem o envolvimento de subpopulações de memória funcionais no controle da viremia. Estes achados fortalecem a possibilidade de uso desses peptídeos em uma formulação vacinal bem-sucedida em humanos
The persistence of functional memory T cell is important to ensure a protective immunity to Human Immunodeficiency Virus (HIV) infection. Memory T cells have been subdivided into central memory (TCM), effector memory (TEM) and highly differentiated effector memory (TEMRA) based on the expression of surface molecules such as CCR7 and CD45RA, and the ability to produce cytokines and proliferate. Recently, we identified 18 peptides derived from B consensus sequences of HIV-1 that bind to multiple HLA-DR molecules and are widely recognized by peripheral blood T lymphocytes from HIV-infected patients. Given this and considering the importance of memory T cells in the maintenance of specific immune response, our objective was to characterize phenotypic and functionally memory T cell subsets from HIV-infected individuals involved in the recognition of these epitopes in vitro. The study included 14 healthy control subjects and 61 HIV+ patients with CD4+ lymphocytes counts higher than 250 cells/mm3. The HIV+ patients were divided into six different clinical groups according to the stage of infection, plasma viral load (VL) and antiretroviral therapy use (ART): long-term non-progressors (LTNP), aviremic under ART (AV-ART), viremic under ART (VI-ART), viremic without using ART (VI without ART), recently infected viremic without using ART (VI-RI) and controllers. Peripheral blood mononuclear cells from study subjects were stimulated with HIV-1 peptide pool and with a cytomegalovirus (CMV) peptide pool. The frequencies of IFN- and IL-2 producing memory cells and antigenspecific cell proliferation were detected by multiparametric flow cytometry. Our results showed that the HIV-1 set of peptides was able to activate TCM, TEM and TEMRA functional memory subsets that secrete IFN- and IL-2 in 100% of the HIV patients from the different clinical groups. The HIV-1 set of peptides also induced memory T lymphocyte subsets proliferation. TEMRA CD4+IFN-+, total TEMRA CD4+IFN-+, TCM CD8+IFN-+, total TCM CD8+IFN-+, total TEM CD8+IFN-+, TEM CD8+IFN-+ and TEMRA CD8+IFN- + frequencies negatively correlated with HIV viral load in viremic patients. These data suggest that these functional memory subsets are important to control the viremia. When comparing the HIV and CMV-specific responses we observed higher frequencies of IL-2, IFN-/IL-2 and IFN- producing memory T cells in response to HIV peptide pool. These data suggest that this set of HIV sequence derived peptides activates polyfunctional response of memory T lymphocyte subsets. Our results showed that the HIV-1 peptide set was able to stimulate different IFN-, IFN-/IL-2 e IL-2 producing memory T lymphocytes from individuals in different stages of HIV infection and suggest the involvement of functional memory subsets in the control of viremia. These findings strengthen the possibility of using these peptides in a successful vaccine formulation in humans
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Epitopes, B-Lymphocyte"

1

Korber, Bette. HIV molecular immunology 2006/2007. Editado por Los Alamos National Laboratory. Theoretical Biology and Biophysics Group T-10. Los Alamos, N.M: Los Alamos National Laboratory, Theoretical Biology and Biophysics Group T-10, 2006.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Epitopes, B-Lymphocyte"

1

Cerny, A., C. Ferrari y F. V. Chisari. "The Class I-Restricted Cytotoxic T Lymphocyte Response to Predetermined Epitopes in the Hepatitis B and C Viruses". En Current Topics in Microbiology and Immunology, 169–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78530-6_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sadeghalvad, Mona y Nima Rezaei. "Introduction on Monoclonal Antibodies". En Monoclonal Antibodies. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98378.

Texto completo
Resumen
Monoclonal antibodies (mAbs) are a group of antibodies produced by identical clones of B lymphocytes against a particular antigen. mAbs are identical in several properties such as protein sequence, antigen-binding site region, binding affinity for their targets, and identical downstream functional effects. These characteristics of mAbs highlight their differences with the polyclonal antibodies which have heterogenous activities and recognize different epitopes on an antigen. Murine mAbs was the first generation of mAbs developed by hybridoma technology however, because of their murine origin, they can trigger the anti-mouse antibody response in the host which could accelerate mAb clearance and undesirable allergic reactions upon repeated administration. This issue was resolved by developing engineering methods toward producing less immunologic chimeric or humanized antibodies. mAbs applications have become a novel way of targeting antigens in a wide variety of diseases such as autoimmunity, malignancies, and asthma. In addition, high specificity and high affinity binding properties of mAbs make them effective biological reagents in immunodiagnostic assays. They can be used in diagnosis of infectious diseases and detection of certain antigens or in serological assessments for detection of antibodies against a certain antigen. This chapter summarizes the general properties of mAbs, their production processes, and their important diagnostic and therapeutic applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Epitopes, B-Lymphocyte"

1

Geddes, V. A., G. V. Louie, G. D. Brayer y R. T. A. MacGillivray. "MOLECULAR BASIS OF HEMOPHILIA B: IDENTIFICATION OF THE DEFECT IN FACTOR IX VANCOUVER". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643872.

Texto completo
Resumen
Factor IX Vancouver (fIX-V) is the cause of a moderate form of hemophilia B. An individual presenting with this disorder had 2.6% of normal procoagulant activity in his plasma but had 62% of the normal factor IX antigen level. Specific antibodies showed that fIX-V contains epitopes for both the heavy and light chains of factor IXa. To identify the defect involved, DNA was isolated from the lymphocytes of the male hemophiliac. Southern blot analysis using a full-length factor IX cDNA as a hybridization probe showed no gross differences between the fIX-V gene and the normal factor IX gene. The DNA from the hemophiliac was then partially digested with Sau3A and the resulting fragments (10-20kbp in size) were ligated into the BamHI site of λEMBL3. The DNA was then packaged into phage particles in vitro, and the recombinant phage were screened with the factor IX cDNA as a probe. Eight phage were isolated that contained overlapping DNA covering the complete gene for fIX-V. DNA sequence analysis of the protein-encoding regions, the intron/exon junctions and 5'-and 3'-flanking sequences revealed a single nucleotide change from the normal factor IX gene. The codon for amino acid 397 was changed from ATA (lie) to ACA (Thr). This mutation is in the catalytic domain of factor IXa and is novel amongst those hemophilia B mutations reported to date. Based on the known three dimensional structures of the pancreatic serine proteases, trypsin, elastase and chymotrypsin, models have been constructed for the structures of the catalytic domains of both the normal and Thr-397 mutant of factor IXa. These results suggest that the Thr-397 mutation may alter the conformation of the substrate binding region in the active site of factor IXa Vancouver through the formation of a hydrogen bond between the hydroxyl group of the Thr-397 side chain and the main chain carbonyl group of Trp-385. The postulated conformational change would lead to reduced binding affinity for the factor IXa substrate resulting in a reduction in the catalytic activity of fIXa-Vancouver.Supported in part by grants from the Medical Research Council of Canada (to GDB and RTAM).
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía