Tesis sobre el tema "Équations différentielles partielles"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Équations différentielles partielles".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Zhao, Xuzhe. "Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales". Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1008/document.
Texto completoThere are three main results in this thesis. The first is existence and uniqueness of the solution in viscosity sense for a system of nonlinear m variational integral-partial differential equations with interconnected obstacles. From the probabilistic point of view, this system is related to optimal stochastic switching problem when the noise is driven by a Lévy process. As a by-product we obtain that the value function of the switching problem is continuous and unique solution of its associated Hamilton-Jacobi-Bellman system of equations. Next, we study a general class of min-max and max-min nonlinear second-order integral-partial variational inequalities with interconnected bilateralobstacles, related to a multiple modes zero-sum switching game with jumps. Using Perron’s method and by the help of systems of penalized unilateral reflected backward SDEs with jumps, we construct a continuous with polynomial growth viscosity solution, and a comparison result yields the uniqueness of the solution. At last, we deal with the solutions of systems of PDEs with bilateral inter-connected obstacles of min-max and max-min types in the Brownian framework. These systems arise naturally in stochastic switching zero-sum game problems. We show that when the switching costs of one side are smooth, the solutions of the min-max and max-min systems coincide. Furthermore, this solution is identified as the value function of the zero-sum switching game
Perez, Sylvie. "Identification et homogénéisation de paramètres dans des équations aux dérivées partielles". Pau, 1999. http://www.theses.fr/1999PAUU3016.
Texto completoSow, Ahmadou Bamba. "Approche probabiliste et homogénéisation d'équations aux dérivées partielles". Aix-Marseille 1, 2005. http://www.theses.fr/2005AIX11046.
Texto completoPopier, Alexandre François Roland. "Equations différentielles stochastiques rétrogrades avec condition finale singulière". Aix-Marseille 1, 2004. http://www.theses.fr/2004AIX11037.
Texto completoRivière, Olivier. "Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisation". Paris 5, 2005. http://www.theses.fr/2005PA05S028.
Texto completoThis thesis deals with the forward backward stochastic differential equations, in particular those with a coefficient of progressive diffusion which depends on all unknowns of the problem. We propose an original way to get onto this subject, letting us to reobtain some classical results of existence and uniqueness in the spirit of Pardoux-Tang and Yong's results, and to find a probabilistic representation of a new class of parabolic PDE, in which derivation coefficient of order 2 depends on the gradient of the solution. We also propose an iterative discretization scheme. We prove its convergence and give an evaluation of the error on a particular example
Riviere, Olivier. "Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisation". Phd thesis, Université René Descartes - Paris V, 2005. http://tel.archives-ouvertes.fr/tel-00011231.
Texto completoXu, Mingyu. "Contributions à l'étude des équations différentielles stochastiques rétrogrades fléchies et applications aux équations et dérivées partielles". Le Mans, 2005. http://cyberdoc.univ-lemans.fr/theses/2005/2005LEMA1004.pdf.
Texto completoIn the first chapter, we consider the reflected backward stochastic differential equation (BSDEsin short) with one or two right continuous and left limited (RCLL in short) barriers. Using the Picarditeration method, we obtained the existence and uniqueness of the solution of the reflected BSDEwith two RCLL barriers. Then we use the penalization method to the case of one RCLL barrier. Considering the solutions (Y n,Zn,Kn) of penalized equations as solutions of reflected BSDEs,we prove that the limit (Y,Z,K) is the solution of equation, by properties of Snell envelope andmonotonic limit theorem (Peng S. , 1999). In the case of equation with two RCLL barriers, by theanalogue method, we prove the limit (Y,Z,K) of penalized equation is the solution of problem,by the representation of solutions via Dynkin game. Here we need a generalized monotonic limittheorem, which permit us to pass the limit for penalized equations. In a second work, we have generalized this type of result to the case where barriers are just inL2, by the method of penalization and the theory of g-supersolution. In the second chapter, we consider the reflected BSDEs with one continuous barrier, associatedto (_, f,L), when _ 2 L2(FT ), f(t, !, y, z) is continuous, satisfies monotonic and general increasingconditions on y, and Lipschitz condition on z, and when the barrier (Lt)0_t_T is a progressivelymeasurable continuous process, which verifies certain integrability condition. We have also notable prove the existence and uniqueness of solution in L2, for this reflectedequation with determinist terminal time. The proof of existence is effected by four steps. The firststep consists to prove the result under the boundness condition of _, f(t, 0) et L+. The second step(the most delicate) consists to relax the boundness condition of L+ ; the following two step permitus to obtain the general result, relaxing the boundness condition on _ and f(t, 0). The comparisontheorems play important roles, which help us to pass the limit in the equations. Then we study thecase when the terminal time is a stopping time. The existence and uniqueness of the solution arealso proved. In the third chapter, we have studied the reflected BSDEs with one barrier, whose generator fsatisfies the monotonic and general increasing condition on y, and quadratic and linear condition onz, when the barrier L is uniformly bounded. We prove the existence of a solution by approximation,under these conditions. We also find a necessary and sufficient condition for the case f(t, !, y, z) =|z|2, and construct its solution explicitly. For the case f(t, !, y, z) = |z|p, p 2 (1, 2), we prove asufficient condition. In the forth chapter, we treat the reflected BSDE with two barrier, when f satisfies the mono-tonic, continuous and general increasing conditions on y, and Lipschitz condition on z, like in thesecond chapter. For the barriers, we suppose that L and U are continuous, L < U on [0, T], andMokoboski condition. We prove the existence and uniqueness of the solution for this equation. In the fifth chapter, we study the applications of BSDE. A important application of BSDEconsists to give a probabilistic interpretation (nonlinear Feynman-Kac formula) pour solutions ofsemilinear parabolic partial differential equations. We apply the approximation method and resultsof BSDE in (Pardoux, 1999) for semiliear PDE in Sobolev sense, by the solution of correspondingBSDEs. In following, we use the notion of PDE with obstacle (Bally et al. , 2004). By the sameapproximation in second chapter, we prove the probabilistic interpretation of the solution (u, _) ofPDE by the solution (Y,Z,K) of reflected BSDE. Here, we suppose that the obstacle h is polynomialincreasing. We prove a theorem which permits us to replace the regular test function by the randomtest function under monotonic and general increasing conditions, and by this theorem we obtainthe uniqueness of the solution of PDE from the solution of BSDE or reflected BSDE. Finally, in the last chapter, we study the numerical solutions of BSDEs and present somesimulation results, and we apply this technique to the calculation of American option
Royer, Manuela. "Équations différentielles stochastiques rétrogrades et martingales non linéaires". Rennes 1, 2003. http://www.theses.fr/2003REN1A018.
Texto completoSellami-Omrani, Sonia. "Equations aux dérivées partielles non-linéaires et ondes progressives". Paris 6, 1993. http://www.theses.fr/1993PA066641.
Texto completoGarnier, Jimmy. "Analyse mathématique de modèles de dynamique des populations : équations aux dérivées partielles paraboliques et équations intégro-différentielles". Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00755296.
Texto completoMoussaoui, Hadjer. "Contribution aux équations différentielles stochastiques rétrogrades et application aux équations aux dérivées partielles et au contrôle stochastique". Electronic Thesis or Diss., Toulon, 2018. http://www.theses.fr/2018TOUL0016.
Texto completoThe objective of this thesis is to study backward stochastic differential equations (BSDE) and forward-backward stochastic differential equations (FBSDE), the main results are:The first is about the solvability of logarithmic BSDE of type (lylllnlyll lzlJllnlzll) and application to partial differential equations (PDE). The second concems the existence of strict optimal control for a system driven by a strongly coupled FBSDE. Multiple applications are established. A result of existence and uniqueness of the solution of the Hamilton-Jacobi-Belmann equation (HJB) is also established
Massa-Turpin, Isabelle. "Sur l'interprétation probabiliste de solutions faibles D'EDP : contrôle stochastique optimal sous observations partielles et équations différentielles stochastiques rétrogrades". Valenciennes, 2004. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/be5e6f25-dba7-491b-aa3c-07d7f6306048.
Texto completoThe thesis is divided in two parts. It deals with viscosity solutions of variational inequalities or quasi-variational inequalities in the first section. More precisely, we are interested in the caracterization of value functions associated to optimal stochastic control problems of a partially observed diffusion. These problems consisting of continuously acting controls combined with impulse controls or stopping times. The second part is devoted to the link between solutions of semilinear PDEs and the solutions of BSDEs. We first study double barrier BSDEs with jumps. We then prove that the solution of the FBSDE provides a viscosity solution of a parabolic integral-differential partial equation with two obstacles. Next we state the connection between Sobolev solutions of PDEs and the ones of BSDE as an application of a norm equivalence result
El, Asri Brahim. "Switching optimal et équations différentielles stochastiques rétrogrades réfléchies". Le Mans, 2010. http://cyberdoc.univ-lemans.fr/theses/2010/2010LEMA1003.pdf.
Texto completoWe study optimal switching and Lр-solution for doubly reflected backward stochastic differential equations. In the first part, we show existence and uniqueness of a solution for a system of m variational partial differential inequalities with inter-connected obstacles. This system is the deterministic version of the Verification Theorem of the Markovian optimal m-states switching problem. The switching cost functions are arbitrary. In the second part we study the problem of the deterministic version of the Verification Theorem for the optimal m-states switching in infinite horizon under Markovian framework with arbitrary switching cost functions. The problem is formulated as an extended impulse control problem and solved by means of probabilistic tools such as the Snell envelop of processes and reflected backward stochastic differential equations. A viscosity solutions approach is employed to carry out a fine analysis on the associated system of m variational inequalities with inter-connected obstacles. We show that the vector of value functions of the optimal problem is the unique viscosity solution to the system. Finally in the third part, we deal the problem of existence and uniqueness of a solution for à backward stochastic differential equation (BSDE for short) with two strictly separated continuous reflecting barriers in the case when the terminal value, the generator and the obstacle process are Lр-integrable with р Є (1, 2). The main idea is to use the concept of local solution to construct the global one. As applications, we obtain new results in zerosum Dynkin games and in double obstacle variational inequalities theories
Piozin, Lambert. "Quelques résultats sur les équations rétrogrades et équations aux dérivées partielles stochastiques avec singularités". Thesis, Le Mans, 2015. http://www.theses.fr/2015LEMA1004/document.
Texto completoThis thesis is devoted to the study of some problems in the field of backward stochastic differential equations (BSDE), and their applications to partial differential equations.In the first chapter, we introduce the notion of backward doubly stochastic differential equations (BDSDE) with singular terminal condition. A first work consists to study the case of BDSDE with monotone generator. We then obtain existing result by an approximating scheme built considering a truncation of the terminal condition. The last part of this chapter aim to establish the link with stochastic partial differential equations, using a weak solution approach developed by Bally, Matoussi in 2001.The second chapter is devoted to the BSDEs with singular terminal conditions and jumps. As in the previous chapter the tricky part will be to prove continuity in T. We formulate sufficient conditions on the jumps in order to obtain it. A section is then dedicated to establish a link between a minimal solution of our BSDE and partial integro-differential equations.The last chapter is dedicated to doubly reflected second order backward stochastic differential equations (2DRBSDE). We have been looking to establish existence and uniqueness for such equations. In order to obtain this, we had to focus first on the upper reflection problem for 2BSDEs. We combined then these results to those already existing to give a well-posedness context to 2DRBSDE. Uniqueness is established as a straight consequence of a representation property. Existence is obtained using shifted spaces, and regular conditional probability distributions. A last part is then consecrated to the link with some Dynkin games and Israeli options
Cabarrubias, Bituin C. "Existence, uniqueness and homogenization results for a class of nonlinear PDE in perforated domains". Rouen, 2012. http://www.theses.fr/2012ROUES046.
Texto completoAmmar, Kaouther. "Solutions entropiques et renormalisées de quelques E. D. P. Non linéaire dans L1". Université Louis Pasteur (Strasbourg) (1971-2008), 2003. http://www.theses.fr/2003STR13237.
Texto completoSchorsch, Julien. "Contributions à l’estimation paramétrique des modèles décrits par les équations aux dérivées partielles". Doctoral thesis, Université de Lorraine, Nancy, France, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/245203.
Texto completoWang, Hao. "Equations différentielles stochastiques rétrogrades réfléchies et applications au problème d'investissement réversible et aux équations aux dérivées partielles". Le Mans, 2009. http://cyberdoc.univ-lemans.fr/theses/2009/2009LEMA1013.pdf.
Texto completoThe main objective of the thesis is to study the existence and uniqueness of solutions of reflected backward stochastic differential equations and to relate this notion to the study of the problems such as the reversible investment or so-called optimal switching problem, the mixed zero-sum stochastic differential games and the probabilistic interpretation of the weak solution of partial differential equations, either in viscosity sense or in Sobolev space under different framework
Biton, Samuel. "Semi-groupes monotones non-linéaires, équations géométriques et solutions de viscosité des équations quasilinéaires paraboliques". Tours, 2001. http://www.theses.fr/2001TOUR4028.
Texto completoIn the first part of this thesis we show that any monotone semi-group defined on continuous functions and satisfying suitable assumptions of regularity and locality is a semi-group associated to a second order parabolic pde. In a second part, we study uniqueness and existence properties of the solutions of the mean curvature equation for graphs and also for sme related class àf quasilinear parabolic equations. In a first article, we use the "level set approach" which provides a L[infini] local bound and a formulation of the uniqueness problem in term of fattening of the 0-level set of an auxiliary function. The major application of the method is a complete result of existence and uniqueness for a class of quasilinear equations without restriction on the behavior at infinity when the initial graphs is convex. In a second article, we prove the uniqueness result for the mean curvature flow of graphs in the one dimensional case without growth condition at infinity for the solution or the initial graph. Finally, in the third paper, we prove a comparison result in dimension N in the class of functions with polynomial growth. This result is obtained under growth conditions of polynomial type on the grandients of the initial data
Sbihi, Karima. "Etude de quelques E. D. P. Non linéaires dans L1 avec des conditions générales sur le bord". Université Louis Pasteur (Strasbourg) (1971-2008), 2006. https://publication-theses.unistra.fr/public/theses_doctorat/2006/SBIHI_Karima_2006.pdf.
Texto completoGueye, Mamadou. "Contrôlabilité pour quelques équations aux dérivées partielles : contrôles insensibilisants et contrôle d'équations dégénérées". Paris 6, 2013. http://www.theses.fr/2013PA066410.
Texto completoOur work is a contribution to the theoretical study of some controllability problemsarising in fluid mechanics and various applied mathematics fields. We mainly focus on thecontrollability of Navier-Stokes type systems with fewer scalar controls. In Chapter 2, weinvestigate the existence of insensitizing controls for the Navier-Stokes system. We firstprove the null controllability for a linearized problem, using known Carleman estimates. Then, we work in special weighted functional classes to apply an inverse mapping theorem. In Chapter 3, we have managed to prove the same insensitivity results with a controlhaving at most two non zero components. We proved new Carleman estimates withparticular observation terms for this purpose. In Chapter 4, the results are extended tothe Boussinesq system with two vanishing components. The idea is to transpose the resultsof Chapter 3 to a more complex example. In Chapter 5, we investigate the exact controllability of linear parabolic and hyperbolicequations which degenerate at one end of the interval on which they are posed. First, weconsider the corresponding class of degenerate hyperbolic equations. Then, we prove sharpobservability estimates for these equations using non-harmonic Fourier series. We get thecontrollability of the degenerate parabolic equations using a transmutation method
Vilmart, Gilles. "Étude d'intégrateurs géométriques pour des équations différentielles". Phd thesis, Université Rennes 1, 2008. http://tel.archives-ouvertes.fr/tel-00348112.
Texto completoDans la première partie, on introduit une nouvelle approche de construction d'intégrateurs numériques géométriques d'ordre élevé en s'inspirant de la théorie des équations différentielles modifiées. Le cas des méthodes développables en B-séries est spécifiquement analysé et on introduit une nouvelle loi de composition sur les B-séries. L'efficacité de cette approche est illustrée par la construction d'un nouvel intégrateur géométrique d'ordre élevé pour les équations du mouvement d'un corps rigide. On obtient également une méthode numérique précise pour le calcul de points conjugués pour les géodésiques du corps rigide.
Dans la seconde partie, on étudie dans quelle mesure les excellentes performances des méthodes symplectiques, pour l'intégration à long terme en astronomie et en dynamique moléculaire, persistent pour les problèmes de contrôle optimal. On discute également l'extension de la théorie des équations modifiées aux problèmes de contrôle optimal.
Dans le même esprit que les équations modifiées, on considère dans la dernière partie des méthodes de pas fractionnaire (splitting) pour les systèmes hamiltoniens perturbés, utilisant des potentiels modifiés. On termine par la construction de méthodes de splitting d'ordre élevé avec temps complexes pour les équations aux dérivées partielles paraboliques, notamment les problèmes de réaction-diffusion en chimie.
Kacimi, Hayat. "Homogénéisation de problèmes de Dirichlet avec de petits trous". Paris 6, 1987. http://www.theses.fr/1987PA066447.
Texto completoRainero, Sophie. "Sur les propriétés des solutions d'équations différentielles stochastiques rétrogrades à horizon aléatoire ou déterministe. Principes de grandes déviations et applications à des problèmes de perturbations singulières pour des équations aux dérivées partielles non linéaires". Paris 9, 2006. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2006PA090008.
Texto completoWe prove large deviations principles for solutions of forward-backward stochastic differential equations with determinist terminal time, and we give an application of these results to the theory of credit risk management. We also study the existence, uniqueness and stability of solutions of backward stochastic differential equations with random terminal time under new assumptions. We establish large deviations principles for the solutions of such equations, related to a family of Markov processes, the diffusion coefficient of which tends to zero. We deduce from these results some theorems of convergence of solutions of non linear partial differential equations, elliptic and parabolic, which extend Freidlin and Wentzell's
Crauste, Fabien. "Etude mathématique d'équations aux dérivées partielles hyperboliques modélisant les processus de régulation des cellules sanguinescliques : Applications aux maladies hématologiques cy". Pau, 2005. http://www.theses.fr/2005PAUU3010.
Texto completoThe events allowing production and continuous renewal of blood cells represent a series of complex processes, called haematopoiesis, taking place in the bone marrow. Haematopoiesis is based on a pool of haematopoietic stem cells, having unique capacities of differentiation (capacity to generate all blood cells types) and self renewal (capacity to generate a daugther cell identical to the mother cell). We performed a mathematical study of haematopoiesis based on nonlinear age and maturity structured models. It allowed to highlight the influence of hematopoietic stem cells on the entire blood cell population, these cells actively acting on the population stability. Through the study of models without maturity structure, reduced by integration to a system of differential equations with distributed delay, we obtained the existence of oscillating solutions and, throughout the study of a Hopf bifurcation, of periodic solutions with very long periods compared to the cell cycle duration. These oscillations are characteristic of some blood diseases, called periodic, such as chronic myelogenous leukaemia, one of the most widespread forms of leukaemia. Our work represents a contribution to the study of this disease. Lastly, we considered a haematopoiesis model taking into account the action of some factors, external to the bone marrow, acting on stem cells differentiation. We proved the existence of oscillating solutions which may describe some periodic hematological diseases
Richou, Adrien. "Étude théorique et numérique des équations différentielles stochastiques rétrogrades". Phd thesis, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00543719.
Texto completoLassoued, Dhaou. "Fonctions presque-périodiques et Équations Différentielles". Phd thesis, Université Panthéon-Sorbonne - Paris I, 2013. http://tel.archives-ouvertes.fr/tel-00942969.
Texto completoGuedda, Mohammed. "Propriétés locales et globales de solutions d'équations quasilinéaires elliptiques". Tours, 1987. http://www.theses.fr/1987TOUR4001.
Texto completo2. Nous étudions l'existence de fonctions dans W::(O)**(1,P)(Omega ) qui satisfait - DIV(|DU|**(P-2)DU)=U**(P-1)+U**(P*-1) dans G inclus dans R**(N) et U>0 dans G ou G est un domaine borne. Lorsque 1
Dugowson, Stéphane. "Les différentielles métaphysiques : histoire et philosophie de la généralisation de l'ordre de la dérivation". Paris 13, 1994. http://www.theses.fr/1994PA132047.
Texto completoMoutsingas, Octave. "Approche probabiliste des particules collantes et système de gaz sans pression". Lille 1, 2003. https://pepite-depot.univ-lille.fr/RESTREINT/Th_Num/2003/50376-2003-41.pdf.
Texto completoWantz, Mézières Sophie. "Etude de processus stochastiques non linéaires". Nancy 1, 1997. http://docnum.univ-lorraine.fr/public/SCD_T_1997_0163_WANTZ_MEZIERES.pdf.
Texto completoOur study deals with processes which are solutions of stochastic differential equations in which the law of the solution can interact. We etablish an instability phenomena for a two-dimensional stochastic process which density verifies a P. D. E. Of Burgers' type: the solution fluctuates when the diffusion tends to zero. For an ordinary S. D. E with inward drift, we study the asymptotic behaviour of hitting times for the process to a fixed point when the starting point goes to infinity. We consider another equation with inward drift which is more non linear and reflected in a real interval and we prove that the process tends in law to a unique stationnary measure. We solve a simulation problem for a two-dimensional stochastic process composed of a one-dimensional process and an integral related to this process
Chaïb, Karim. "Quelques résultats sur les systèmes d'équations aux dérivées partielles faisant intervenir l'opérateur p-Laplacien". Toulouse 3, 2002. http://www.theses.fr/2002TOU30028.
Texto completoHibon, Hélène. "Équations différentielles stochastiques rétrogrades quadratiques et réfléchies". Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S007/document.
Texto completoIn this thesis, we are interested in studying variously Backward Stochastic Differential Equations. A large proportion of the results are obtained under the assumption that the driver is of quadratic growth in its last variable. A first link between one-dimensional quadratic BSDEs and game theory leads us to develop results with convex drivers. Optimal control theory requires as for it to deal with the multidimensional case, in which global existence and uniqueness are obtained only for diagonaly quadratic drivers. Major achievements in reflected BSDEs (whose solution is constrained to remain in a domain) are reached for Lipschitz drivers. We develop a result of chaos propagation in this setting, with a constraint on the law of the solution rather than on its path. We finaly build bridge between quadratic BSDEs and reflected BSDEs thanks to mean field quadratic BSDEs. We give several new results on solvability of a quadratic BSDE whose driver depends also on the mean of both variables
LASRI, ABDELLAH. "Estimation du gradient pour les équations aux dérivées partielles paraboliques non linéaires et les équations différentielles stochastiques rétrogrades par la méthode de Bernstein". Tours, 1995. http://www.theses.fr/1995TOUR4015.
Texto completoMonthe, Luc Arthur. "Etude des équations aux dérivées partielles hyperboliques application aux équations de Saint-Venant". Rouen, 1997. http://www.theses.fr/1997ROUES074.
Texto completoBounebache, Said Karim. "Équations aux dérivées partielles stochastiques avec un potentiel singulier". Phd thesis, Paris 6, 2012. http://www.theses.fr/2012PA066149.
Texto completoThis thesis deals with some topics linked with interface model, ours aim is to find solution of some SPDE of parabolic type with singular potential. Firstly We study the motion of a random string in a convex domain O in R^d, namely the solution of a vector-valued stochastic heat equation, confined in the closure of O and reflected at the boundary of O. We study the structure of the reflection measure by computing its Revuz measure in terms of an infinite dimensional integration by parts formula. We prove extistence and uniqueness of a continuous strong solution. Our method exploits recent results on weak convergence of Markov processes with log-concave invariantmeasures. Secondly We consider a stochastic heat equation driven by a space-time white noise and with a singular drift, where a local-time in space appears. The process we study has an explicit invariant measure of Gibbs type, with a non-convex potential. We obtain existence of a Markov solution, which is associated with an explicit Dirichlet form. Moreover we study approximations of the stationary solution by means of a regularization of the singular drift or by a finite-dimensional projection. Finaly, we extend the previous methods for a SPDE in which the two types of singularity appear
Koenig, Armand. "Contrôlabilité de quelques équations aux dérivées partielles paraboliques peu diffusives". Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4066.
Texto completoControl theory is the branch of mathematics that is concerned in what extent the state of a system can be modified, depending in the intrinsic properties of the system and how we can act on it. For example, one may wonder if the temperature of a solid can be brought to a constant temperature in finite time by heating and cooling only a part of the solid. This problem, called the null-controllability of the heat equation, has been solved since 1995. But if we study degenerate parabolic equations, which looks like the heat equation but have a weaker diffusion, we know how to treat only a few particular examples, and the situation is more complicated: for the heat equation, the null-controllability is always true, even in arbitrarily small time; but for some degenerate parabolic equations there exists a minimum time for the null-controllability to hold. We study some degenerate parabolic equations, including the Grushin equation and some Kolmogorov-type equations, and partially complete existing results about the null-controllability on those equations. In particular, we make the relationship between the control domain and the minimum time of null-controllability more precise. We do this with a fine spectral analysis, which allows us to reduce the study of the Grushin and Kolmogorov-type equations to the study of the fractional heat equation. So we also study the fractional heat equation, with holomorphic functions techniques and geometric optics. We also study transport-heat systems, and prove that there exists a minimum control time of null-controllability, (almost) generalizing the existing results obtained on several examples of transport-heat systems. This study is based on a spectral analysis that separates the transport-heat systems into a transport system and a system of heat equations that are weakly coupled
Ben, Cheikh Ali Mohsen. "Homogénéisation des solutions renormalisées dans des domaines perforés". Rouen, 2001. http://www.theses.fr/2001ROUES050.
Texto completoAhjaou, Abdelhak. "Approximation numérique de certaines équations aux dérivées partielles non linéaires dans les domaines non bornes par les méthodes spectrales de type Hermite". Nancy 1, 1994. http://www.theses.fr/1994NAN10069.
Texto completoJean, dit Teyssier Loïc. "Equation homologique et classification analytique des germes de champs de vecteurs holomorphes de type noeud-col". Rennes 1, 2003. https://tel.archives-ouvertes.fr/tel-00005387.
Texto completoCiarlet, Patrick. "Etude de préconditionnements parallèles pour la résolution d'équations aux dérivées partielles elliptiques : une décomposition de l'espace L#2 (Oméga)#3". Paris 6, 1992. http://www.theses.fr/1992PA066440.
Texto completoVilmart, Gilles. "Méthodes numériques géométriques et multi-échelles pour les équations différentielles (in English)". Habilitation à diriger des recherches, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00840733.
Texto completoAibeche, Aïssa. "Quelques problèmes non linéaires dans des domaines à frontière polygonale, comportement singulier de la solution". Nice, 1985. http://www.theses.fr/1985NICE4052.
Texto completoKobylanski, Magdalena. "Quelques applications de méthodes d'analyse non-linéaire à la théorie des processus stochastique". Tours, 1998. http://www.theses.fr/1998TOUR4014.
Texto completoVaillant, Olivier (1971 ). "Une méthode particulaire stochastique à poids aléatoires pour l'approximation de solutions statistiques d'équations de McKean-Vlasov-Fokker-Plank". Aix-Marseille 1, 2000. http://www.theses.fr/2000AIX11004.
Texto completoBourel, Christophe. "Etude mathématique et numérique de cristaux photoniques fortement contrastés". Toulon, 2010. https://theses.hal.science/tel-00562138/fr/.
Texto completoThis thesis is to develop the macroscopic behaviour of highly contrasted composite materials in an electromagnetic framework. We consider structures made of periodically (or randomly) distributed micro-inclusions made of high conductivity or high permittivity medium. Actually, such a structure is to be found in a three-dimensional bounded domain which is illuminated by an infinity-coming monochromatic incident wave. Our mathematical approach consists in passing to the limit in the Maxwell system describing the diffraction problem when the distance between inclusions goes to zero while the electromagnetic constant of inclusions goes to infinity (“high contrast”) We are studying two 3D diffracting structures which lead to negative permittivity or permeability materials. The asymptotic study is based on the two-scale convergence method (sometimes in a stochastic way), and the resulting unit cell problems are solved by spectral method. This leads to an explicit formulation of the effective tensor according to the frequency, which highlights their huge variations around the so-called resonant frequencies
Youmbi, Tchuenkam Lord Bienvenu. "Étude de méthodes précises d'approximation d'équations différentielles stochastiques ou d'équations aux dérivées partielles déterministes en Finance". Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4126/document.
Texto completoThe work presented in this thesis is devoted to the study of precise methods forapproximating stochastic differential equations (SDE) or deterministic partialdifferential equations (PDE). The first part is devoted to the development ofbias correction methods in parametric diffusion processes. Three models arestudied in particular : Ornstein-Uhlenbeck, auto-regressive and Movingaverage. At the end of this work, several approximations of bias have beenproposed following two approaches : the first consists in a Taylor developmentof the obtained estimator while the second one relies on a stochastic expansionof the latter.The second part of this thesis deals with the approximation of the heatequation obtained after changing variables from the Black-Scholes model. Likethe vast majority of PDE, this equation does not have an exact solution, sosolutions must be approached using explicit or implicit time schemes. Itis often customary to prefer the use of implicit methods to solve parabolic PDEsuch as the heat equation, but in the past few years, the stabilized explicitRunge-Kutta methods which have the largest possible domains of stabilityalong the negative real axis, are increasingly used. We show that the useof this type of explicit methods and in particular the ROCK (Runge-Orthogonal-Chebyshev-Kutta) schemes give very good results even if the initial conditionsare not very regular, which is the case in the financial models
Fulgencio, Rheadel. "Solutions renormalisées d'une classe de problèmes elliptiques quasi-linéaires avec saut : existence, unicité et homogénéisation". Thesis, Normandie, 2021. http://www.theses.fr/2021NORMR010.
Texto completoIn this thesis, we study a class of quasilinear elliptic equations posed in atwo-component domain with an L1 data and its asymptotic analysis. More precisely, we consider a two-component domain, denoted by Ω, which can be written as the disjoint union Ω = Ω 1 ∪ Ω 2 ∪ Г, where the open sets Ω 1 and Ω 2 are the two components of Ω, and Г is the interface between thesecomponents. We study the following quasilinear elliptic problem posed in Ω:−div(B(x, u1)∇u1) = f in Ω1,−div(B(x, u2)∇u2) = f in Ω2,(B(x, u1)∇u1)υ1 = (B(x, u2)∇u2)υ1 on Г,(B(x, u1)∇u1)υ1 = −h(x)(u1 − u2) on Г,u1 = 0 on ∂Ω,where υ1 is the unit outward normal to Ω1, f is an L1 function, and B is a coercive matrix field which has a restricted growth assumption (B(x, r) is bounded on any compact set of R). The first part of this thesis is dedicated to existence and uniqueness results for this problem in the framework of renormalized solutions, which was introduced by R.J. DiPerna and P.L. Lions. In the second part, we study the corresponding homogenization problem for a two-component domain with a (disconnected) periodic second component by combining the notion of renormalized solutions and the periodic unfolding method, introduced D. Cioranescu, A. Damlamian and G. Griso. It has been successively adapted to two-component domains by P. Donato, K.H. Le Nguyen, and R. Tardieu. In order to obtain a uniqueness result for the homogenized problem, we study the properties of the corresponding cell problem. In particular, we show that if the matrix field in the cell problem, denoted A(y, t), is local Lipschitzcontinuous with respect to t, then the resulting homogenizedmatrix A0 keeps this property. This uniqueness result ensures that the convergences obtained in the homogenization process hold for the whole sequence of the periodicity parameter (and not only a subsequence)
Boy, Agnès. "Analyse mathématique d'un modèle biologique régi par un système d'équations de réaction diffusion couplées". Pau, 1997. http://www.theses.fr/1997PAUU3028.
Texto completoJellouli, Mohammed. "Réalisation d'une structure multiprocesseur : applications ; cas des problèmes de champ". Lyon 1, 1987. http://www.theses.fr/1987LYO19031.
Texto completo