Literatura académica sobre el tema "Exploitation dilemma"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Exploitation dilemma".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Exploitation dilemma"
Berger-Tal, Oded, Jonathan Nathan, Ehud Meron y David Saltz. "The Exploration-Exploitation Dilemma: A Multidisciplinary Framework". PLoS ONE 9, n.º 4 (22 de abril de 2014): e95693. http://dx.doi.org/10.1371/journal.pone.0095693.
Texto completoJames, Russell N. "Exploration-exploitation: A cognitive dilemma still unresolved". Cognitive Neuroscience 6, n.º 4 (28 de agosto de 2015): 219–21. http://dx.doi.org/10.1080/17588928.2015.1051012.
Texto completoLaureiro-Martínez, Daniella, Stefano Brusoni y Maurizio Zollo. "The neuroscientific foundations of the exploration−exploitation dilemma." Journal of Neuroscience, Psychology, and Economics 3, n.º 2 (noviembre de 2010): 95–115. http://dx.doi.org/10.1037/a0018495.
Texto completoBenner, Mary J. y Michael L. Tushman. "Exploitation, Exploration, and Process Management: The Productivity Dilemma Revisited". Academy of Management Review 28, n.º 2 (1 de abril de 2003): 238. http://dx.doi.org/10.2307/30040711.
Texto completoBenner, Mary J. y Michael L. Tushman. "Exploitation, Exploration, and Process Management: The Productivity Dilemma Revisited". Academy of Management Review 28, n.º 2 (abril de 2003): 238–56. http://dx.doi.org/10.5465/amr.2003.9416096.
Texto completoAwasthi, Ashutosh, Kripal Singh, Audrey O’Grady, Ronan Courtney, Alok Kalra, Rana Pratap Singh, Artemi Cerdà, Yosef Steinberger y D. D. Patra. "Designer ecosystems: A solution for the conservation-exploitation dilemma". Ecological Engineering 93 (agosto de 2016): 73–75. http://dx.doi.org/10.1016/j.ecoleng.2016.05.010.
Texto completoLunnan, Randi y Theodor Barth. "Managing the exploration vs. exploitation dilemma in transnational “bridging teams”". Journal of World Business 38, n.º 2 (mayo de 2003): 110–26. http://dx.doi.org/10.1016/s1090-9516(03)00005-1.
Texto completoYogeswaran, Mohan y S. G. Ponnambalam. "Reinforcement learning: exploration–exploitation dilemma in multi-agent foraging task". OPSEARCH 49, n.º 3 (10 de abril de 2012): 223–36. http://dx.doi.org/10.1007/s12597-012-0077-2.
Texto completoDe Cremer, David. "Trust and fear of exploitation in a public goods dilemma". Current Psychology 18, n.º 2 (junio de 1999): 153–63. http://dx.doi.org/10.1007/s12144-999-1024-0.
Texto completoDomenech, Philippe, Sylvain Rheims y Etienne Koechlin. "Neural mechanisms resolving exploitation-exploration dilemmas in the medial prefrontal cortex". Science 369, n.º 6507 (27 de agosto de 2020): eabb0184. http://dx.doi.org/10.1126/science.abb0184.
Texto completoTesis sobre el tema "Exploitation dilemma"
Bouhlel, Imen. "Essais sur le dilemme exploration-exploitation". Thesis, Université Côte d'Azur (ComUE), 2019. http://theses.univ-cotedazur.fr/2019AZUR0037.
Texto completoA growing body of empirical evidence during the two last decades has been showing inconsistencies between individual choices when the individuals make decisions from description (i.e., when they are provided with a perfect knowledge about the states space, including all the possible outcomes, and the underlying probabilities), compared to when they make decisions from experience (i.e., when they do not know all the possible outcomes or/and their occurrence probabilities). These inconsistencies are referred to as the description/experience gap. Undersearch has been pointed out as one of the key determinants of this gap. Hence, even though little studied in economics, search becomes a central question, deserving serious interest. This thesis aims at contributing to the theoretical and experimental literature studying search and the related exploration-exploitation dilemma, both at the individual and at the collective level. The thesis is made of 3 essays, combining theoretical, agent-based modelling, evolutionary simulations and laboratory experiments. The first chapter of this thesis examines the determinants of search behavior in the context of an individual optimal stopping problem and shows that this behavior largely depends on the degree of certainty of the information, and is affected by both regret and anticipation. The second chapter investigates information sharing behavior in competitive collective search using agent-based and evolutionary simulations. It finds robust evidence for the individual benefits of sharing, even when others do not reciprocate, as long as two mechanisms as present: Imitation with a certain level of innovation and local visibility. The third chapter experimentally tests and supports the validity of theses results, and stresses the crucial role of learning
Fruit, Ronan. "Exploration-exploitation dilemma in reinforcement learning under various form of prior knowledge". Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I086.
Texto completoIn combination with Deep Neural Networks (DNNs), several Reinforcement Learning (RL) algorithms such as "Q-learning" of "Policy Gradient" are now able to achieve super-human performaces on most Atari Games as well as the game of Go. Despite these outstanding and promising achievements, such Deep Reinforcement Learning (DRL) algorithms require millions of samples to perform well, thus limiting their deployment to all applications where data acquisition is costly. The lack of sample efficiency of DRL can partly be attributed to the use of DNNs, which are known to be data-intensive in the training phase. But more importantly, it can be attributed to the type of Reinforcement Learning algorithm used, which only perform a very inefficient undirected exploration of the environment. For instance, Q-learning and Policy Gradient rely on randomization for exploration. In most cases, this strategy turns out to be very ineffective to properly balance the exploration needed to discover unknown and potentially highly rewarding regions of the environment, with the exploitation of rewarding regions already identified as such. Other RL approaches with theoretical guarantees on the exploration-exploitation trade-off have been investigated. It is sometimes possible to formally prove that the performances almost match the theoretical optimum. This line of research is inspired by the Multi-Armed Bandit literature, with many algorithms relying on the same underlying principle often referred as "optimism in the face of uncertainty". Even if a significant effort has been made towards understanding the exploration-exploitation dilemma generally, many questions still remain open. In this thesis, we generalize existing work on exploration-exploitation to different contexts with different amounts of prior knowledge on the learning problem. We introduce several algorithmic improvements to current state-of-the-art approaches and derive a new theoretical analysis which allows us to answer several open questions of the literature. We then relax the (very common although not very realistic) assumption that a path between any two distinct regions of the environment should always exist. Relaxing this assumption highlights the impact of prior knowledge on the intrinsic limitations of the exploration-exploitation dilemma. Finally, we show how some prior knowledge such as the range of the value function or a set of macro-actions can be efficiently exploited to speed-up learning. In this thesis, we always strive to take the algorithmic complexity of the proposed algorithms into account. Although all these algorithms are somehow computationally "efficient", they all require a planning phase and therefore suffer from the well-known "curse of dimensionality" which limits their applicability to real-world problems. Nevertheless, the main focus of this work is to derive general principles that may be combined with more heuristic approaches to help overcome current DRL flaws
Prange, Christiane y Bodo B. Schlegelmilch. "The Role of Ambidexterity in Marketing Strategy Implementation: Resolving the Exploration-Exploitation Dilemma". SpringerOpen, 2009. http://dx.doi.org/10.1007/BF03342712.
Texto completoCogliati, Dezza Irene. "“Vanilla, Vanilla .but what about Pistachio?” A Computational Cognitive Clinical Neuroscience Approach to the Exploration-Exploitation Dilemma". Doctoral thesis, Universite Libre de Bruxelles, 2018. https://dipot.ulb.ac.be/dspace/bitstream/2013/278730/3/Document1.pdf.
Texto completoDoctorat en Sciences psychologiques et de l'éducation
info:eu-repo/semantics/nonPublished
Degelder, Francois y Robert Melbye. "Competence Development : What can project-based organizations learn from the management of a hockey team?" Thesis, Linköpings universitet, Företagsekonomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-141786.
Texto completoMEULEAU, NICOLAS. "Le dilemme entre exploration et exploitation dans l'apprentissage par renforcement : optimisation adaptative des modeles de decision multi-etats". Caen, 1996. http://www.theses.fr/1996CAEN2038.
Texto completoSoulerot, Marion. "Planification et ambidextérité : le cas des programmes d'amélioration de la performance". Phd thesis, Université Paris Dauphine - Paris IX, 2008. http://tel.archives-ouvertes.fr/tel-00472392.
Texto completoMann, Timothy 1984. "Scaling Up Reinforcement Learning without Sacrificing Optimality by Constraining Exploration". Thesis, 2012. http://hdl.handle.net/1969.1/148402.
Texto completoLibros sobre el tema "Exploitation dilemma"
Trammel, Crystal. Tamar's Dilemma: An Overview of Sexual Exploitation. Morris Publishing, 2003.
Buscar texto completoGureckis, Todd M. y Bradley C. Love. Computational Reinforcement Learning. Editado por Jerome R. Busemeyer, Zheng Wang, James T. Townsend y Ami Eidels. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199957996.013.5.
Texto completoInce, Onur Ulas. Colonial Capitalism and the Dilemmas of Liberalism. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190637293.001.0001.
Texto completoRosenthal, Laura J. Ways of the World. Cornell University Press, 2020. http://dx.doi.org/10.7591/cornell/9781501751585.001.0001.
Texto completoCapítulos de libros sobre el tema "Exploitation dilemma"
Tantiwechwuttikul, Ranaporn, Masaru Yarime y Kohzo Ito. "Solar Photovoltaic Market Adoption: Dilemma of Technological Exploitation vs Technological Exploration". En Technologies and Eco-innovation towards Sustainability II, 215–27. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1196-3_18.
Texto completoRejeb, Lilia, Zahia Guessoum y Rym M’Hallah. "An Adaptive Approach for the Exploration-Exploitation Dilemma for Learning Agents". En Multi-Agent Systems and Applications IV, 316–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11559221_32.
Texto completoRejeb, Lilia, Zahia Guessoum y Rym M’Hallah. "An Adaptive Approach for the Exploration-Exploitation Dilemma and Its Application to Economic Systems". En Learning and Adaption in Multi-Agent Systems, 165–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11691839_10.
Texto completoAnicho, Ogbonnaya, Philip B. Charlesworth, Gurvinder S. Baicher y Atulya K. Nagar. "Reinforcement Learning for Multiple HAPS/UAV Coordination: Impact of Exploration–Exploitation Dilemma on Convergence". En Advances in Intelligent Systems and Computing, 149–59. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3290-0_12.
Texto completoSledge, Isaac J. y José C. Príncipe. "Trading Utility and Uncertainty: Applying the Value of Information to Resolve the Exploration–Exploitation Dilemma in Reinforcement Learning". En Handbook of Reinforcement Learning and Control, 557–610. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60990-0_19.
Texto completoGlynn, Simon. "Capitalism’s Moral and Ontological Dilemmas: Competition, the Inevitably Exploitative Response, and the Crisis of Overproduction". En The Economic Logic of Late Capitalism and the Inevitable Triumph of Socialism, 55–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52667-2_8.
Texto completo"8. Colonial Profits And The Liberal Dilemma". En The Politics of Colonial Exploitation, 145–61. Cornell University Press, 2018. http://dx.doi.org/10.7591/9781501719127-009.
Texto completoBurton-Chellew, Maxwell N., Alex Kacelnik, Michal Arbilly, Miguel dos Santos, Kimberley J. Mathot, John M. McNamara, Friederike Mengel, Joël van der Weele y Björn Vollan. "The Ecological and Economic Conditions of Exploitation Strategies". En Investors and Exploiters in Ecology and Economics. The MIT Press, 2017. http://dx.doi.org/10.7551/mitpress/9780262036122.003.0003.
Texto completo"Ambidexterity revisited: the influence of structure and context and the dilemma exploration vs. exploitation". En Knowledge Spillover-based Strategic Entrepreneurship, 168–203. Routledge, 2016. http://dx.doi.org/10.4324/9781315445281-20.
Texto completoBarta, Zoltán. "Producer–Scrounger Models and Aspects of Natural Resource Use". En Investors and Exploiters in Ecology and Economics. The MIT Press, 2017. http://dx.doi.org/10.7551/mitpress/9780262036122.003.0004.
Texto completoActas de conferencias sobre el tema "Exploitation dilemma"
Peterson, Erik y Timothy Verstynen. "A way around the exploration-exploitation dilemma". En 2019 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2019. http://dx.doi.org/10.32470/ccn.2019.1365-0.
Texto completoZhang, Kaifu y Wei Pan. "The Two Facets of the Exploration-Exploitation Dilemma". En 2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology. IEEE, 2006. http://dx.doi.org/10.1109/iat.2006.120.
Texto completoCogliati Dezza, Irene, Xavier Noel, Axel Cleeremans y Angela Yu. "The Exploration-Exploitation Dilemma as a Tool for Studying Addiction". En 2018 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2018. http://dx.doi.org/10.32470/ccn.2018.1080-0.
Texto completoShen, Yuanxia y Chuanhua Zeng. "An Adaptive Approach for the Exploration-Exploitation Dilemma in Non-stationary Environment". En 2008 International Conference on Computer Science and Software Engineering. IEEE, 2008. http://dx.doi.org/10.1109/csse.2008.677.
Texto completoMichlmayr, Elke. "Self-Organization for Search in Peer-to-Peer Networks: The Exploitation-Exploration Dilemma". En 2006 1st Bio-Inspired Models of Network, Information and Computing Systems. IEEE, 2006. http://dx.doi.org/10.1109/bimnics.2006.361796.
Texto completoNamiki, Naoya, Kuratomo Oyo y Tatsuji Takahashi. "How Do Humans Handle the Dilemma of Exploration and Exploitation in Sequential Decision Making?" En 8th International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS). ACM, 2015. http://dx.doi.org/10.4108/icst.bict.2014.258045.
Texto completoOu, Mingdong, Nan Li, Shenghuo Zhu y Rong Jin. "Multinomial Logit Bandit with Linear Utility Functions". En Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/361.
Texto completoLindner, David, Hoda Heidari y Andreas Krause. "Addressing the Long-term Impact of ML Decisions via Policy Regret". En Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/75.
Texto completo