Literatura académica sobre el tema "Fair Machine Learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Fair Machine Learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Fair Machine Learning"
Basu Roy Chowdhury, Somnath, and Snigdha Chaturvedi. "Sustaining Fairness via Incremental Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (2023): 6797–805. http://dx.doi.org/10.1609/aaai.v37i6.25833.
Texto completoPerello, Nick, and Przemyslaw Grabowicz. "Fair Machine Learning Post Affirmative Action." ACM SIGCAS Computers and Society 52, no. 2 (2023): 22. http://dx.doi.org/10.1145/3656021.3656029.
Texto completoRance, Joseph, and Filip Svoboda. "Can Private Machine Learning Be Fair?" Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 19 (2025): 20121–29. https://doi.org/10.1609/aaai.v39i19.34216.
Texto completoOneto, Luca. "Learning fair models and representations." Intelligenza Artificiale 14, no. 1 (2020): 151–78. http://dx.doi.org/10.3233/ia-190034.
Texto completoKim, Yun-Myung. "Data and Fair use." Korea Copyright Commission 141 (March 30, 2023): 5–53. http://dx.doi.org/10.30582/kdps.2023.36.1.5.
Texto completoKim, Yun-Myung. "Data and Fair use." Korea Copyright Commission 141 (March 30, 2023): 5–53. http://dx.doi.org/10.30582/kdps.2023.36.1.5.
Texto completoZhang, Xueru, Mohammad Mahdi Khalili, and Mingyan Liu. "Long-Term Impacts of Fair Machine Learning." Ergonomics in Design: The Quarterly of Human Factors Applications 28, no. 3 (2019): 7–11. http://dx.doi.org/10.1177/1064804619884160.
Texto completoZhu, Yunlan. "The Comparative Analysis of Fair Use of Works in Machine Learning." SHS Web of Conferences 178 (2023): 01015. http://dx.doi.org/10.1051/shsconf/202317801015.
Texto completoJEONG, JIN KEUN. "Will the U.S. Court Judge TDM for Artificial Intelligence Machine Learning as Fair Use?" Korea Copyright Commission 144 (December 31, 2023): 215–50. http://dx.doi.org/10.30582/kdps.2023.36.4.215.
Texto completoRedko, Ievgen, and Charlotte Laclau. "On Fair Cost Sharing Games in Machine Learning." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4790–97. http://dx.doi.org/10.1609/aaai.v33i01.33014790.
Texto completoTesis sobre el tema "Fair Machine Learning"
Vo, Thi Quynh Trang. "Algorithms and Machine Learning for fair and classical combinatorial optimization." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0035.
Texto completoSchildt, Alexandra, and Jenny Luo. "Tools and Methods for Companies to Build Transparent and Fair Machine Learning Systems." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279659.
Texto completoDalgren, Anton, and Ylva Lundegård. "GreenML : A methodology for fair evaluation of machine learning algorithms with respect to resource consumption." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159837.
Texto completoGordaliza, Pastor Paula. "Fair learning : une approche basée sur le transport optimale." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30084.
Texto completoGrari, Vincent. "Adversarial mitigation to reduce unwanted biases in machine learning." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS096.
Texto completoBerisha, Visar. "AI as a Threat to Democracy : Towards an Empirically Grounded Theory." Thesis, Uppsala universitet, Statsvetenskapliga institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-340733.
Texto completoSitruk, Jonathan. "Fais Ce Qu'il Te Plaît... Mais Fais Le Comme Je L'aime : Amélioration des performances en crowdfunding par l’utilisation des catégories et des récits." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR0018.
Texto completoMuriithi, Paul Mutuanyingi. "A case for memory enhancement : ethical, social, legal, and policy implications for enhancing the memory." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/a-case-for-memory-enhancement-ethical-social-legal-and-policy-implications-for-enhancing-the-memory(bf11d09d-6326-49d2-8ef3-a40340471acf).html.
Texto completoAzami, Sajjad. "Exploring fair machine learning in sequential prediction and supervised learning." Thesis, 2020. http://hdl.handle.net/1828/12098.
Texto completoAllabadi, Swati. "Algorithms for Fair Clustering." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5709.
Texto completoLibros sobre el tema "Fair Machine Learning"
Practicing Trustworthy Machine Learning: Consistent, Transparent, and Fair AI Pipelines. O'Reilly Media, Incorporated, 2022.
Buscar texto completoDrago Plečko and Elias Bareinboim. Causal Fairness Analysis: A Causal Toolkit for Fair Machine Learning. Now Publishers, 2024.
Buscar texto completoChatterjee, Sharmistha. Platform and Model Design for Responsible AI: Design and Build Resilient, Private, Fair, and Transparent Machine Learning Models. Packt Publishing, Limited, 2023.
Buscar texto completoChatterjee, Sharmistha. Platform and Model Design for Responsible AI: Design and Build Resilient, Private, Fair, and Transparent Machine Learning Models. de Gruyter GmbH, Walter, 2023.
Buscar texto completoMolak, Aleksander. Interpretable Machine Learning with Python: Build Explainable, Fair, and Robust High-Performance Models with Hands-on, Real-world Examples. de Gruyter GmbH, Walter, 2023.
Buscar texto completoMasis, Serg. Interpretable Machine Learning with Python: Build Explainable, Fair, and Robust High-Performance Models with Hands-On, Real-World Examples. Packt Publishing, Limited, 2022.
Buscar texto completoVallor, Shannon, and George A. Bekey. Artificial Intelligence and the Ethics of Self-Learning Robots. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190652951.003.0022.
Texto completoCapítulos de libros sobre el tema "Fair Machine Learning"
Pérez-Suay, Adrián, Valero Laparra, Gonzalo Mateo-García, Jordi Muñoz-Marí, Luis Gómez-Chova, and Gustau Camps-Valls. "Fair Kernel Learning." In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71249-9_21.
Texto completoFreitas, Alex, and James Brookhouse. "Evolutionary Algorithms for Fair Machine Learning." In Handbook of Evolutionary Machine Learning. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3814-8_17.
Texto completoVan, Minh-Hao, Wei Du, Xintao Wu, and Aidong Lu. "Poisoning Attacks on Fair Machine Learning." In Database Systems for Advanced Applications. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-00123-9_30.
Texto completoVan, Minh-Hao, Wei Du, Xintao Wu, and Aidong Lu. "Poisoning Attacks on Fair Machine Learning." In Database Systems for Advanced Applications. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-00123-9_30.
Texto completoWu, Yongkai, Lu Zhang, and Xintao Wu. "Fair Machine Learning Through the Lens of Causality." In Machine Learning for Causal Inference. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35051-1_6.
Texto completoAbdollahi, Behnoush, and Olfa Nasraoui. "Transparency in Fair Machine Learning: the Case of Explainable Recommender Systems." In Human and Machine Learning. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90403-0_2.
Texto completoHridi, Anurata Prabha, and Benjamin Watson. "Are Fair Machine Learning Models More Useful?" In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-76827-9_3.
Texto completoLappas, Theodoros, and Evimaria Terzi. "Toward a Fair Review-Management System." In Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23783-6_19.
Texto completoZhang, Mingwu, Xiao Chen, Gang Shen, and Yong Ding. "A Fair and Efficient Secret Sharing Scheme Based on Cloud Assisting." In Machine Learning for Cyber Security. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30619-9_25.
Texto completoRančić, Sanja, Sandro Radovanović, and Boris Delibašić. "Investigating Oversampling Techniques for Fair Machine Learning Models." In Lecture Notes in Business Information Processing. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73976-8_9.
Texto completoActas de conferencias sobre el tema "Fair Machine Learning"
Mitra, Purbesh, and Sennur Ulukus. "A Learning Based Scheme for Fair Timeliness in Sparse Gossip Networks." In 2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN). IEEE, 2024. http://dx.doi.org/10.1109/icmlcn59089.2024.10624766.
Texto completoPriyadarshini, Amisha, and Sergio Gago-Masague. "Fair Evaluator: An Adversarial Debiasing-based Deep Learning Framework in Student Admissions." In 2024 IEEE 6th International Conference on Cognitive Machine Intelligence (CogMI). IEEE, 2024. https://doi.org/10.1109/cogmi62246.2024.00029.
Texto completoOikonomou, Foteini, Eleftherios Bailis, Sotiris Bentos, et al. "Towards Fair Recidivism Prediction: Addressing Bias in Machine Learning for the Greek Prison System." In 2025 5th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). IEEE, 2025. https://doi.org/10.1109/iraset64571.2025.11008007.
Texto completoZhai, Fuqiang. "Training Method for a Fair Machine Learning Model Based on a Multi-Objective Evolutionary Algorithm." In 2024 Asia Pacific Conference on Innovation in Technology (APCIT). IEEE, 2024. http://dx.doi.org/10.1109/apcit62007.2024.10673611.
Texto completoV, Malavika, Nikita Mabel M, Chantelle I. Dmonte, Mohammed Zaid, and Lenish Pramiee J. "Fair Price Prediction for Farmers: Leveraging Freshness of Perishable Goods Through Machine Learning and Sustainable Practices." In 2025 IEEE 14th International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2025. https://doi.org/10.1109/csnt64827.2025.10968584.
Texto completoPerrier, Elija. "Quantum Fair Machine Learning." In AIES '21: AAAI/ACM Conference on AI, Ethics, and Society. ACM, 2021. http://dx.doi.org/10.1145/3461702.3462611.
Texto completoKearns, Michael. "Fair Algorithms for Machine Learning." In EC '17: ACM Conference on Economics and Computation. ACM, 2017. http://dx.doi.org/10.1145/3033274.3084096.
Texto completoDai, Jessica, Sina Fazelpour, and Zachary Lipton. "Fair Machine Learning Under Partial Compliance." In AIES '21: AAAI/ACM Conference on AI, Ethics, and Society. ACM, 2021. http://dx.doi.org/10.1145/3461702.3462521.
Texto completoLiu, Lydia T., Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. "Delayed Impact of Fair Machine Learning." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/862.
Texto completoWang, Haoyu, Hanyu Hu, Mingrui Zhuang, and Jiayi Shen. "Integrating Machine Learning into Fair Inference." In The International Conference on New Media Development and Modernized Education. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0011908000003613.
Texto completoInformes sobre el tema "Fair Machine Learning"
Strinzel, Michaela, Gabriel Okasa, Anne Jorstad, et al. Data Management Plan (DMP): A Supervised Machine Learning Approach for Assessing Grant Peer Review Reports. Swiss National Science Foundation, 2024. http://dx.doi.org/10.46446/dmp-peer-review-assessment-ml.
Texto completoNickerson, Jeffrey, Kalle Lyytinen, and John L. King. Automated Vehicles: A Human/Machine Co-learning Perspective. SAE International, 2022. http://dx.doi.org/10.4271/epr2022009.
Texto completoBusch, Ella, and Jacob Ware. The Weaponization of Deepfakes: Digital Deception on the Far-Right. ICCT, 2023. http://dx.doi.org/10.19165/2023.2.07.
Texto completoAdegoke, Damilola, Natasha Chilambo, Adeoti Dipeolu, Ibrahim Machina, Ade Obafemi-Olopade, and Dolapo Yusuf. Public discourses and Engagement on Governance of Covid-19 in Ekiti State, Nigeria. African Leadership Center, King's College London, 2021. http://dx.doi.org/10.47697/lab.202101.
Texto completoBelcher, Stephen. Weather and climate science services in a changing world: research and innovation strategy. Met Office, 2022. https://doi.org/10.62998/crmi4887.
Texto completo