Tesis sobre el tema "Finite element method. Fluid-structure interaction Turbulence"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores tesis para su investigación sobre el tema "Finite element method. Fluid-structure interaction Turbulence".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Braun, Alexandre Luis. "Simulação numérica na engenharia do vento incluindo efeitos de interação fluido-estrutura". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2007. http://hdl.handle.net/10183/10592.

Texto completo
Resumen
O objetivo deste trabalho é estudar e desenvolver procedimentos numéricos adequados para a análise de problemas da Engenharia do Vento Computacional (EVC). O escoamento é analisado a partir das equações de Navier-Stokes para um fluido Newtoniano e de uma equação de conservação de massa considerando a hipótese de pseudo-compressibilidade, ambas em um processo isotérmico. Na presença de escoamentos turbulentos emprega-se a Simulação de Grandes Escalas (“LES”) com os modelos clássico e dinâmico de Smagorinsky para as escalas inferiores à resolução da malha. Dois modelos numéricos de Taylor-Galerkin para a análise do escoamento são estudados: o esquema explícito de dois passos e o esquema explícito-iterativo. O Método dos Elementos Finitos (MEF) é empregado para a discretização do domínio espacial utilizando o elemento hexaédrico trilinear isoparamétrico com integração reduzida das matrizes em nível de elemento. Em problemas envolvendo efeitos de interação fluido-estrutura emprega-se um esquema de acoplamento particionado com características superiores de conservação, permitindo, inclusive, o uso de subciclos entre as análises do fluido e da estrutura e de malhas não compatíveis na interface. A estrutura é considerada como um corpo deformável constituído de um material elástico linear com a presença de nãolinearidade geométrica. O MEF é também usado para a discretização da estrutura, empregando-se para tanto o elemento hexaédrico trilinear isoparamétrico com integração reduzida e controle de modos espúrios. A equação de equilíbrio dinâmico é integrada no tempo utilizando o método implícito de Newmark no contexto do método de estabilização α- Generalizado. Na presença de estruturas deformáveis, o escoamento é descrito através de uma formulação arbitrária Lagrangeana-Euleriana (ALE). Ao final, comparações com exemplos numéricos e experimentais são apresentadas para demonstrar a viabilidade dos algoritmos desenvolvidos, seguindo-se com as conclusões do trabalho e as sugestões para trabalhos futuros.
Analysis and development of numerical tools to simulate Computational Wind Engineering (CWE) problems is the main goal of the present work. The isothermal flow is analyzed using the Navier-Stokes equations for viscous fluids and a mass conservation equation obtained according to the pseudo-compressibility assumption. Turbulent flows are simulated employing Large Eddy Simulation (LES) with the classical and dynamic Smagorinsky’s models for subgrid scales. Two Taylor-Galerkin models for the flow analysis are investigated: the explicit two-step scheme and the explicit-iterative scheme. The Finite Element Method (MEF) is employed for spatial discretizations using the eight-node hexahedrical isoparametric element with one-point quadrature. Fluid-structure interaction problems are analyzed with a coupling model based on a conservative partitioned scheme. The Finite Element Method (MEF) is employed for spatial discretizations using the eight-node hexahedrical isoparametric element with one-point quadrature. Fluid-structure interaction problems are analyzed with a coupling model based on a conservative partitioned scheme. Subcycling and nonmatching meshes for independent discretizations of the fluid and structure domains are also available. The structure is considered as a deformable body constituted by a linear elastic material with geometrically nonlinear effects. The FEM is used for the spatial discretization of the structure as well. Eight-node hexahedrical isoparametric elements with one-point quadrature and hourglass control are adopted in this process. The implicit Newmark algorithm within the framework of the α-Generalized method is employed for the numerical integration of the dynamic equilibrium equation. An arbitrary Lagrangean-Eulerian (ALE) description is adopted for the kinematic description of the flow when deformable structures are analyzed. Numerical and experimental examples are simulated in order to demonstrate the accuracy of the developed algorithms. Concluding remarks and suggestions for future works are pointed out in the last chapter of the present work.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Birgersson, Fredrik. "Prediction of random vibration using spectral methods". Doctoral thesis, KTH, Aeronautical and Vehicle Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3694.

Texto completo
Resumen

Much of the vibration in fast moving vehicles is caused bydistributed random excitation, such as turbulent flow and roadroughness. Piping systems transporting fast flowing fluid isanother example, where distributed random excitation will causeunwanted vibration. In order to reduce these vibrations andalso the noise they cause, it is important to have accurate andcomputationally efficient prediction methods available.

The aim of this thesis is to present such a method. Thefirst step towards this end was to extend an existing spectralfinite element method (SFEM) to handle excitation of planetravelling pressure waves. Once the elementary response tothese waves is known, the response to arbitrary homogeneousrandom excitation can be found.

One example of random excitation is turbulent boundary layer(TBL) excitation. From measurements a new modified Chase modelwas developed that allowed for a satisfactory prediction ofboth the measured wall pressure field and the vibrationresponse of a turbulence excited plate. In order to model morecomplicated structures, a new spectral super element method(SSEM) was formulated. It is based on a waveguide formulation,handles all kinds of boundaries and its elements are easily putinto an assembly with conventional finite elements.

Finally, the work to model fluid-structure interaction withanother wave based method is presented. Similar to the previousmethods it seems to be computationally more efficient thanconventional finite elements.

Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Taylor, Richard. "Finite element modelling of three dimensional fluid-structure interaction". Thesis, Swansea University, 2013. https://cronfa.swan.ac.uk/Record/cronfa42308.

Texto completo
Resumen
This work is focused on the numerical modelling of fluid-structure interaction in three dimensions. Both internal and external laminar flow around flexible bodies are considered. The fluid flow simulated is based on the incompressible Navier-Stokes equations and the general focus is on laminar Newtonian flow. The streamline upwind/ pressure stabilising Petrov-Galerkin (SUPG/PSPG) method is employed to achieve a stable low order finite element discretisation of the fluid, while the solid is discretised spatially by a standard Galerkin finite element approach. The behavior of the solid is governed by Neo-Hooke elasticity. For temporal discretisation the discrete implicit generalised-alpha method is employed for both the fluid and the solid domains. The motion of the fluid mesh is solved using an arbitrary Lagrangian-Eulerian (ALE) scheme employing a nonlinear pseudo-elastic mesh update method. The fluid-solid interface is modelled using a finite element interpolation method that allows for non-matching meshes and satisfies the required conservation laws. The resulting sets of fully implicit strongly coupled nonlinear equations are then decomposed into a general framework consisting of fluid, interface and solid domains. These equations are then solved using different solution techniques consisting of strongly coupled monolithic Newton and block Gauss-Seidel methods as well as a weakly coupled novel staggered scheme. These solvers are employed to solve a number of three dimensional numerical examples consisting of: External flow: o a soft elastic beam fixed at both ends o a thin cantilever plate.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Nagai, Toshiki. "Space-time Extended Finite Element Method with Applications to Fluid-structure Interaction Problems". Thesis, University of Colorado at Boulder, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10844711.

Texto completo
Resumen

This thesis presents a space-time extended finite element method (space-time XFEM) based on the Heaviside enrichment for transient problems with moving interfaces, and its applications to the fluid-structure interaction (FSI) analysis. The Heaviside-enriched XFEM is a promising method to discretize partial differential equations with discontinuities in space. However, significant approximation errors are introduced by time stepping schemes when the interface geometry changes in time. The proposed space-time XFEM applies the finite element discretization and the Heaviside enrichment in both space and time with elements forming a space-time slab. A simple space-time scheme is introduced to integrate the weak form of the governing equations. This scheme considers spatial intersection configuration at multiple temporal integration points. Standard spatial integration techniques can be applied for each spatial configuration. Nitsche's method and the face-oriented ghost-penalty method are extended to the proposed space-time XFEM formulation. The stability, accuracy and flexibility of the space-time XFEM for various interface conditions including moving interfaces are demonstrated with structural and fluid problems. Moreover, the space-time XFEM enables analyzing complex FSI problems using moving interfaces, such as FSI with contact. Two FSI methods using moving interfaces (full-Eulerian FSI and Lagrangian-immersed FSI) are studied. The Lagrangian-immersed FSI method is a mixed formulation of Lagrangian and Eulerian descriptions. As solid and fluid meshes are independently defined, the FSI is computed between non-matching interfaces based on Nitsche's method and projection techniques adopted from computational contact mechanics. The stabilized Lagrange multiplier method is used for contact. Numerical examples of FSI and FSI-contact problems provide insight into the characteristics of the combination of the space-time XFEM and the Lagrangian-immersed FSI method. The proposed combination is a promising method which has the versatility for various multi-physics simulations and the applicability such as optimization.

Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Clement, Adrien. "Étude hydroacoustique de la réponse d'une structure à une excitation de couche limite turbulente". Thesis, Paris, ENSAM, 2015. http://www.theses.fr/2015ENAM0033/document.

Texto completo
Resumen
Les travaux présentés s’intéressent à la réponse vibratoire et au champ acoustique émis par une structure immergée et excitée par une couche limite turbulente, dans le domaine des bas nombres d’ondes et pour un nombre de Mach faible. Ce travail s’inscrit dans la problématique d’amélioration de laprédiction du bruit rayonné dans ce type de configurations, et peut trouver son application à la discrétion acoustique des navires, ou à la caractérisation du bruit rayonné par des structures externes excitées par un écoulement.Numériquement, une analyse modale de la réponse de la structure en formulation (u,p,φ) est réalisée à l’aide du code élément finis Code_Aster. L’excitation est modélisée par une somme d’ondes planes de pression dont la densité spectrale est obtenue à partir des modèles d’excitation pariétale disponibles dans la littérature. Une analyse harmonique sur base modale est réalisée pour chaque cas de chargement.Cette approche permet la prise en compte du couplage fluide-structure dans le cas d’un fluide lourd et présente l’avantage de s’affranchir des hypothèses généralement faites, de fluide léger et d’orthogonalité des déformées modales.Les résultats issus de la modélisation numérique sont comparés à des données expérimentales, concernant le comportement vibratoire d’un dispositif constitué d’une plaque plane excitée par un écoulement généré en tunnel hydrodynamique. Les résultats numériques et expérimentaux observés sont proches,qu’il s’agisse du comportement global, du niveau spectral moyen en déplacement ou du niveau de pression acoustique mesuré. En complément, l’influence de défauts, constitués de marche montantes et descendantes de hauteur inférieure à l’épaisseur de la couche limite, sur l’excitation et la réponse de la structure est explorée expérimentalement
The following work consist in the study of the vibroacoustic response of a structure submerged in fluid, under a turbulent boundary layer flow, the response of the structure is driven by the low wavenumber behaviour, for a small Mach number. This work aims at providing better means of predicting the noise radiated in such setups, mainly regarding stealthiness of ships and submarines and noise radiated by outer structures.A numerical modal analysis based on the (u,p,φ) formulation available in the finite element software Code_Aster is performed. The pressure induced by the boudary layer is then described as a sum of plane waves and several harmonical analysis are performed on the reduced problem, projected on the (u,p,φ) modal basis, one for each term of the sum. This allows us to account for the fluid-structure interaction (inertial and acoustic) in confined and infinite fluid domains. Most numerical models found in scientific papers are making the assumption of a light fluid, or a fluid loaded plate, thus not taking clearly into account the fluid-strucure interaction or only the inertialpart. Here the interaction due to the acoustic field radiated by the plate is fully accounted for.The validity of the proposed numerical method is assesed and numerical results are compared to data obtained from an experimental setup used within a hydrodynamic tunnel. Numerically, a good reproduction of the behaviour of the plate is obtained, both in terms of displacement and spectral levels. The acoustic levels are also compared to their numerical counterparts at the position of the transducer. Moreover, an experimantal analysis is performed, for backward and forward steps of height smaller than the thickness of the boundary layer, in order to investigate the influence of such configurations on the boundary layer excitation and on the vibroacoustic response
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Han, Dong. "On Eulerian-Lagrangian-Lagrangian Method for Solving Fluid-Structure Interaction Problem". University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595845627308018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ni, Mong-Tang. "Analysis of fluid structure interaction problem using immersed boundary method with a finite element approach /". May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Irfanoglu, Bulent. "Boundary Element-finite Element Acoustic Analysis Of Coupled Domains". Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605360/index.pdf.

Texto completo
Resumen
This thesis studies interactions between coupled acoustic domain(s) and enclosing rigid or elastic boundary. Boundary element-finite element (BE-FE) sound-structure interaction models are developed by coupling frequency domain BE acoustic and FE structural models using linear inviscid acoustic and elasticity theories. Flexibility in analyses is provided by discontinuous triangular and quadrilateral elements in the BE method (BEM), and a rectangular plate and a triangular shell element in the FE method (FEM). An analytical formulation is developed for an extended fundamental sound-structure interaction problem that involves locally reacting sound absorptive treatment on interior elastic boundary. This new formulation is built upon existing analytical solutions for a configuration known as the cavity-backed-plate problem. Results from developed analytical formulation are compared against those from independent BE-FE analyses. Analytical and BE-FE analysis results for a selection of cavity-plate(s) interaction cases are given. Single- and multi-domain BE analyses of cavity-Helmholtz resonator interaction are provided as an alternative to modal method of acoustoelasticity. A discrete-form of the existing BE acoustic particle velocity formulation is presented and demonstrated on a basic case study. Both the existing and the discretized BE acoustic particle velocity formulations could be utilized in acoustic studies. A selection of case studies involving fundamental configurations are studied both analytically and computationally (by BE or BE-FE methods). These studies could provide a basis for benchmark case development in the field of acoustics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

O'Connor, Joseph. "Fluid-structure interactions of wall-mounted flexible slender structures". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/fluidstructure-interactions-of-wallmounted-flexible-slender-structures(1dab2986-b78f-4ff9-9b2e-5d2181cfa009).html.

Texto completo
Resumen
The fluid-structure interactions of wall-mounted slender structures, such as cilia, filaments, flaps, and flags, play an important role in a broad range of physical processes: from the coherent waving motion of vegetation, to the passive flow control capability of hair-like surface coatings. While these systems are ubiquitous, their coupled nonlinear response exhibits a wide variety of behaviours that is yet to be fully understood, especially when multiple structures are considered. The purpose of this work is to investigate, via numerical simulation, the fluid-structure interactions of arrays of slender structures over a range of input conditions. A direct modelling approach, whereby the individual structures and their dynamics are fully resolved, is realised via a lattice Boltzmann-immersed boundary model, which is coupled to two different structural solvers: an Euler-Bernoulli beam model, and a finite element model. Results are presented for three selected test cases - which build in scale from a single flap in a periodic array, to a small finite array of flaps, and finally to a large finite array - and the key behaviour modes are characterised and quantified. Results show a broad range of behaviours, which depend on the flow conditions and structural properties. In particular, the emergence of coherent waving motions are shown to be closely related to the natural frequency of the array. Furthermore, this behaviour is associated with a lock-in between the natural frequency of the array and the predicted frequency of the fluid instabilities. The original contributions of this work are: the development and application of a numerical tool for direct modelling of large arrays of slender structures; the characterisation of the behaviour of slender structures over a range of input conditions; and the exposition of key behaviour modes of slender structures and their relation to input conditions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kollmannsberger, Stefan. "ALE-type and fixed grid fluid-structure interaction involving the p-version of the finite element method". kostenfrei, 2010. https://mediatum2.ub.tum.de/node?id=811715.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Doyle, Matthew Gerard. "Simulation of Myocardium Motion and Blood Flow in the Heart with Fluid-Structure Interaction". Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20166.

Texto completo
Resumen
The heart is a complex organ and much is still unknown about its mechanical function. In order to use simulations to study heart mechanics, fluid and solid components and their interaction should be incorporated into any numerical model. Many previous studies have focused on myocardium motion or blood flow separately, while neglecting their interaction. Previous fluid-structure interaction (FSI) simulations of heart mechanics have made simplifying assumptions about their solid models, which prevented them from accurately predicting the stress-stain behaviour of the myocardium. In this work, a numerical model of the canine left ventricle (LV) is presented, which serves to address the limitations of previous studies. A canine LV myocardium material model was developed for use in conjunction with a commercial finite element code. The material model was modified from its original form to make it suitable for use in simulations. Further, numerical constraints were imposed when calculating the material parameter values, to ensure that the model would be strictly convex. An initial geometry and non-zero stress state are required to start cardiac cycle simulations. These were generated by the static inflation of a passive LV model to an end-diastolic pressure. Comparisons with previous measurements verified that the calculated geometry was representative of end diastole. Stresses calculated at the specified end diastolic pressure showed complex spatial variations, illustrating the superiority of the present approach over a specification of an arbitrary stress distribution to an end-diastolic geometry. In the third part of this study, FSI simulations of the mechanics of the LV were performed over the cardiac cycle. Calculated LV cavity pressures agreed well with previous measurements during most of the cardiac cycle, but deviated from them during rapid filling, which resulted in non-physiological backflow. This study is the first one to present a detailed analysis of the temporal and spatial variations of the properties of both the solid and the fluid components of the canine LV. The observed development of non-uniform pressure distributions in the LV cavity confirms the advantage of performing FSI simulations rather than imposing a uniform fluid pressure on the inner surface of the myocardium during solid-only simulations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Monasse, Laurent. "Analysis of a discrete element method and coupling with a compressible fluid flow method". Phd thesis, Université Paris-Est, 2011. http://pastel.archives-ouvertes.fr/pastel-00672342.

Texto completo
Resumen
This work aims at the numerical simulation of compressible fluid/deformable structure interactions. In particular, we have developed a partitioned coupling algorithm between a Finite Volume method for the compressible fluid and a Discrete Element method capable of taking into account fractures in the solid. A survey of existing fictitious domain methods and partitioned algorithms has led to choose an Embedded Boundary method and an explicit coupling scheme. We first showed that the Discrete Element method used for the solid yielded the correct macroscopic behaviour and that the symplectic time-integration scheme ensured the preservation of energy. We then developed an explicit coupling algorithm between a compressible inviscid fluid and an undeformable solid. Mass, momentum and energy conservation and consistency properties were proved for the coupling scheme. The algorithm was then extended to the coupling with a deformable solid, in the form of a semi-implicit scheme. Finally, we applied this method to unsteady inviscid flows around moving structures: comparisons with existing numerical and experimental results demonstrate the excellent accuracy of our method
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Mudrich, Jaime. "Development of a Coupling Model for Fluid-Structure Interaction using the Mesh-free Finite Element Method and the Lattice Boltzmann Method". FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/964.

Texto completo
Resumen
In the presented thesis work, the meshfree method with distance fields was coupled with the lattice Boltzmann method to obtain solutions of fluid-structure interaction problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the coupling algorithm combining the meshfree method with distance fields and the lattice Boltzmann method were investigated. Convergence and accuracy of the methodology was validated by analytical solutions. The research was focused on fluid-structure interaction solutions in complex, mesh-resistant domains as both the lattice Boltzmann method and the meshfree method with distance fields are particularly adept in these situations. Furthermore, the fluid solution provided by the lattice Boltzmann method is massively scalable, allowing extensive use of cutting edge parallel computing resources to accelerate this phase of the solution process. The meshfree method with distance fields allows for exact satisfaction of boundary conditions making it possible to exactly capture the effects of the fluid field on the solid structure.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Chiang, Chen-Yu. "Transport in biological systems. Monolithic method for fluid-structure interaction". Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS477.

Texto completo
Resumen
Le travail de cette thèse a pour objectif de développer un solveur dédié aux problèmes d'interaction fluide-structure (IFS), en particulier ceux rencontré en biologie, tels que la dynamique d'un écoulement sanguin à travers des tronçons veineux munis de valves. La circulation du sang est étudiée à l'aide de modèles pertinents sur les plans anatomique et physique. Le premier aspect des problèmes d'IFS concerne la gestion de la stabilité. Une formulation monolithique eulérienne basée sur la méthode des caractéristiques assure la stabilité inconditionnelle et introduit une approximation du premier ordre en temps avec deux modèles distincts de matériaux hyper élastiques. Le second aspect est relatif au contact entre deux parties du domaine solide, tel celui apparaissant entre deux valvules au cours de la fermeture de la valve et à l'état fermé sur un surface valvulaire relativement importante. Un algorithme de contact est proposé et validé à l'aide de tests de référence. L'étude computationnelle de l'écoulement sanguin à travers des tronçons veineux munis de valves est mené, une fois le solveur IFS vérifié et validé. Le domaine computationnel bidimensionnel est soit constitué d'une simple unité de base, soit du modèle de circuit veineux en forme d'échelle avec une veine superficielle et une profonde, communicant par une série de veines perforantes. Un maillage tridimensionnel de l'unité de base a été construit. Les simulations dans ce domaine tridimensionnel nécessite le recours au calcul haute performance. La dynamique de l'écoulement sanguin est fortement couplée à la mécanique de la paroi vasculaire. La paroi déformable des veines et artères de gros calibre est composée de trois couches principales (l'intima, la media, et l'adventitia) constituées de matériaux composites ayant une composition spécifique dans chaque couche. Dans ce travail, la rhéologie de la paroi est supposée être représentée par un matériau du type Mooney-Rivlin
The present work aims at developing a numerical solver for fluid-structure interaction (FSI) problems, especially those encountered in biology such as blood circulation in valved veins. Blood flow is investigated using anatomically and physically relevant models. The first aspect of FSI problems is related to management of algorithm stability. An Eulerian monolithic formulation based on the characteristic method unconditionally achieves stability and introduce a first order in time approximation with two distinct hyperelastic material models. The second aspect deals with between-solid domain contact such as that between valve leaflets during closure and in the closed state over a finite surface, which avoid vcusp tilting and back flow. A contact algorithm is proposed and validated using benchmarks. Computational study of blood flow in valved veins is investigated, once the solver was verified and validated. The 2D computational domain comprises a single basic unit or the ladder-like model of a deep and superficial veins communicating by a set of perforating veins. A 3D mesh of the basic unit was also built. Three-dimensional computation relies on high performance computing. Blood flow dynamics is strongly coupled to vessel wall mechanics. Deformable vascular walls of large veins and arteries are composed of three main layers (intima, media, and adventitia) that consist of composite material with a composition specific to each layer. In the present work, the wall rheology is assumed to be a Mooney-Rivlin material
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Yang, Qing. "SPH Simulation of Fluid-Structure Interaction Problems with Application to Hovercraft". Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/26785.

Texto completo
Resumen
A Computational Fluid Dynamics (CFD) tool is developed in this thesis to solve complex fluid-structure interaction (FSI) problems. The fluid domain is based on Smoothed Particle Hydro-dynamics (SPH) and the structural domain employs large-deformation Finite Element Method (FEM). Validation tests of SPH and FEM are first performed individually. A loosely-coupled SPH-FEM model is then proposed for solving FSI problems. Validation results of two benchmark FSI problems are illustrated (Antoci et al., 2007; Souto-Iglesias et al., 2008). The first test case is flow in a sloshing tank interacting with an elastic body and the second one is dam-break flow through an elastic gate. The results obtained with the SPH-FEM model show good agreement with published results and suggest that the SPH-FEM model is a viable and effective numerical tool for FSI problems. This research is then applied to simulate a two-dimensional free-stream flow interacting with a deformable, pressurized surface, such as an ACV/SES bow seal. The dynamics of deformable surfaces such as the skirt/seal systems of the ACV/SES utilize the large-deformation FEM model. The fluid part including the air inside the chamber and water are simulated by SPH. A validation case is performed to investigate the application of SPH-FEM model in ACV/SES via comparison with experimental data (Zalek and Doctors, 2010). The thesis provides the theory of the SPH and FEM models incorporated and the derivation of the loosely-coupled SPH-FEM model. The validation results have suggested that this SPH-FEM model can be readily applied to skirt/seal dynamics of ACV/SES interacting with free-surface flow.
Ph. D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Baumgart, Johannes. "The Hair Bundle: Fluid-Structure Interaction in the Inner Ear". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63810.

Texto completo
Resumen
A multitude of processes cooperate to produce the sensation of sound. The key initial step, the transformation from mechanical motion into an electrical signal, takes place in highly specialized mechanosensitive organelles that are called hair bundles due to their characteristic appearance. Each hair bundle comprises many apposed cylindrical stereocilia that are located in a liquid-filled compartment of the inner ear. The viscous liquid surrounding the hair bundle dissipates energy and dampens oscillations, which poses a fundamental physical challenge to the high sensitivity and sharp frequency selectivity of hearing. To understand the structure-function relationship in this complex system, a realistic physical model of the hair bundle with an appropriate representation of the fluid-structure interactions is needed to identify the relevant physical effects. In this work a novel approach is introduced to analyze the mechanics of the fluid-structure interaction problem in the inner ear. Because the motions during normal mechanotransduction are much smaller than the geometrical scales, a unified linear system of equations describes with sufficient accuracy the behavior of the liquid and solid in terms of a displacement variable. The finite-element method is employed to solve this system of partial differential equations. Based on data from the hair bundle of the bullfrog's sacculus, a detailed model is constructed that resolves simultaneously the interaction with the surrounding liquid as well as the coupling liquid in the narrow gaps between the individual stereocilia. The experimental data are from high-resolution interferometric measurements at physiologically relevant amplitudes in the range from a fraction of a nanometer to several tens of nanometers and over a broad range of frequencies from one millihertz to hundred kilohertz. Different modes of motion are analyzed and their induced viscous drag is calculated. The investigation reveals that grouping stereocilia in a bundle dramatically reduces the total drag as compared to the sum of the drags on individual stereocilia moving in isolation. The stereocilia in a hair bundle are interconnected by oblique tip links that transmit the energy in a sound to the mechanotransduction channels and by horizontal top connectors that provide elastic coupling between adjacent stereocilia. During hair-bundle deflections, the tip links induce additional drag by causing small but very dissipative relative motions between stereocilia; this effect is offset by the horizontal top connectors that restrain such relative movements, assuring that the hair bundle moves as a unit and keeping the total drag low. In the model the stiffness of the links, the stiffness of the stereocilia, and the geometry are carefully adjusted to match experimental observations. The references are stiffness and drag measurements, as well as the coherence measurements for the bundle's opposite edges, both with and without the tip links. The results are further validated by a comparison with the relative motions measured in a sinusoidally stimulated bundle for the distortion frequencies at which movements are induced by the nonlinearity imposed by channel gating. The model of the fluid-structure interactions described here provides insight into the key step in the perception of sound and the method presented provides an efficient and reliable approach to fluid-structure interaction problems at small amplitudes
Bei der Hörwahrnehmung eines Klangs spielen viele komplexe Prozesse zusammen. Der Schlüsselprozess, die Umwandlung mechanischer Schwingungsbewegung in elektrische Signale, findet in den Haarbündeln im Innenohr statt. Diese Haarbündel sind hoch entwickelte mechanosensitive Organellen, bestehend aus vielen nahe beieinander stehenden Stereozilien umgeben von Flüssigkeit. Die beträchtliche Viskosität dieser Flüssigkeit führt zur Energiedissipation und zur Schwingungsdämpfung, was im Gegensatz zur bekannten hohen Empfindlichkeit und der ausgezeichneten Frequenzselektivität der Hörwahrnehmung steht. Um die Komponenten des Haarbündelsystems in ihrem funktionalen Zusammenspiel besser zu verstehen, bedarf es eines wirklichkeitsgetreuen Modells unter Einbeziehung der Wechselwirkung zwischen Flüssigkeit und Struktur. Mit dieser Arbeit wird ein neuer Ansatz vorgestellt, um die Mechanik der Fluid-Struktur-Wechselwirkung im Innenohr zu analysieren. Da die Bewegungen bei der normalen Mechanotransduktion wesentlich kleiner als die geometrischen Abmessungen sind, ist es möglich, das Verhalten von Fluid und Struktur in Form der Verschiebungsvariable in einem linearen einheitlichen System von Gleichungen ausreichend genau zu beschreiben. Dieses System von partiellen Differentialgleichungen wird mit der Finite-Elemente-Methode gelöst. Basierend auf experimentell ermittelten Daten vom Haarbündel des Ochsenfrosches wird ein detailliertes Modell erstellt, welches sowohl die Interaktion mit der umgebenden Flüssigkeit als auch die koppelnde Flüssigkeit in den engen Spalten zwischen den einzelnen Stereozilien erfasst. Die experimentellen Daten sind Ergebnisse von hochauflösenden interferometrischen Messungen bei physiologisch relevanten Bewegungsamplituden im Bereich von unter einem Nanometer bis zu mehreren Dutzend Nanometern, sowie über einen breiten Frequenzbereich von einem Millihertz bis hundert Kilohertz. Das Modell erlaubt die Berechnung der auftretenden viskosen Widerstände aus der numerischen Analyse der verschiedenen beobachteten Bewegungsmoden. Es kann gezeigt werden, dass durch die Gruppierung zu einem Bündel der Gesamtwiderstand drastisch reduziert ist, im Vergleich zur Summe der Widerstände einzelner Stereozilien, die sich individuell und unabhängig voneinander bewegen. Die einzelnen Stereozilien in einem Haarbündel sind durch elastische Strukturen mechanisch miteinander verbunden: Die Energie des Schalls wird durch schräg angeordnete sogenannte Tiplinks auf die mechanotransduktiven Kanäle übertragen, wohingegen horizontale Querverbindungen die Stereozilien direkt koppeln. Während der Haarbündelauslenkung verursachen die Tiplinks zusätzlichen Widerstand durch stark dissipative Relativbewegungen zwischen den Stereozilien. Die horizontalen Querverbindungen unterdrücken diese Bewegungen und sind dafür verantwortlich, dass sich das Haarbündel als Einheit bewegt und der Gesamtwiderstand gering bleibt. Die Steifigkeit der Stereozilien und der Verbindungselemente sowie deren Geometrie sind in dem Modell sorgfältig angepasst, um eine Übereinstimmung mit den Beobachtungen aus verschiedenen Experimenten zu erzielen. Als Referenz dienen Steifigkeits- und Widerstandsmessungen, sowie Kohärenzmessungen für die gegenüberliegenden Außenkanten des Bündels, die jeweils mit und ohne Tiplinks durchgeführt wurden. Darüberhinaus sind die Ergebnisse durch den Vergleich mit experimentell beobachteten Relativbewegungen validiert, die das Haarbündel infolge von sinusförmiger Anregung bei Distorsionsfrequenzen zeigt. Diese haben ihren Ursprung in dem nichtlinearen Prozess des öffnens von Ionenkanälen. Das entwickelte Modell eines Haarbündels liefert neue Einblicke in den Schlüsselprozess der auditiven Wahrnehmung. Zur Behandlung von Problemen der Fluid-Struktur-Wechselwirkungen bei kleinen Amplituden hat sich der hier ausgearbeitete Ansatz als effizient und zuverlässig erwiesen
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

浜崎, 純也, Junya Hamasaki, 秀幸 畔上 y Hideyuki AZEGAMI. "流体・構造連成問題における形状最適化". 日本機械学会, 2006. http://hdl.handle.net/2237/12163.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Yogaraj, Sudhakar [Verfasser], Wolfgang A. [Akademischer Betreuer] Wall y Nicolas [Akademischer Betreuer] Moës. "An embedded interface finite element method for fluid-structure-fracture interaction / Sudhakar Yogaraj. Gutachter: Wolfgang A. Wall ; Nicolas Moës. Betreuer: Wolfgang A. Wall". München : Universitätsbibliothek der TU München, 2015. http://d-nb.info/1075596068/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Yogaraj, Sudhakar [Verfasser], Wolfgang A. [Akademischer Betreuer] Wall y Nicolas [Akademischer Betreuer] Moe͏̈s. "An embedded interface finite element method for fluid-structure-fracture interaction / Sudhakar Yogaraj. Gutachter: Wolfgang A. Wall ; Nicolas Moës. Betreuer: Wolfgang A. Wall". München : Universitätsbibliothek der TU München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20150625-1246981-1-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Webster, Keith Gordon. "Investigation of Close Proximity Underwater Explosion Effects on a Ship-Like Structure Using the Multi-Material Arbitrary Lagrangian Eulerian Finite Element Method". Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/31077.

Texto completo
Resumen
This thesis investigates the characteristics of a close proximity underwater explosion and its effect on a ship-like structure. Finite element model tests are conducted to verify and validate the propagation of a pressure wave generated by an underwater explosion through a fluid medium, and the transmission of the pressure wave in the fluid to a structure using the Multi-Material Arbitrary Lagrangian/Eulerian method. A one dimensional case modeling the detonation of a spherical TNT charge underwater is investigated. Three dimensional cases modeling the detonation of an underwater spherical TNT charge, and US Navy Blast Test cases modeling a shape charge and a circular steel plate, and a shape charge and a Sandwich Plate System (SPS) are also investigated. This thesis provides evidence that existing tools and methodologies have some capability for predicting early-time/close proximity underwater explosion effects, but are insufficient for analyses beyond the arrival of the initial shock wave. This thesis shows that a true infinite boundary condition, a modified Gruneisen equation of state near the charge, and the ability to capture shock without a very small element size is needed in order to provide a sufficient means for predicting early-time/close proximity underwater explosion effects beyond the arrival of the initial shock wave.
Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Campbell, Ian 1982. "A study of coronary flow in the presence of geometric and mechanical abnormalities in a fluid-structure interaction model of the aortic valve /". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111522.

Texto completo
Resumen
Various surgical options exist to correct pathologies of the aortic valve, including mechanical or biological valve implantation, reconstruction of the native vessels, and a combination of the two. Additionally, finite-element analysis and, to some extent, fluid-structure interaction (FSI) analyses have been used in the past to analyze how these procedures may affect various engineering metrics such as tissue stresses and opening and closing dynamics of the valves. In this work, a similar type of model and analysis is performed, however, in addition to modeling the actions of the aortic valve, coronary flows are also considered. By incorporating these vessels, it is possible to examine coronary flow perturbations to mechanical and geometric model variations and to assess certain surgical procedures in regards to a new clinically relevant metric.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Dobes, Jiri. "Numerical algorithms for the computation of steady and unsteady compressible flow over moving geometries: application to fluid-structure interaction". Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210640.

Texto completo
Resumen

This work deals with the development of numerical methods for compressible flow simulation with application to the interaction of fluid flows and structural bodies.

First, we develop numerical methods based on multidimensional upwind residual distribution (RD) schemes. Theoretical results for the stability and accuracy of the methods are given. Then, the RD schemes for unsteady problems are extended for computations on moving meshes. As a second approach, cell centered and vertex centered finite volume (FV) schemes are considered. The RD schemes are compared to FV schemes by means of the 1D modified equation and by the comparison of the numerical results for scalar problems and system of Euler equations. We present a number of two and three dimensional steady and unsteady test cases, illustrating properties of the numerical methods. The results are compared with the theoretical solution and experimental data.

In the second part, a numerical method for fluid-structure interaction problems is developed. The problem is divided into three distinct sub-problems: Computational Fluid Dynamics, Computational Solid Mechanics and the problem of fluid mesh movement. The problem of Computational Solid Mechanics is formulated as a system of partial differential equations for an anisotropic elastic continuum and solved by the finite element method. The mesh movement is determined using the pseudo-elastic continuum approach and solved again by the finite element method. The coupling of the problems is achieved by a simple sub-iterative approach. Capabilities of the methods are demonstrated on computations of 2D supersonic panel flutter and 3D transonic flutter of the AGARD 445.6 wing. In the first case, the results are compared with the theoretical solution and the numerical computations given in the references. In the second case the comparison with experimental data is presented.


Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Rumpler, Romain. "Efficient finite element approach for structural-acoustic applicationns including 3D modelling of sound absorbing porous materials". Phd thesis, Conservatoire national des arts et metiers - CNAM, 2012. http://tel.archives-ouvertes.fr/tel-00726915.

Texto completo
Resumen
In the context of interior noise reduction, the present work aims at proposing Finite Element (FE) solution strategies for interior structural-acoustic applications including 3D modelling of homogeneous and isotropic poroelastic materials, under timeharmonic excitations, and in the low frequency range. A model based on the Biot-Allard theory is used for the poroelastic materials, which is known to be very costly in terms of computational resources. Reduced models offer the possibility to enhance the resolution of such complex problems. However, their applicability to porous materials remained to be demonstrated.First, this thesis presents FE resolutions of poro-elasto-acoustic coupled problems using modal-based approaches both for the acoustic and porous domains. The original modal approach proposed for porous media, together with a dedicated mode selection and truncation procedure, are validated on 1D to 3D applications.In a second part, modal-reduced models are combined with a Padé approximants reconstruction scheme in order to further improve the efficiency.A concluding chapter presents a comparison and a combination of the proposed methods on a 3D academic application, showing promising performances. Conclusions are then drawn to provide indications for future research and tests to be conducted in order to further enhance the methodologies proposed in this thesis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Rumpler, Romain. "Efficient Finite Element Approach for Structural-Acoustic Applications including 3D modelling of Sound Absorbing Porous Materials". Doctoral thesis, KTH, MWL Numerisk akustik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-90335.

Texto completo
Resumen
In the context of interior noise reduction, the present work aims at proposing Finite Element (FE) solution strategies for interior structural-acoustic applications including 3D modelling of homogeneous and isotropic poroelastic materials, under timeharmonic excitations, and in the low frequency range. A model based on the Biot-Allard theory is used for the poroelastic materials, which is known to be very costly in terms of computational resources. Reduced models offer the possibility to enhance the resolution of such complex problems. However, their applicability to porous materials remained to be demonstrated.First, this thesis presents FE resolutions of poro-elasto-acoustic coupled problems using modal-based approaches both for the acoustic and porous domains. The original modal approach proposed for porous media, together with a dedicated mode selection and truncation procedure, are validated on 1D to 3D applications.In a second part, modal-reduced models are combined with a Padé approximants reconstruction scheme in order to further improve the efficiency.A concluding chapter presents a comparison and a combination of the proposed methods on a 3D academic application, showing promising performances. Conclusions are then drawn to provide indications for future research and tests to be conducted in order to further enhance the methodologies proposed in this thesis.
Dans le contexte de lutte contre les nuisances sonores, cette thèse porte sur le développement de méthodes de résolution efficaces par éléments finis, pour des problèmes de vibroacoustique interne avec interfaces dissipatives, dans le domaine des basses fréquences. L’étude se limite à l’utilisation de solutions passives telles que l’intégration de matériaux poreux homogènes et isotropes, modélisés par une approche fondée sur la théorie de Biot-Allard. Ces modèles étant coûteux en terme de résolution, un des objectifs de cette thèse est de proposer une approche modale pour la réduction du problème poroélastique, bien que l’adéquation d’une telle approche avec le comportement dynamique des matériaux poreux soit à démontrer.Dans un premier temps, la résolution de problèmes couplés élasto-poro-acoustiques par sous-structuration dynamique des domaines acoustiques et poreux est établie. L’approche modale originale proposée pour les milieux poroélastiques, ainsi qu’une procédure de sélection des modes significatifs, sont validées sur des exemples 1D à 3D.Une deuxième partie présente une méthode combinant l’utilisation des modèles réduits précédemment établis avec une procédure d’approximation de solution par approximants de Padé. Il est montré qu’une telle combinaison offre la possibilité d’accroître les performances de la résolution (allocation mémoire et ressources en temps de calcul).Un chapitre dédié aux applications permet d’évaluer et comparer les approches sur un problème académique 3D, mettant en valeur leurs performances encourageantes. Afin d’améliorer les méthodes établies dans cette thèse, des perspectives à ces travaux de recherche sont apportées en conclusion.

QC 20120224


FP6 Marie-Curie Smart Structures
FP7 Marie-Curie Mid-Frequency
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Spühler, Jeannette Hiromi. "Patient-Specific Finite Element Modeling of the Blood Flow in the Left Ventricle of a Human Heart". Doctoral thesis, KTH, Beräkningsvetenskap och beräkningsteknik (CST), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215277.

Texto completo
Resumen
Heart disease is the leading cause of death in the world. Therefore, numerous studies are undertaken to identify indicators which can be applied to discover cardiac dysfunctions at an early age. Among others, the fluid dynamics of the blood flow (hemodymanics) is considered to contain relevant information related to abnormal performance of the heart.This thesis presents a robust framework for numerical simulation of the fluid dynamics of the blood flow in the left ventricle of a human heart and the fluid-structure interaction of the blood and the aortic leaflets.We first describe a patient-specific model for simulating the intraventricular blood flow. The motion of the endocardial wall is extracted from data acquired with medical imaging and we use the incompressible Navier-Stokes equations to model the hemodynamics within the chamber. We set boundary conditions to model the opening and closing of the mitral and aortic valves respectively, and we apply a stabilized Arbitrary Lagrangian-Eulerian (ALE) space-time finite element method to simulate the blood flow. Even though it is difficult to collect in-vivo data for validation, the available data and results from other simulation models indicate that our approach possesses the potential and capability to provide relevant information about the intraventricular blood flow.To further demonstrate the robustness and clinical feasibility of our model, a semi-automatic pathway from 4D cardiac ultrasound imaging to patient-specific simulation of the blood flow in the left ventricle is developed. The outcome is promising and further simulations and analysis of large data sets are planned.In order to enhance our solver by introducing additional features, the fluid solver is extended by embedding different geometrical prototypes of both a native and a mechanical aortic valve in the outflow area of the left ventricle.Both, the contact as well as the fluid-structure interaction, are modeled as a unified continuum problem using conservation laws for mass and momentum. To use this ansatz for simulating the valvular dynamics is unique and has the expedient properties that the whole problem can be described with partial different equations and the same numerical methods for discretization are applicable.All algorithms are implemented in the high performance computing branch of Unicorn, which is part of the open source software framework FEniCS-HPC. The strong advantage of implementing the solvers in an open source software is the accessibility and reproducibility of the results which enhance the prospects of developing a method with clinical relevance.

QC 20171006

Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Nunez, Ramirez Jorge. "A multi time-step partitioned approach for the coupling of SPH and FE methods for nonlinear FSI problems". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI040/document.

Texto completo
Resumen
Dans le cadre de ce travail, une technique non-intrusive est proposée pour coupler la méthode Smoothed Particle Hydrodynamics (SPH) à la méthode des Eléments Finis afin de résoudre numériquement des problèmes dynamiques et non-linéaires d’interaction fluide-structure en permettant l’utilisation des pas de temps différents dans les deux domaines de calcul (fluide et solide). Ces développements sont motivés par le besoin de simuler numériquement des phénomènes rapides et très non-linéaires qui prennent en compte des impacts en se servant des intégrateurs temporels explicites dans chaque sous-domaine de calcul (Newmark explicite pour le solide et Runge-Kutta 2 pour le fluide). De ce fait, le pas de temps de stabilité est limité par des caractéristiques intrinsèques au modèle numérique du phénomène étudié et en conséquence, il devient important de pouvoir intégrer chaque sous-domaine numérique avec un pas de temps proche de son pas de temps de stabilité. Pour permettre d’utiliser un pas de temps proche du pas de temps de stabilité pour chaque sous-domaine, des méthodes de décomposition de domaines dual-Schur sont implémentées et validées pour des cas en 1-D, 2-D, et 3-D. Des simulations numériques d’impacts de cailloux sur des aubes des turbines hydrauliques sont aussi effectue´es afin de prédire le dommage que cet évènement peut engendrer
A method to couple smoothed particle hydrodynamics and finite elements methods for nonlinear transient fluid–structure interaction simulations by adopting different time-steps depending on the fluid or solid sub-domains is proposed. These developments were motivated by the need to simulate highly non-linear and sudden phenomena that take into acount solid impacts and hence require the use of explicit time integrators on both sub-domains (explicit Newmark for the solid and Runge–Kutta 2 for the fluid). However, due to critical time-step required for the stability of the explicit time integrators in, it becomes important to be able to integrate each sub-domain with a different time-step while respecting the features that a previously developed mono time-step coupling algorithm offered. For this matter, a dual-Schur decomposition method originally proposed for structural dynamics was considered, allowing to couple time integrators of the Newmark family with different time-steps with the use of Lagrange multipliers
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Remillieux, Marcel C. "Development of a Model for Predicting the Transmission of Sonic Booms into Buildings at Low Frequency". Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/27543.

Texto completo
Resumen
Recent progresses by the aircraft industry in the development of a quieter supersonic transport have opened the possibility of overland supersonic flights, which are currently banned by aviation authorities in most countries. For the ban to be lifted, the sonic booms the aircraft generate at supersonic speed must be acceptable from a human-perception point of view, in particular inside buildings. The problem of the transmission of sonic booms inside buildings can be divided in several aspects such as the external pressure loading, structure vibration, and interior acoustic response. Past investigations on this problem have tackled all these aspects but were limited to simple structures and often did not account for the coupled fluid-structure interaction. A more comprehensive work that includes all the effects of sonic booms to ultimately predict the noise exposure inside realistic building structures, e.g. residential houses, has never been reported. Thus far, these effects could only be investigated experimentally, e.g. flight tests. In this research, a numerical model and a computer code are developed within the above context to predict the vibro-acoustic response of simplified building structures exposed to sonic booms, at low frequency. The model is applicable to structures with multiple rectangular cavities, isolated or interconnected with openings. The response of the fluid-structure system, including their fully coupled interaction, is computed in the time domain using a modal-decomposition approach for both the structural and acoustic systems. In the dynamic equations, the structural displacement is expressed in terms of summations over the â in vacuoâ normal modes of vibration. The interior pressure is expressed in terms of summations over the acoustic modes of the rooms with perfectly reflecting surfaces (hard walls). This approach is simple to implement and computationally efficient at low frequency, when the modal density is relatively low. The numerical model is designed specifically for this application and includes several novel formulations. Firstly, a new shell finite-element is derived to model the structural components typically used in building construction that have orthotropic characteristics such as plaster-wood walls, floors, and siding panels. The constitutive matrix for these types of components is formulated using simple analytical expressions based on the orthotropic constants of an equivalent orthotropic plate. This approach is computationally efficient since there is no need to model all the individual subcomponents of the assembly (studs, sheathing, etc.) and their interconnections. Secondly, a dedicated finite-element module is developed that implements the new shell element for orthotropic components as well as a conventional shell element for isotropic components, e.g. window panels and doors. The finite element module computes the â in vacuoâ structural modes of vibration. The modes and external pressure distribution are then used to compute modal loads. This dedicated finite-element module has the main advantage of overcoming the need, and subsequent complications, for using a large commercial finite-element program. Lastly, a novel formulation is developed for the fully coupled fluid-structure model to handle room openings and compute the acoustic response of interconnected rooms. The formulation is based on the Helmholtz resonator approach and is applicable to the very low frequency-range, when the acoustic wavelength is much larger than the opening dimensions. Experimental validation of the numerical model and computer code is presented for three test cases of increasing complexity. The first test structure consists of a single plaster-wood wall backed by a rigid rectangular enclosure. The structure is excited by sonic booms generated with a speaker. The second test structure is a single room made of plaster-wood walls with two double-panel windows and a door. The third test structure consists of the first room to which a second room with a large window assembly was added. Several door configurations of the structure are tested to validate the formulation for room openings. This latter case is the most realistic one as it involves the interaction of several structural components with several interior cavities. For the last two test cases, sonic booms with realistic durations and amplitudes were generated using an explosive technique. Numerical predictions are compared to the experimental data for the three test cases and show a good overall agreement. Finally, results from a parametric study are presented for the case of the single wall backed by a rigid enclosure. The effects of sonic-boom shape, e.g. rise time and duration, and effects of the structure geometry on the fluid-structure response to sonic booms are investigated.
Ph. D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Cicigliano, Emerson Carlos dos Santos. "Análise numérica do escoamento de fluido em tubos elásticos /". Ilha Solteira : [s.n.], 2010. http://hdl.handle.net/11449/94514.

Texto completo
Resumen
Resumo: O presente trabalho propõe-se a modelar, analisar, e comparar os efeitos do escoamento de um fluido dentro de um tubo elástico. Esses efeitos, por sua vez, serão ocasionados por uma variação de pressão nesse fluido. Para tanto, através das propriedades físicas e mecânicas do tubo e do fluido, foi calculado o deslocamento da parede do tubo, vazão e velocidade do fluido. Essa modelagem tem como intenção comparar numericamente um arranjo que visa simular uma pulsação com características próximas as do coração humano. Através da construção de duas geometrias cilíndricas que representam domínios distintos (estrutura e fluido) que foram acoplados em sua interface, foi possível fazer um estudo da interação fluido-estrutura (FSI) utilizando o software comercial ANSYS, obtendo assim um estudo tri-dimensional do problema. Os resultados mostraram que o deslocamento da interface fluido-estrutura ocorreu simultaneamente, confirmando, portanto, a correta aplicação do comando FSIN. O fluido é considerado incompressível e Newtoniano e é governado pelas equações de Navier-Stokes. As paredes da estrutura são modeladas a partir da Lei de Hooke. Por fim, uma solução numérica é desenvolvida utilizando o Método dos Elementos Finitos
Abstract: This project proposes to model, analyze and compare the effects of fluid flow inside an elastic tube. These effects, in turn, will be caused by a variation of pressure in this fluid. Therefore, through the physical and mechanical properties of the tube and fluid was calculated the displacement of the tube wall, flow and velocity of the fluid. The Modeling intends to compare numerically an arrangement that aims to simulate a heartbeat with characteristics similar to the human heart. Through of building two cylindrical geometries representing different domains (structure and fluid) that were engaged in its interface, it was possible to study the fluid-structure interaction (FSI) using the commercial software ANSYS, thereby obtaining a three-dimensional study. The results showed that the displacement of the interface fluid-structure occurred simultaneously, thereby confirming the correct application of the command FSIN. The fluid is considered incompressible and Newtonian and is governed by the Navier-Stokes equations. The walls of the structure are modeled from the Hooke's Law. Finally, a numerical solution is developed using the Finite Element Method
Orientador: Gilberto Pechoto de Melo
Coorientador: Amarildo Tabone Paschoalini
Banca: Adyles Arato Junior
Banca: Marcio Higa
Mestre
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Takaddus, Ahmed Tasnub. "Numerical Investigations of Unobstructed and Obstructed Human Ureter Peristalsis". University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1516150297659937.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Gomes, Henrique Campelo. "Método dos elementos finitos com fronteiras imersas aplicado a problemas de dinâmica dos fluidos e interação fluido-estrutura". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/3/3144/tde-26122013-150059/.

Texto completo
Resumen
Este trabalho pode ser dividido em três etapas principais. Inicialmente é proposta uma formulação estabilizada do método dos elementos finitos (MEF) para solução de problemas de escoamento incompressível governado pela equação de Navier-Stokes. Esta formulação foi implementada em um código computacional e testada através de diversos exemplos numéricos. Alguns elementos finitos com diferentes pares de função de interpolação da velocidade e pressão, consagrados na literatura, e também elementos finitos menos populares, foram investigados e seus resultados e performance comparados. A segunda etapa consiste na formulação do problema estrutural. Buscou-se por uma formulação dinâmica, não linear, capaz de simular movimentos complexos de estruturas sujeitas a grandes deslocamentos e grandes deformações durante longos intervalos de tempo. A etapa final deste trabalho é a proposição de um método para solução de problemas de Interação Fluido Estrutura (IFE) que utiliza o conceito de fronteiras imersas como alternativa a abordagens ALE (Arbitrary Lagrangian Eulerian) clássicas. Elementos Finitos Generalizados, juntamente com Multiplicadores de Lagrange, são utilizados para prover descontinuidade nos campos de velocidade e pressão do fluido ao longo da interface com a estrutura. O acoplamento dos dois problemas é realizado utilizando um método implícito e alternado (staggered scheme), que possui a vantagem de permitir, facilmente, a implementação de códigos computacionais desenvolvidos para resolver isoladamente o problema fluido e/ou estrutural.
This work is divided in three parts. Initially, it is presented a stabilized Finite Element Method formulation to solve fluid flow problems governed by the incompressible Navier-Stokes Equations. This formulation was implemented in a computer code and validated throughout several numeric simulations. Some well-known finite elements with different pairs of velocity/pressure approximations, as well as some other less popular elements, were investigated and their performance compared. The second part describes the Structural Problem formulation. This formulation is able to simulate nonlinear dynamic problems involving large displacements and finite strains during long period of time. In the final part of this work, it is proposed a Fluid-Structure Interaction method based on an immersed interface approach in opposition to classical ALE (Arbitrary Lagrangian Eulerian) approaches. Generalized Finite Elements, together with Lagrange Multipliers, are used to provide velocity and pressure discontinuities on the fluid domain across the immersed interface. To couple both fluid and structural problems, an implicit staggered scheme is adopted, which allows the easy implementation of already developed black box computer codes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Li, Zhe. "Développement d'une méthode de simulation de couplage fluide-structure à l'aide de la méthode SPH". Thesis, Ecully, Ecole centrale de Lyon, 2013. http://www.theses.fr/2013ECDL0036/document.

Texto completo
Resumen
L’Interaction Fluide-Structure (IFS) est un sujet d’intérêt dans beaucoup de problèmes pratiques aussi bien pour les recherches académiques ainsi que pour les applications industrielles. Différents types d’approches de simulation numérique peuvent être utilisés pour étudier les problèmes d’IFS afin d’obtenir de meilleurs conceptions et d’éviter des incidents indésirables. Dans ce travail, le domaine du fluide est simulé par une méthode hybride sans maillage (SPH-ALE), et la structure est discrétisée par la méthode d’ ´ Eléments Finis (EF). Considérant le fluide comme un ensemble de particules, on peut suivre l’interface entre le fluide et la structure d’une manière naturelle. Une stratégie de couplage conservant l’énergie est proposée pour les problèmes d’IFS transitoires où différents intégrateurs temporels sont utilisés pour chaque sous-domaine: 2nd ordre schéma de Runge-Kutta pour le fluide et schéma de Newmark pour le solide. En imposant la continuité de la vitesse normale à l’interface, la méthode proposée peut assurer qu’il n’y a ni injection d’énergie ni dissipation d’énergie à l’interface. L’énergie de l’interface est donc nulle (aux erreurs de troncature près) durant toute la période de simulation numérique. Cette méthode de couplage assure donc que la simulation de couplage est numériquement stable en temps. Les expérimentations numériques montrent que le calcul converge en temps avec l’ordre de convergence minimal des schémas utilisés dans chaque sous-domaine. Cette méthode proposée est d’abord appliquée `a un problème de piston mono-dimensionnel. On vérifie sur ce cas qu’elle ne dégrade pas l’ordre de précision en temps des schémas utilisés. On effectue ensuite les études des phénomènes de propagation d’ondes de choc au travers de l’interface fluide-structure. Un excellent accord avec la solution analytique est observé dans les cas de teste de propagation d’onde en 1-D. Finalement, les exemples multi-dimensionnels sont présentés. Ses résultats sont comparés avec ceux obtenus par d’autres méthodes de couplage
The Fluid-Structure Interaction (FSI) effects are of great importance for many multi-physical problems in academic researches as well as in engineering sciences. Various types of numerical simulation approaches may be used to investigate the FSI problems in order to get more reliable conception and to avoid unexpected disasters. In this work, the fluid sub-domain is simulated by a hybrid mesh-less method (SPH-ALE), and the structure is discretized by the Finite Element (FE) method. As the fluid is considered as a set of particles, one can easily track the fluid structure interface. An energy-conserving coupling strategy is proposed for transient fluid-structure interaction problems where different time integrators are used for each sub-domain: 2nd order Runge-Kutta scheme for the fluid and Newmark time integrator for the solid. By imposing a normal velocity constraint condition at the interface, this proposed coupling method ensures that neither energy injection nor energy dissipation will occur at the interface so that the interface energy is rigorously zero during the whole period of numerical simulation. This coupling method thus ensures that the coupling simulation shall be stable in time, and secondly, the numerical simulation will converge in time with the minimal convergence rate of all the time integrators chosen for each sub-domain. The proposed method is first applied to a mono-dimensional piston problem in which we verify that this method does not degrade the order of accuracy in time of the used time integrators. Then we use this coupling method to investigate the phenomena of propagation of shock waves across the fluidstructure interface. A good agreement is observed between the numerical results and the analytical solutions in the 1-D shock wave propagation test cases. Finally, some multi-dimensional examples are presented. The results are compared with the ones obtained by other coupling approaches
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Cicigliano, Emerson Carlos dos Santos [UNESP]. "Análise numérica do escoamento de fluido em tubos elásticos". Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/94514.

Texto completo
Resumen
Made available in DSpace on 2014-06-11T19:27:13Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-26Bitstream added on 2014-06-13T19:14:28Z : No. of bitstreams: 1 cicigliano_ecs_me_ilha.pdf: 2408732 bytes, checksum: 0af63a8f55dcecc2b890effc02c98e0e (MD5)
O presente trabalho propõe-se a modelar, analisar, e comparar os efeitos do escoamento de um fluido dentro de um tubo elástico. Esses efeitos, por sua vez, serão ocasionados por uma variação de pressão nesse fluido. Para tanto, através das propriedades físicas e mecânicas do tubo e do fluido, foi calculado o deslocamento da parede do tubo, vazão e velocidade do fluido. Essa modelagem tem como intenção comparar numericamente um arranjo que visa simular uma pulsação com características próximas as do coração humano. Através da construção de duas geometrias cilíndricas que representam domínios distintos (estrutura e fluido) que foram acoplados em sua interface, foi possível fazer um estudo da interação fluido-estrutura (FSI) utilizando o software comercial ANSYS, obtendo assim um estudo tri-dimensional do problema. Os resultados mostraram que o deslocamento da interface fluido-estrutura ocorreu simultaneamente, confirmando, portanto, a correta aplicação do comando FSIN. O fluido é considerado incompressível e Newtoniano e é governado pelas equações de Navier-Stokes. As paredes da estrutura são modeladas a partir da Lei de Hooke. Por fim, uma solução numérica é desenvolvida utilizando o Método dos Elementos Finitos
This project proposes to model, analyze and compare the effects of fluid flow inside an elastic tube. These effects, in turn, will be caused by a variation of pressure in this fluid. Therefore, through the physical and mechanical properties of the tube and fluid was calculated the displacement of the tube wall, flow and velocity of the fluid. The Modeling intends to compare numerically an arrangement that aims to simulate a heartbeat with characteristics similar to the human heart. Through of building two cylindrical geometries representing different domains (structure and fluid) that were engaged in its interface, it was possible to study the fluid-structure interaction (FSI) using the commercial software ANSYS, thereby obtaining a three-dimensional study. The results showed that the displacement of the interface fluid-structure occurred simultaneously, thereby confirming the correct application of the command FSIN. The fluid is considered incompressible and Newtonian and is governed by the Navier-Stokes equations. The walls of the structure are modeled from the Hooke's Law. Finally, a numerical solution is developed using the Finite Element Method
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Kučera, Martin. "Dynamické vlastnosti rotoru kmitajícího v tekutině". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228818.

Texto completo
Resumen
This thesis deals with dynamic behavior of rotor dynamics system vibrating in a liquid. Work is factually oriented on influence of the liquid to natural frequences of rotor of vortex turbine. There is described the creation of geometric and computational model of the system and the results of natural frequences and damping in dependence on environment are presen-ted. There are compared variations in natural frequences of the rotor system, which are caused of the interaction of the various level of the water environment. The step of integration are tested and compared for choise solving method. Problem is solved by computational simulation in commercial software ANSYS 11.0 There is used software tools Multiphysics/FSI.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Sanches, Rodolfo André Kuche. "Análise bidimensional de interação fluido-estrutura: desenvolvimento de código computacional". Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-06112006-145215/.

Texto completo
Resumen
O presente trabalho consiste no desenvolvimento de um código computacional baseado no método dos elementos finitos (MEF), para análise bidimensional de interação fluido-estrutura. Desenvolve-se um código bidimensional para dinâmica de fluidos compressíveis, viscosos ou não, em formulação Euleriana, com base no algoritmo CBS – characteristic based split. Então o código desenvolvido é adaptado para poder ser acoplado a um programa de formulação Lagrangeana para análise dinâmica de estruturas, o que é feito através do emprego da descrição Lagrangeana - Euleriana arbitrária (ALE). Por fim procede-se o acoplamento com um código para análise de estruturas, de formulação posicional e não linear geométrica, baseado no método dos elementos finitos.
The present work consists of the development of a computational code based on the element finite method for fluid-structure interaction analysis. A two-dimensional fluid dynamic Eulerian code is developed based on the CBS algorithm – characteristic based split. Then, the computational code is modified to be coupled with a Lagrangean structures dynamical code by using the arbitrary Lagrangean – Eulerian description (ALE). At the end, the coupling is made with a positional nonlinear geometrical structural dynamics code based on the finite element method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Silva, Emilio Carlos Nelli. "Modelagem vibracional de transdutores de ultra-som piezoelétricos pelo método de elementos finitos". Universidade de São Paulo, 1993. http://www.teses.usp.br/teses/disponiveis/3/3132/tde-11072017-091843/.

Texto completo
Resumen
Apresentam-se as bases teóricas do Método de Elementos Finitos (MEF) piezoelétrico, e a sua aplicação na modelagem de transdutores de ultra-som piezoelétricos, que consiste na determinação das características vibracionais (frequências de ressonância e anti-ressonância, modos de vibrar e coeficiente de acoplamento eletromecânico), obtenção da curva de admitancia, análise transiente da estrutura piezoelétrica sujeita a uma excitação pulsada e análise da influência da variação das constantes piezoelétricas do transdutor com o raio. Utilizando-se o MEF aplicado a acústica obteve-se o campo acústico gerado pelo transdutor operando em onda contínua, bem como iniciou-se o estudo da propagação de ondas num líquido, analisando-se as ondas geradas pela excitação pulsada de um pistão plano em contato com o fluido. Os modos de vibrar e os valores de frequências de ressonância obtidos para um transdutor, foram comparados com os resultados experimentais.
The theoretical basis of piezoelectric finite element method (FEM), and its application in piezoelectric ultrasonic transducer modelling is presented. Among these applications we have the calculation of resonance and antiresonance frequencies, vibration modes, piezoelectric coupling coefficient, admittance curve and transient analysis of piezoelectric structure excited by a short pulse. By means of piezoelectric FEM the influence of variation of piezoelectric constant with radius is analysed. It is discussed three kind of functions (linear, cosinoidal and Gaussian). This technique is called apodization. The acoustic filed generated by the transducer operating in continuous wave (CW) was calculated by using FEM applied to acoustic, considering the fluid-structure coupling. The study of wave propagation in liquids is started by using FEM, analyzing the waves generated by a plane piston in contact with the fluid, excited by a short pulse. For each case discussed above, all boundary conditions and hypothesis assumed in the construction of finite element models are discussed. Although the models considered are circular transducers, the concepts acquired can be expanded to other geometries. The vibrational modes were visualized by means of a laser interferometry technique (ESPI), and the admittance curves were measured by using an impedometer. These results were compared with the FEM results, and the models precision was discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Veysset, Jérémy. "Simulation des grands espaces et des temps longs". Thesis, Paris, ENMP, 2014. http://www.theses.fr/2014ENMP0083/document.

Texto completo
Resumen
L'interaction fluide structure est présente dans beaucoup de problèmes industriels, dans les domaines d'ingénierie mécanique, civile ou biomécanique. Même si les performances informatiques s'améliorent considérablement et que les méthodes en mécanique numérique gagnent en maturité, certaines difficultés ne permettent pas encore de réaliser des simulations numériques précises. Actuellement deux méthodes numériques gagnent en popularité pour la simulation numérique d'interactions fluide structure: la méthode de partitionnement et la méthode monolithique. Des résultats de la littérature montrent que la première est efficace et précise mais qu'elle peut rencontrer des problèmes d'instabilité si les ratios de densité sont élevés ou que les géométries sont complexes. Les méthodes d'immersion sont de plus en plus utilisées par la communauté scientifique. Différentes approches ont été développées, dont la Méthode d'Immersion de Volume. Cette méthode permet de faciliter la mise en place des calculs. Ainsi il n'est pas nécessaire de construire des maillages concordant avec la géométrie des objets, et le couplage entre les fluides et les solides se fait naturellement. C'est sur cette analyse qu'a été développé le logiciel Thost. Il permet de simuler des procédés industriels tels que le chauffage de pièces métalliques dans les fours industriels ou la trempe sans caractériser expérimentalement des coefficients de transfert. Le but d'un tel logiciel est de permettre une meilleure compréhension des procédés et ainsi de les optimiser. Cependant les coûts de calcul restant élevés, le but de la thèse est de les diminuer en s'appuyant sur des méthodes numériques innovantes tels que l'adaptation dynamique de maillage anisotrope, des méthodes éléments finis stabilisées ou l'immersion directe des objets à partir de la Conception Assistée par Ordinateur
Fluid-Structure Interaction (FSI) describes a wide variety of industrial problems arising in mechanical engineering, civil engineering and biomechanics. In spite of the available computer performance and the actual maturity of computational fluid dynamics and computational structural dynamics, several key issues still prevent accurate FSI simulations.Two main approaches for the simulation of FSI problems are still gaining attention lately: partitioned and monolithic approaches. Results in the literature show that the partitioned approach is accurate and efficient but some instabilities may occur depending on the ratio of the densities and the complexity of the geometry. Monolithic methods are still of interest due to their capability to treat the interaction of the fluid and the structure using a unified formulation. In fact it makes the build up of a FSI problem easier as the mesh do not have to fit the geometry of the solids and the transfers are treated naturally.The software Thost has been created based on these analyzes. Thost is a 3D aerothermal numerical software. It has been developped for the numerical simulation of industrial processes like the heating in industrial furnaces as well as quenching. Its target is to model numericaly the thermal history of the industrial pieces in their environment without using any transfer coefficient. However the computational costs are still high and therefore the software is not fully efficient from an industrial point of view to simulate, analize and improve complex processes. All the work in this PhD thesis has been done to reduce the computational costs and optimize the accuracy of the simulations in Thost based on innovatives numerical methods such as dynamic anisotropic mesh adaptation, stabilized finite elements methods and immersing the objects directly from their Computer Aided Design files
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Avancini, Giovane. "Análise numérica bidimensional de interação fluido-estrutura: uma formulação posicional baseada em elementos finitos e partículas". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-23042018-103653/.

Texto completo
Resumen
Problemas envolvendo interação entre fluido e estrutura são desafiadores para a engenharia e, ao mesmo tempo em que abrangem dois meios com características físicas distintas, demandam uma descrição matemática para cada um deles que seja compatível, de forma a permitir o acoplamento. Assim, este trabalho apresenta uma formulação em descrição Lagrangeana para análises dinâmicas de sólidos, fluidos incompressíveis e interação fluido-estrutura (IFE). Nos problemas de IFE é comum a estrutura apresentar grandes deslocamentos, o que torna imprescindível considerar o efeito da não-linearidade geométrica. Levando isso em consideração, é empregada uma formulação do método dos elementos finitos (MEF) baseada em posições, cuja aplicação em análises dinâmicas de estruturas em regime de grandes deslocamentos vem se mostrando bastante robusta. Já no âmbito da dinâmica dos fluidos, sabe-se que uma descrição Lagrangeana acaba por eliminar os termos convectivos das equações de Navier-Stokes, dispensando o uso de métodos estabilizantes nessas equações. Por outro lado, a dificuldade é então transferida para o uso de técnicas eficientes de remesh, preservação da qualidade da malha e de identificação do contorno, uma vez que os fluidos podem deformar-se indefinidamente quando submetidos a forças de cisalhamento. Assim, uma combinação do método dos elementos finitos e do método de partículas é utilizada, onde as forças de interação entre as partículas de fluido são calculadas por meio de uma malha de elementos finitos que é renovada para cada passo de tempo. Por meio de técnicas que reconstroem automaticamente o contorno, é possível simular problemas de superfície livre que sofram severas alterações e, até mesmo, uma eventual separação de partículas do domínio inicial, representando, por exemplo, a formação de gotas. Por fim, o sistema de acoplamento entre o fluido e o sólido é simplificado devido a ambos os domínios serem descritos através de um referencial Lagrangeano, não necessitando de métodos para a adaptação da malha do fluido de modo a acompanhar o movimento da estrutura.
Problems involving fluid-structure interaction are challenging for engineering and, while involving two different materials with distinct physical properties, they require a compatible mathematical description for both solid and fluid domain in order to allow the coupling. Thus, this work introduces a formulation, under Lagrangian description, for the solution of solid, incompressible fluid dynamics and fluid-structure interaction (FSI). In FSI problems, the structure usually presents large displacements thus making mandatory a geometric non-linear analysis. Considering it, we adopt a position based formulation of the finite element method (FEM) which has been shown to be very robust when applied to large displacement solid dynamics. For the fluid mechanics problem it is well known that a Lagrangian description eliminates the convective terms from the Navier-Stokes equations and thus, no stabilization technique is required. However, the difficulty is then transferred to the need of efficient re-meshing, mesh quality and external boundary identification techniques, since the fluid presents no resistance to shear stresses and may deform indefinitely. In this sense, we employ a combination of finite element and particle methods in which the particle interaction forces are computed by mean of a finite element mesh which is re-constructed at every time step. Free surface flows are simulated by a boundary recognition technique enabling large domain distortions or even the particles separation from the main domain, representing for instance a water drop. Finally, the fluid-structure coupling is simplified due to the Lagrangian description adopted for both materials, with no need for extra adaptive mesh-moving technique for the fluid computational domain to follow the structure motion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Souza, Alexandre Pacheco de. "Simulação numérica da clipagem arterial utilizando interação fluido-estrutura através do método de elementos finitos /". Ilha Solteira : [s.n.], 2010. http://hdl.handle.net/11449/94511.

Texto completo
Resumen
Resumo: A Bioengenharia está cada vez mais presente em todo o mundo. Ela estuda problemas que tenham dificuldades em análise experimental em laboratório. Este trabalho determina a força exercida por um grampo cirúrgico quando o mesmo é aplicado em determinada região Arterial a fim de ocluir o fluxo sanguíneo. Esta força foi medida utilizado uma simulação computacional. Duas áreas foram consideradas: uma representando a parede Arterial e a outra, representando o sangue. Esta simulação realizou-se em regime de acoplamento entre os dois domínios utilizando interação fluido-estrutura. A modelagem foi feita considerando dois domínios distintos: estrutura e fluido. O fluido é considerado incompressível e Newtoniano e é governado pelas equações de Navier-Stokes. As paredes da estrutura são modeladas a partir da Lei de Hooke. A solução numérica calcula: os campos de pressão e velocidade do fluido, campo de deslocamento da estrutura e a força aplicada pelo grampo para que ocorra a obstrução do fluxo sanguíneo naquele local
Abstract: The Bioengineering is increasingly present in the fields of scientific research throughout the world. It studies problems that have difficulty in experimental analysis in the laboratory. This work measures the force exerted by a surgical clip when it is applied in a given region Arterial to occlude blood flow. This force was measured using a computational simulation. It was modeled two cylinders, one representing the arterial wall and the other in this first, representing the blood. This simulation was carried out under the coupling between the two domains using fluid-structure interaction. Modeling was done in three-dimensions, considering two distinct areas: one as structure and other as fluid. The fluid was considered incompressible and Newtonian. It is governed by the Navier-Stokes equations. The walls of the structure were modeled from the Hooke's Law. The numerical solution calculate: pressure fields, and fluid velocity, displacement field of the structure and the force applied by the clip for the occurrence of obstruction of blood flow there
Orientador: Aparecido Carlos Gonçalves
Coorientador: Marcio Antonio Bazani
Banca: Gilberto Pechoto de Melo
Banca: Edson Antonio Capello Sousa
Mestre
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Bhuddi, Ajit. "Approche ondulatoire pour la description numérique du comportement vibroacoustique large bande des conduites avec fluide interne". Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4046/document.

Texto completo
Resumen
Dans ce travail, une méthode basée sur les éléments finis ondulatoires - Wave Finite Elements (WFE) - est proposée en vue de prédire le rayonnement acoustique de conduites axisyrnétriques de longueur finie, comportant un fluide interne, et immergées dans un fluide acoustique de dimensions infinies. La condition de rayonnement de Sommerfeld est prise en compte en entourant le fluide extérieur d'un perfectly matched layer (PML), c'est-à-dire une couche d'éléments absorbants dans laquelle les ondes acoustiques incidentes sont progressivement amorties. Dans le cadre de l'approche WFE, la conduite, le fluide qu'elle contient, le fluide extérieur et le PML constituent un guide d'ondes multiphysique qui est discrétisé par un maillage éléments finis périodique, et peut être ainsi modélisé comme un assemblage de sous-systèmes identiques de faible longueur. Une base d'ondes se propageant le long de la conduite, calculée à partir du modèle éléments finis d'un sous-système, est utilisée afin de prédire le comportement vibroacoustique de guides d'ondes de longueur finie à moindre coût. Des simulations numériques sont réalisées pour des cas de conduites de structure homogène ou multi-couches. La précision et l'efficacité de la méthode WFE sont clairement établies en comparaison avec la méthode des éléments finis conventionnelle
In this work, a wave finite element (WFE) method is proposed to predict the sound radiation of finite axisymmetric fluid-filled pipes immersed in an external acoustic fluid of infinite extent, The Sommerfeld radiation condition is taken into account by means of a perfectly matched layer (PML) around the external fluid. Within the WFE framework, the fluid-filled pipe, the surrounding fluid and the PML constitute a multiphysics waveguide that is discretized by means of a periodic finite element mesh, and is treated as an assembly of identical subsystems of small length. Wave modes are computed from the FE model of a multi-physics subsystem and used as a representation basis to assess the vibroacoustic behavior of the finite waveguide at a low computational cost. Numerical experiments are carried out in the cases of axisymmetric pipes of either homogeneous or multi-layered crosssections, The accuracy and efficiency of the proposed approach are dearly highlighted in comparison with the conventional FE method
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Kingsley, Thomas Charles. "Multidisciplinary design and optimisation of liquid containers for sloshing and impact". Diss., Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-01242006-100142.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

El, Feghali Stéphanie. "Nouvelle formulation monolithique en élément finis stabilisés pour l'interaction fluide-structure". Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2012. http://pastel.archives-ouvertes.fr/pastel-00743488.

Texto completo
Resumen
L'Interaction Fluide-Structure (IFS) décrit une classe très générale de problème physique, ce qui explique la nécessité de développer une méthode numérique capable de simuler le problème FSI. Pour cette raison, un solveur IFS est développé qui peut traiter un écoulement de fluide incompressible en interaction avec des structures différente: élastique ou rigide. Dans cet aspect, le solveur peut couvrir une large gamme d'applications.La méthode proposée est développée dans le cadre d'une formulation monolithique dans un contexte Eulérien. Cette méthode consiste à considérer un seul maillage et résoudre un seul système d'équations avec des propriétés matérielles différentes. La fonction distance permet de définir la position et l'interface de tous les objets à l'intérieur du domaine et de fournir les propriétés physiques pour chaque sous-domaine. L'adaptation de maillage anisotrope basé sur la variation de la fonction distance est ensuite appliquée pour assurer une capture précise des discontinuités à l'interface fluide-solide.La formulation monolithique est assurée par l'ajout d'un tenseur supplémentaire dans les équations de Navier-Stokes. Ce tenseur provient de la présence de la structure dans le fluide. Le système est résolu en utilisant une méthode élément fini et stabilisé suivant la formulation variationnelle multiéchelle. Cette formulation consiste à décomposer les champs de vitesse et pression en grande et petite échelles. La particularité de l'approche proposée réside dans l'enrichissement du tenseur de l'extra contraint.La première application est la simulation IFS avec un corps rigide. Le corps rigide est décrit en imposant une valeur nul du tenseur des déformations, et le mouvement est obtenu par la résolution du mouvement de corps rigide. Nous évaluons le comportement et la précision de la formulation proposée dans la simulation des exemples 2D et 3D. Les résultats sont comparés avec la littérature et montrent que la méthode développée est stable et précise.La seconde application est la simulation IFS avec un corps élastique. Dans ce cas, une équation supplémentaire est ajoutée au système précédent qui permet de résoudre le champ de déplacement. Et la contrainte de rigidité est remplacée par la loi de comportement du corps élastique. La déformation et le mouvement du corps élastique sont réalisés en résolvant l'équation de convection de la Level-Set. Nous illustrons la flexibilité de la formulation proposée par des exemples 2D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Matug, Michal. "Náhradní hlasivky pro generování zdrojového hlasu: Počítačové modelování funkce hlasivek". Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-234251.

Texto completo
Resumen
This doctoral thesis focuses on computational modelling of human vocal folds and vocal tract functions using finite element method (FEM). Human voice is crucial in human communication. Therefore one of the main targets of current medicine is creation of artificial vocal folds, which would substitute the original vocal folds. The computational modelling can be used to understand principles of voice production, determination of parameters that the artificial vocal folds have to meet and verification of their functionality. First part of this thesis focuses on modelling of human voice creation by whisper. Influence of intraglottal gap on eigenvalues distribution for individual vowels was analysed using FEM vocal tract and trachea model. Further there is presented two-dimensional (2D) finite element model of the flow-induced self-oscillation of the human vocal folds in interaction with acoustic spaces of the vocal tract. The 2D vocal tract model was created on the basis of converting the data from magnetic resonance images (MRI). Explicit coupling scheme with separated solvers for structure and fluid domain was used for modelling of the fluid-structure interaction. Created computational model comprises: large deformations of the vocal folds tissue, contact between vocal folds, fluid-structure interaction, morphing the fluid mesh according to the vocal-fold motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible or incompressible airflow described by the Navier-Stokes equations and airflow separation during glottis closure. This model is used to analyse the influence of stiffness and damping changes in individual vocal fold tissue layers (in particular in superficial lamina propria). Part of this computational analysis is also comparison of vocal folds behaviour for compressible and incompressible flow model. Videokymograms (VKG) are subsequently created from obtained results of FEM calculations which enable to compare individual variants between themselves and with motion of real human vocal folds. In next part of this thesis is presented three-dimensional (3D) finite element model of the flow-induced self-oscillation of the human vocal folds. This 3D model was created from a previous 2D model by extrude to the third direction. Using this model was again compared influence of compressible and incompressible flow model on vocal folds motion and generated sound by using videokymograms and acoustic spectra. The last part of this thesis focuses on the possibility to replace missing natural source voice in form reed-based element. Behaviour of reed-based element was analysed using computational modelling and using measurements on experimental physical model. The physical model enables changes in setting gap between reed and reed stop and performing acoustical and optical measurements.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Wen, Quan. "A Novel Micro Fluid Kinetic Energy Harvester Based on the Vortex-Induced Vibration Principle and the Piezo Effect". Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-184346.

Texto completo
Resumen
In this thesis, a miniaturized energy harvester system is developed. The energy harvester converts fluid kinetic energy into electrical energy without using any rotating components. The working principle of the energy harvester is based on the so called vortex-induced vibration. Such systems have the potential to provide energy for wireless sensor networks in the field of inline measurements for gas, oil or water transportation systems. The theoretical background of the vortex-induced vibration (VIV) is studied. Based on the studies, a fluid-structure interaction simulation is carried out to optimize the structure of the energy harvester. As result, the conversion efficiency is significantly improved, which is experimentally confirmed. A series of demonstrators are manufactured according to the simulation and optimization results. It is tested on a self-constructed test bench. To further improve the performance, an electromagnetic generator is proposed, and therefore, a multimethod demonstrator realized. The demonstrators are working in air flow already at a velocity of 2 m/s, and reach the maximum efficiency at 3.6 m/s. This performance ranks among the best published results and is discussed in detail
In der vorliegenden Arbeit wird ein miniaturisiertes Energiegewinnungssystem entwickelt, das unter Verzicht auf rotierende Komponenten kinetische Strömungsenergie in elektrische Energie umwandelt. Die Funktion dieses Wandlers basiert auf der sogenannten wirbelinduzierten Vibration. Derartige Systeme besitzen unter anderem das Potenzial, drahtlose Sensornetzwerke zur Erfassung von Messdaten in Gas-, Öl- oder Wassertransportsystemen mit Energie zu versorgen zu können. In der Arbeit wird der theoretische Hintergrund der wirbelinduzierten Vibration untersucht und darauf basierend werden Fluid-Struktur-Wechselwirkungssimulationen zur Strukturoptimierung durchgeführt in deren Ergebnis eine theoretische Verbesserung der Effizienz des Wandlers um ein Mehrfaches erreicht wird, die auch praktisch bestätigt wird. Unter Berücksichtigung der Simulations- und Optimierungsergebnisse wurden eine Reihe von Demonstratoren gefertigt, die auf einem selbst konstruierten Prüfstand getestet wurden. Zur weiteren Erhöhung der Leistungsfähigkeit des Wandlers wird ein zusätzlicher elektromagnetischer Generator vorgeschlagen und damit ein Multi-Methoden-Demonstrator technisch realisiert. Die Demonstratoren arbeiten in strömender Luft bereits bei Geschwindigkeiten von 2 m/s und erreichen bei 3,6 m/s ihre maximale Effizienz. Die erreichten Ergebnisse ordnen sich im Vergleich mit denen aus entsprechenden Publikationen vorn ein und werden ausführlich diskutiert
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Gross, David. "Nage sous marine générée par boucle de rétroaction de courbure avec modélisation de muscles locomoteurs". Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4053.

Texto completo
Resumen
L'autopropulsion basée sur la propagation d'ondes de déformation, comme pour les poissons, pourrait être une alternative intéressante par rapport au déplacement généré par des hélices pour les bateaux et les véhicules sous-marins. La locomotion par ondulations implique une flexibilité de la structure du véhicule, dont il faut prendre en compte pour la dynamique des fluides et donc quantifier la vitesse et le rendement du déplacement. Dans cette thèse, nous avons développé une nouvelle méthode d'interaction fluide-structure (IFS) liant un solveur de dynamique de structure par éléments finis avec un solveur "vortex panel" bidimensionnel pour le couplage avec le fluide et une méthode des particules pour la résolution du sillage. Chaque composante du couplage IFS est d'abord validée indépendamment, puis nous testons le système complet dans le cadre d'une plaque flexible et bidimensionnelle en oscillation. La relation entre les paramètres cinématiques de nage et la vitesse de déplacement est reproduite et l'importance de la traînée pour cette relation est analysée avec détails. Pour modéliser le comportement d'un nageur souple, en autopropulsion, nous distribuons spatialement un moment de flexion, ce qui nous permet de faire des prédictions sur les grandeurs cinématiques de la nage. Par la suite, nous montrons qu'un moment de force rétroactif basée sur la courbure de déformation du nageur, avec un délai temporel, génère une autopropulsion différente de celle observée avec un forçage actif de moment de flexion. Nous proposons un modèle simplifié, capable à décrire le comportement du nageur avec rétroaction, pour comprendre qualitativement les phénomènes en jeux. Finalement, nous dérivons un modèle de muscle, en s'inspirant de la biologie ; et nous évaluons l'importance des différents paramètres du modèle quant à la performance d'autopropulsion. Le manuscrit de thèse se termine par l'analyse d'une plaque mince en trois dimensions, mise en oscillation pour apprécier la pertinence de la méthode tridimensionnelle "vortex panel" pour simuler la nage dans des conditions réelles
Undulatory wave-based self-propulsion like used by fish may be a suitable alternative to traditional propeller-based propulsion for underwater vehicles. The use of undulatory propulsion implies a certain degree of structural flexibility will be present, hence consideration of both fluid and structure is critical to assessing the behavior of this form of propulsion. In this thesis, a novel segregated fluid-structure interaction (FSI) coupling scheme is developed between a finite element structure solver and a 2D unsteady panel method fluid solver with discrete vortex particle wake approach. The different components of the FSI solver are validated first individually and then as a whole using the case of a flexible two-dimensional plate in pure heave. The scaling law relating input swimming variables and the resulting swimming speed is then reproduced and the importance of drag to these relations is elucidated.A self-propelled swimmer whose beam-like structure and rigid body motions are resolved is then examined under the influence of an imposed bending moment distribution. A curvature-based, delayed proprioceptive feedback is then applied to deform the self-propelled swimmer. Feedback based swimming was found to be distinct from active, imposed bending moment swimming. A simplified one degree of freedom model was found to qualitatively describe the feedback swimmer behavior. A swimmer using muscle-like elements is then assessed to determine the relative importance of different muscle properties with the aim of identifying if the non-linear behavior of muscles is beneficial to self-propulsion. Finally, a three-dimensional, thin plate in pure heave is examined with the aim of determining to what extent an 3D panel method can be used in lieu of computationally expensive viscous flow approaches self-propulsion analysis in 3D
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Flatschart, Ricardo Becht. "Simulação numérica paralela do escoamento ao redor de risers". Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/3/3132/tde-23112016-101531/.

Texto completo
Resumen
Neste trabalho, a resposta dinâmica de um riser marítimo devido à geração e desprendimento alternado de vórtices é investigada numericamente. O riser é dividido em seções bidimensionais ao longo de seu comprimento. O Método dos Vórtices Discretos é empregado para a determinação das forças hidrodinâmicas que agem nestas seções bidimensionais. As seções hidrodinâmicas são resolvidas independentemente, e o acoplamento entre as mesmas é feito através da solução da estrutura no domínio do tempo pelo Método dos Elementos Finitos. Os resultados numéricos são comparados com resultados obtidos experimentalmente. Processamento paralelo é empregado para melhorar a performance do método. As simulações são realizadas através de uma metodologia mestre-escravo, utilizando MPI Message Passing Interface para explorar o paralelismo. A escalabilidade do algoritmo é mostrada e discutida. Este trabalho representa o desenvolvimento de um simulador que permite, efetivamente, a análise dinâmica de um riser com características e dimensões representativas das condições reais encontradas em campo, a um custo computacional factível para seu uso como uma ferramenta de engenharia. Isto é obtido por meio da técnica de processamento paralelo, aliada à solução do escoamento através de um método eficiente de CFD Método dos Vórtices Discretos e à solução da estrutura através do Método dos Elementos Finitos.
In this work the dy6namic response of a marine riser due to vortex shedding is numerically investigated. The riser is divided in two-dimensional sections along the riser length. The Discrete Vortex Method is employed for the assessment of the hydrodynamic forces acting on these two-dimensional sections. The hydrodynamic sections are solved independently, and the coupling among the sections is taken into account by the solution of the structure in the time domain by the Finite Element Method. The numerical results are compared with results obtained experimentally. Parallel processing is employed to improve the performance of the method. The simulations are carried out through a master-slave approach using MPI Message Passing Interface to exploit the parallelism. Scalability of the algorithm is shown and discussed. This work represents the development of a simulator that effectively allows the dynamic analysis of a riser with representative characteristics and dimensions of real field conditions, with a feasible computational cost for its use as an engineering tool. This is obtained by means of the parallel processing technique, together with an efficient CFD solution of the flow with de Discrete Vortex Method and the solution of the structure with the Finite Element Method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Song, Mengdi. "Développement d'un modèle numérique de couplage fluide-structure appliqué au cas d'une pompe à membrane ondulante". Phd thesis, Université de Technologie de Compiègne, 2013. http://tel.archives-ouvertes.fr/tel-01066248.

Texto completo
Resumen
Dans cette thèse, nous avons étudié la simulation numérique des phénomènes d'interaction fluide-structure (IFS) par la méthode des éléments finis pour un fluide incompressible et non visqueux en interaction avec une structure flexible. Les modèles numériques développés sont basé sur une approche d'IFS partitionnée. Une amélioration basée sur une compensation des effets de massé ajoutée est proposée au cours de la thèse afin d'assurer la convergence et la stabilité du schéma de couplage partitionné indépendamment de la densité du fluide impliqué. L'approche corrective nécessite une estimation de la matrice de masse ajoutée et demande une légère modification de l'algorithme itératif. Les méthodes proposées ont été validées sur les cas académiques en comparaison avec les solutions analytiques et sont appliqués au cas d'une nouvelle conception de pompe pour tout type de fluides (gaz, liquides, fluide chargé...), en vue d'affiner la compréhension de son fonctionnement et ainsi mieux la caractériser. Les méthodes ainsi que les validations sont publiées sur un article qui a été accepté par le revue scientifique " Computers & Fluids ". Une présentation orale a effectuée pendant la conférence internationale ACE-X2012 à Istanbul et une autre a été accepté par la conférence nationale CSMA-2013 à Giens.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Souza, Alexandre Pacheco de [UNESP]. "Simulação numérica da clipagem arterial utilizando interação fluido-estrutura através do método de elementos finitos". Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/94511.

Texto completo
Resumen
Made available in DSpace on 2014-06-11T19:27:13Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-26Bitstream added on 2014-06-13T20:16:16Z : No. of bitstreams: 1 souza_ap_me_ilha.pdf: 2793163 bytes, checksum: cac24da914ff0917c1d9438da0bc50f8 (MD5)
A Bioengenharia está cada vez mais presente em todo o mundo. Ela estuda problemas que tenham dificuldades em análise experimental em laboratório. Este trabalho determina a força exercida por um grampo cirúrgico quando o mesmo é aplicado em determinada região Arterial a fim de ocluir o fluxo sanguíneo. Esta força foi medida utilizado uma simulação computacional. Duas áreas foram consideradas: uma representando a parede Arterial e a outra, representando o sangue. Esta simulação realizou-se em regime de acoplamento entre os dois domínios utilizando interação fluido-estrutura. A modelagem foi feita considerando dois domínios distintos: estrutura e fluido. O fluido é considerado incompressível e Newtoniano e é governado pelas equações de Navier-Stokes. As paredes da estrutura são modeladas a partir da Lei de Hooke. A solução numérica calcula: os campos de pressão e velocidade do fluido, campo de deslocamento da estrutura e a força aplicada pelo grampo para que ocorra a obstrução do fluxo sanguíneo naquele local
The Bioengineering is increasingly present in the fields of scientific research throughout the world. It studies problems that have difficulty in experimental analysis in the laboratory. This work measures the force exerted by a surgical clip when it is applied in a given region Arterial to occlude blood flow. This force was measured using a computational simulation. It was modeled two cylinders, one representing the arterial wall and the other in this first, representing the blood. This simulation was carried out under the coupling between the two domains using fluid-structure interaction. Modeling was done in three-dimensions, considering two distinct areas: one as structure and other as fluid. The fluid was considered incompressible and Newtonian. It is governed by the Navier-Stokes equations. The walls of the structure were modeled from the Hooke's Law. The numerical solution calculate: pressure fields, and fluid velocity, displacement field of the structure and the force applied by the clip for the occurrence of obstruction of blood flow there
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Sanches, Rodolfo André Kuche. "Sobre o acoplamento fluido-casca utilizando o método dos elementos finitos". Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-17042011-184131/.

Texto completo
Resumen
Este trabalho consiste no desenvolvimento de ferramentas computacionais para análise não linear geométrica de interação fluido-casca utilizando o Método dos Elementos Finitos (MEF). O algoritmo para dinâmica dos fluidos é explícito e a integração temporal é baseada em linhas características. O código computacional é capaz de simular as equações de Navier-Stokes para escoamentos compressíveis tanto na descrição Euleriana como na descrição Lagrangeana-Euleriana arbitrária (ALE), na qual é possível prescrever movimentos para a malha do fluido. A estrutura é modelada em descrição Lagrangeana total através de uma formulação de MEF para análise dinâmica não linear geométrica de cascas baseada no teorema da mínima energia potencial total escrito em função das posições nodais e vetores generalizados e não em deslocamentos e rotações. Essa característica evita o uso de aproximações de grandes rotações. Dois modelos de acoplamentos são desenvolvidos. O primeiro modelo, ideal para problemas onde a escala de deslocamentos não é muito grande comparada com as dimensões do domínio do fluido, é baseado na descrição ALE e o acoplamento entre as duas diferentes malhas é feito através do mapeamento das posições locais dos nós do contorno do fluido sobre os elementos de casca e vice-versa, evitando a necessidade de coincidência entre os nós da casca e do fluido. A malha do fluido é adaptada dinamicamente usando um procedimento simples baseado nas posições e velocidades nodais da casca. O segundo modelo de acoplamento, ideal para problemas com grande escala de deslocamentos tais como estruturas infláveis, considera a casca imersa na malha do fluido e consiste em um procedimento robusto baseado em curvas de nível da função distância assinalada do contorno, o qual integra o algoritmo Lagrangeano de casca com o Fluido em descrição Euleriana, sem necessidade de movimentação da malha do fluido, onde a representação computacional do fluido se resume a uma malha não estruturada maior ou igual ao domínio inicial do fluido e a interface fluido-casca dentro da malha do fluido é identificada por meio de curvas de nível da função distância assinalada do contorno. Ambos os modelos são testados através de exemplos numéricos mostrando robustez e eficiência. Finalmente, como uma sugestão para o futuro desenvolvimento desta pesquisa, iniciaram-se estudos relativos a funções B-splines. O uso desse tipo de funções deverá resolver problemas de estabilidade relativos a oscilações espúrias devidas ao uso de polinômios de Lagrange para a representação de descontinuidades.
This work consists of the development of computational tools for nonlinear geometric fluid-shell interaction analysis using the Finite Element Method (FEM). The fluid solver is explicit and its time integration based on characteristics. The computational code is able to simulate the Navier-Stokes equations for compressible flows written in the Eulerian description as well as in the arbitrary Lagrangian-Eulerian (ALE) description, enabling movements prescription for the fluid mesh. The structure is modeled in a total Lagrangian description, using a FEM formulation to deal with geometrical nonlinear dynamics of shells based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors, not displacements and rotations, avoiding the use of large rotation approximations. Two partitioned coupling models are developed. The first model, ideal for simulations where the displacements scale is not very large compared to the fluid domain, is based on the ALE description and the coupling between the two different meshes is done by mapping the fluid boundary nodes local positions over the shell elements and vice-versa, avoiding the need for matching fluid and shell nodes. The fluid mesh is adapted using a simple approach based on shell nodal positions and velocities. The second model, ideal for problems with large scales of displacements such as inflatable structures, is based on immersed boundary and consists of a robust level-set based approach that integrates the Lagrangian shell finite and the Eulerian finite element high speed fluid flow solver, with no need for mesh adaptation, where the fluid representation relies on a fixed unstructured mesh larger or equal to the initial fluid domain and the fluid-shell interface inside the fluid mesh is tracked with level sets of a boundary signed distance function. Both models are tested with numerical examples, showing efficiency and robustness. Finally, as a suggestion for future development of this research, we started studies relatives to B-Spline functions. The use of this kind of functions should solve stability problems related to spurious oscillations due to the use of Lagrange polynomials for representing discontinuities.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Hoareau, Christophe. "Vibrations hydroélastiques de réservoirs élastiques couplés à un fluide interne incompressible à surface libre autour d’un état précontraint". Thesis, Paris, CNAM, 2019. http://www.theses.fr/2019CNAM1241/document.

Texto completo
Resumen
Cette thèse de doctorat porte sur le calcul par la méthode des éléments finis du comportement dynamique de réservoirs élastiques précontraints contenant un liquide interne à surface libre. Nous considérons que la pression hydrostatique exercée par le fluide interne incompressible sur les parois flexibles du réservoir est à l’origine de grands déplacements, conduisant ainsi à un état d’équilibre non-linéaire géométrique. Le changement de raideur lié à cet état précontraint induit un décalage des fréquences de résonances du problème de vibrations linéaires couplées.L’objectif principal du travail est donc d’estimer, par des approches numériques précises et efficaces, l’influence des non-linéarités géométriques sur le comportement hydroélastique du système réservoir/liquide interne autour de différentes configurations d’équilibre. La méthodologie développée s’effectue en deux étapes. La première consiste à calculer l’état statique non-linéaire par une approche éléments finis lagrangienne totale. L’action du fluide sur la structure est ici modélisée par des forces suiveuses hydrostatiques. La deuxième étape porte sur le calcul des vibrations couplées linéarisées. Un modèle d’ordre réduit original est notamment proposé pour limiter les coûts de calcul associés à l’estimation de l’effet de masse ajoutée. Enfin, divers exemples sont proposés et comparés à des résultats de la littérature (issus de simulations numériques ou d’essais expérimentaux) pour montrer l’efficacité et la validité des différentes approches numériques développées dans ce travail
This doctoral thesis focuses on the calculation by the finite element method of the dynamic behavior of prestressed elastic tanks containing an internal liquid with a free surface. We consider that the hydrostatic pressure exerted by the incompressible internal fluid on the flexible walls of the tank causes large displacements, thus leading to a geometric non-linear equilibrium state. The change of stiffness related to this prestressed state induces a shift in the resonance frequencies of the coupled linear vibration problem. The main objective of the work is therefore to estimate, through precise and efficient numerical approaches, the influence of geometric nonlinearities on the hydroelastic behavior of the reservoir/internal liquid system around different equilibrium configurations. The methodology developed is carried out in two stages. The first one consists in calculating the non-linear static state by a total Lagrangian finite element approach.The action of the fluid on the structure is modelled here by hydrostatic following forces. The second step is the calculation of linearized coupled vibrations. In particular, an original reduced order model is proposed to limit the calculation costs associated with the estimation of the added mass effect. Finally, various examples are proposed and compared with results from the literature (from numerical simulations or experimental tests) to show the effectiveness and validity of the different numerical approaches developed in this work
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Hadžalić, Emina. "Analysis of pore pressure influence on failure mechanisms in structural systems". Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2502.

Texto completo
Resumen
Cette thèse porte sur la sécurité globale des structures en matériaux hétérogènes saturés soumis à des charges extrêmes, et est appliquée à des problèmes d’interaction fluide-structure, tels que l’interaction barrage-réservoir. Un modèle numérique d’interaction est proposé pour prédire les principales tendances et le comportement général d’un barrage en matériau saturé en interaction avec le réservoir dans des analyses de défaillance d’intérêt pratique. Le modèle numérique proposé est d’abord présenté dans un cadre bidimensionnel (2D), puis étendu à un cadre tridimensionnel (3D). La structure est considérée comme un milieu poreux saturé constitué d’un matériau cohésif. On suppose que le fluide externe en interaction avec la structure agit comme une source de saturation des pores. La réponse de la structure en matériau saturé est décrite avec un modèle lattice discrete couplé de type poutre, basé sur la discrétisation du domaine avec la tessellation de Voronoï, où les liens cohésifs sont représentés par des poutres de Timoshenko non linéaires avec un champ de déplacements enrichi en termes de discontinuités fortes. Le couplage entre la phase solide et le fluide dans les pores est traité avec la théorie de Biot et la loi de Darcy décrivant l’écoulement d’un fluide à travers d’un milieu poreux. La prise en compte numérique du couplage interne ajoute un degré de liberté supplémentaire du type pression à chaque nœud de l’élément fini de Timoshenko, qui est ensuite utilisé pour résoudre les problèmes d’interface entre la structure et le fluide. On considère que le fluide externe dans le réservoir est limité à des petits mouvements, ce qui nous permet de le modéliser avec la théorie des ondes acoustiques. Pour cela, la formulation lagrangienne avec l’approximation mixte déplacement-pression est choisie. Le traitement de l’interface fluide-structure dans le modèle numérique d’interaction est résolu d’une manière simple et efficace. Notamment, les éléments finis de la structure et du fluide externe partagent les mêmes degrés de liberté dans les nœuds communs, permettant ainsi la résolution du système d’équations avec une approche de calcul monolithique. Toutes les implémentations et les simulations numériques sont effectués avec la version recherche du code informatique FEAP (Finite Element Analysis Program). Les modèles numériques proposés pour la structure, le fluide externe et le modèle d’interaction sont validés dans le régime élastique linéaire en comparant les résultats calculés avec les valeurs de référence obtenues soit avec des solutions analytiques, soit avec des modèles continus. Les simulations numériques dans le régime non linéaire ont comme but de démontrer les capacités du modèle proposé de capturer la réponse complète à l’échelle macro et les mécanismes de rupture des structures en matériaux saturés. Enfin, la capacité du modèle d’interaction proposé de traiter la défaillance localisée progressive d’un barrage construit en matériau cohésif poreux sous l’interaction barrage-réservoir a été testé pour un programme de chargement spécifique. Pour prendre en compte les effets de la température, le couplage thermique est introduit dans le modèle numérique de la structure
This thesis studies the issue of the overall safety of structures built of heterogeneous and pore-saturated materials under extreme loads in application to fluid-structure interaction problems, such as the dam-reservoir interaction. We propose a numerical model of interaction capable of predicting main tendencies and overall behavior of pore-saturated dam structure interacting with the reservoir in failure analyses of practical interest. The proposed numerical model is first presented in two-dimensional (2D) framework and later extended to three-dimensional (3D) framework. We consider the structure built of porous cohesive material. We assume that the external fluid in interaction with the structure acts as a source of pore saturation. We model the response of the pore-saturated structure with the coupled discrete beam lattice model based on Voronoi cell representation of domain with inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities acting as cohesive links. The coupling between the solid phase and the pore fluid is handled with Biot’s porous media theory, and Darcy’s law governing the pore fluid flow. The numerical consideration of internal coupling results with an additional pressure-type degree of freedom placed at each node of the Timoshenko beam finite element, which is later used at the fluidstructure interface. The confined conditions met for external fluid placed in the reservoir enable the modeling of external fluid motion with the acoustic wave theory. For the numerical representation of the external fluid limited to small (irrotational) motion, we choose a Lagrangian formulation and the mixed displacement/pressure based finite element approximation. The end result are the displacement and pressure degrees of freedom per node of external fluid finite elements, which allows for the issue of the fluid-structure interface to be solved in an efficient and straightforward manner by directly connecting the structure and external fluid finite elements at common nodes. As a result, all computations can be performed in a fully monolithic manner. All numerical implementations and computations are performed with the research version of the computer code FEAP (Finite Element Analysis Program). The proposed numerical models of structure, external fluid and ultimately numerical model of interaction are validated in the linear elastic regime of structure response by comparing computed results against reference values obtained either with analytical solutions or continuum models. The numerical simulations in the nonlinear regime of structure response are performed with the aim to demonstrate the proposed coupled discrete beam lattice model capabilities to capture complete macro-scale response and failure mechanisms in pore-saturated structures. Finally, the proposed numerical model of interaction ability to deal with the progressive localized failure of a dam structure built of porous cohesive material under damreservoir interaction for a particular loading program was tested. To account for the temperature effects, the thermal coupling is introduced in the numerical model of the structure
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía