Literatura académica sobre el tema "Finite semigroups"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Finite semigroups".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Finite semigroups"

1

LE SAEC, BERTRAND, JEAN-ERIC PIN, and PASCAL WEIL. "SEMIGROUPS WITH IDEMPOTENT STABILIZERS AND APPLICATIONS TO AUTOMATA THEORY." International Journal of Algebra and Computation 01, no. 03 (1991): 291–314. http://dx.doi.org/10.1142/s0218196791000195.

Texto completo
Resumen
Nous prouvons que tout semigroupe fini est quotient d'un semigroupe fini dans lequel les stabilisateurs droits satisfont les identités x = x2 et xy = xyx. Ce resultat a plusieurs consé-quences. Tout d'abord, nous l'utilisons, en même temps qu'un résultat de I. Simon sur les congruences de chemins, pour obtenir une preuve purement algébrique d'un théorème profond de McNaughton sur les mots infinis. Puis, nous donnons une preuve algébrique d'un théorème de Brown sur des conditions de finitude pour les semigroupes. We show that every finite semigroup is a quotient of a finite semigroup in which e
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Shoji, Kunitaka. "Regular Semigroups Which Are Amalgamation Bases for Finite Semigroups." Algebra Colloquium 14, no. 02 (2007): 245–54. http://dx.doi.org/10.1142/s1005386707000247.

Texto completo
Resumen
In this paper, we prove that a completely 0-simple (or completely simple) semigroup is an amalgamation base for finite semigroups if and only if it is an amalgamation base for semigroups. By adopting the same method as used in a previous paper, we prove that a finite regular semigroup is an amalgamation base for finite semigroups if its [Formula: see text]-classes are linearly ordered and all of its principal factor semigroups are amalgamation bases for finite semigroups. Finally, we give an example of a finite semigroup U which is an amalgamation base for semigroups, but not all of its princi
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Guo, Xiaojiang, and Lin Chen. "Semigroup algebras of finite ample semigroups." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 142, no. 2 (2012): 371–89. http://dx.doi.org/10.1017/s0308210510000715.

Texto completo
Resumen
An adequate semigroup S is called ample if ea = a(ea)* and ae = (ae)†a for all a ∈ S and e ∈ E(S). Inverse semigroups are exactly those ample semigroups that are regular. After obtaining some characterizations of finite ample semigroups, it is proved that semigroup algebras of finite ample semigroups have generalized triangular matrix representations. As applications, the structure of the radicals of semigroup algebras of finite ample semigroups is obtained. In particular, it is determined when semigroup algebras of finite ample semigroup are semiprimitive.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Birget, Jean-Camille, Stuart Margolis, and John Rhodes. "Semigroups whose idempotents form a subsemigroup." Bulletin of the Australian Mathematical Society 41, no. 2 (1990): 161–84. http://dx.doi.org/10.1017/s0004972700017986.

Texto completo
Resumen
We prove that if the “type-II-construct” subsemigroup of a finite semigroup S is regular, then the “type-II” subsemigroup of S is computable (actually in this case, type-II and type-II-construct are equal). This, together with certain older results about pseudo-varieties of finite semigroups, leads to further results:(1) We get a new proof of Ash's theorem: If the idempotents in a finite semigroup S commute, then S divides a finite inverse semigroup. Equivalently: The pseudo-variety generated by the finite inverse semigroups consists of those finite semigroups whose idempotents commute.(2) We
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

VERNITSKI, ALEXEI. "ORDERED AND $\mathcal{J}$-TRIVIAL SEMIGROUPS AS DIVISORS OF SEMIGROUPS OF LANGUAGES." International Journal of Algebra and Computation 18, no. 07 (2008): 1223–29. http://dx.doi.org/10.1142/s021819670800486x.

Texto completo
Resumen
A semigroup of languages is a set of languages considered with (and closed under) the operation of catenation. In other words, semigroups of languages are subsemigroups of power-semigroups of free semigroups. We prove that a (finite) semigroup is positively ordered if and only if it is a homomorphic image, under an order-preserving homomorphism, of a (finite) semigroup of languages. Hence it follows that a finite semigroup is [Formula: see text]-trivial if and only if it is a homomorphic image of a finite semigroup of languages.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Almeida, J., M. H. Shahzamanian, and M. Kufleitner. "Nilpotency and strong nilpotency for finite semigroups." Quarterly Journal of Mathematics 70, no. 2 (2018): 619–48. http://dx.doi.org/10.1093/qmath/hay059.

Texto completo
Resumen
AbstractNilpotent semigroups in the sense of Mal’cev are defined by semigroup identities. Finite nilpotent semigroups constitute a pseudovariety, MN, which has finite rank. The semigroup identities that define nilpotent semigroups lead us to define strongly Mal’cev nilpotent semigroups. Finite strongly Mal’cev nilpotent semigroups constitute a non-finite rank pseudovariety, SMN. The pseudovariety SMN is strictly contained in the pseudovariety MN, but all finite nilpotent groups are in SMN. We show that the pseudovariety MN is the intersection of the pseudovariety BGnil with a pseudovariety def
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ash, C. J., and T. E. Hall. "Finite semigroups with commuting idempotents." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 43, no. 1 (1987): 81–90. http://dx.doi.org/10.1017/s1446788700028998.

Texto completo
Resumen
AbstractWe show that every such semigroup is a homomorphic image of a subsemigroup of some finite inverse semigroup. This shows that the pseudovariety generated by the finite inverse semigroups consists of exactly the finite semigroups with commuting idempotents.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

IWAKI, E., E. JESPERS, S. O. JURIAANS, and A. C. SOUZA FILHO. "HYPERBOLICITY OF SEMIGROUP ALGEBRAS II." Journal of Algebra and Its Applications 09, no. 06 (2010): 871–76. http://dx.doi.org/10.1142/s0219498810004270.

Texto completo
Resumen
In 1996, Jespers and Wang classified finite semigroups whose integral semigroup ring has finitely many units. In a recent paper, Iwaki–Juriaans–Souza Filho continued this line of research by partially classifying the finite semigroups whose rational semigroup algebra contains a ℤ-order with hyperbolic unit group. In this paper, we complete this classification and give an easy proof that deals with all finite semigroups.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

JACKSON, DAVID A. "DECISION AND SEPARABILITY PROBLEMS FOR BAUMSLAG–SOLITAR SEMIGROUPS." International Journal of Algebra and Computation 12, no. 01n02 (2002): 33–49. http://dx.doi.org/10.1142/s0218196702000857.

Texto completo
Resumen
We show that the semigroups Sk,ℓ having semigroup presentations <a, b:abk = bℓ a> are residually finite and finitely separable. Generally, these semigroups have finite separating images which are finite groups and other finite separating images which are semigroups of order-increasing transformations on a finite partially ordered set. These semigroups thus have vastly different residual and separability properties than the Baumslag–Solitar groups which contain them.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Dolinka, Igor, and Robert D. Gray. "Universal locally finite maximally homogeneous semigroups and inverse semigroups." Forum Mathematicum 30, no. 4 (2018): 947–71. http://dx.doi.org/10.1515/forum-2017-0074.

Texto completo
Resumen
Abstract In 1959, Philip Hall introduced the locally finite group {\mathcal{U}} , today known as Hall’s universal group. This group is countable, universal, simple, and any two finite isomorphic subgroups are conjugate in {\mathcal{U}} . It can explicitly be described as a direct limit of finite symmetric groups. It is homogeneous in the model-theoretic sense since it is the Fraïssé limit of the class of all finite groups. Since its introduction Hall’s group and several natural generalisations have been studied widely. In this article we use a generalisation of Fraïssé’s theory to construct a
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Finite semigroups"

1

Wilson, Wilf A. "Computational techniques in finite semigroup theory." Thesis, University of St Andrews, 2019. http://hdl.handle.net/10023/16521.

Texto completo
Resumen
A semigroup is simply a set with an associative binary operation; computational semigroup theory is the branch of mathematics concerned with developing techniques for computing with semigroups, as well as investigating semigroups with the help of computers. This thesis explores both sides of computational semigroup theory, across several topics, especially in the finite case. The central focus of this thesis is computing and describing maximal subsemigroups of finite semigroups. A maximal subsemigroup of a semigroup is a proper subsemigroup that is contained in no other proper subsemigroup. We
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Distler, Andreas. "Classification and enumeration of finite semigroups." Thesis, St Andrews, 2010. http://hdl.handle.net/10023/945.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hum, Marcus. "The representation theory of finite semigroups /." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33409.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Rodgers, James David, and jdr@cgs vic edu au. "On E-Pseudovarieties of Finite Regular Semigroups." RMIT University. Mathematical and Geospatial Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080808.155720.

Texto completo
Resumen
An e-pseudovariety is a class of finite regular semigroups closed under the taking of homomorphic images, regular subsemigroups and finite direct products. Chapter One consists of a survey of those results from algebraic semigroup theory, universal algebra and lattice theory which are used in the following two chapters. In Chapter Two, a theory of generalised existence varieties is developed. A generalised existence variety is a class of regular semigroups closed under the taking of homomorphic images, regular subsemigroups, finite direct products and arbitrary powers. Equivalently, a generali
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Distler, Andreas [Verfasser]. "Classification and Enumeration of Finite Semigroups / Andreas Distler." Aachen : Shaker, 2010. http://d-nb.info/1081886196/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Tesson, Pascal. "Computational complexity questions related to finite monoids and semigroups." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=84441.

Texto completo
Resumen
In this thesis, we address a number of issues pertaining to the computational power of monoids and semigroups as machines and to the computational complexity of problems whose difficulty is parametrized by an underlying semigroup or monoid and find that these two axes of research are deeply intertwined.<br>We first consider the "program over monoid" model of D. Barrington and D. Therien [BT88] and set out to answer two fundamental questions: which monoids are rich enough to recognize arbitrary languages via programs of arbitrary length, and which monoids are so weak that any program ove
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Garba, Goje Uba. "Idempotents, nilpotents, rank and order in finite transformation semigroups." Thesis, University of St Andrews, 1992. http://hdl.handle.net/10023/13703.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

AlAli, Amal. "Cosets in inverse semigroups and inverse subsemigroups of finite index." Thesis, Heriot-Watt University, 2016. http://hdl.handle.net/10399/3185.

Texto completo
Resumen
The index of a subgroup of a group counts the number of cosets of that subgroup. A subgroup of finite index often shares structural properties with the group, and the existence of a subgroup of finite index with some particular property can therefore imply useful structural information for the overgroup. Although a developed theory of cosets in inverse semigroups exists, it is defined only for closed inverse subsemigroups, and the structural correspondences between an inverse semigroup and a closed inverse subsemigroup of finte index are much weaker than in the group case. Nevertheless, many a
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Abu-Ghazalh, Nabilah Hani. "Finiteness conditions for unions of semigroups." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3687.

Texto completo
Resumen
In this thesis we prove the following: The semigroup which is a disjoint union of two or three copies of a group is a Clifford semigroup, Rees matrix semigroup or a combination between a Rees matrix semigroup and a group. Furthermore, the semigroup which is a disjoint union of finitely many copies of a finitely presented (residually finite) group is finitely presented (residually finite) semigroup. The constructions of the semigroup which is a disjoint union of two copies of the free monogenic semigroup are parallel to the constructions of the semigroup which is a disjoint union of two copies
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Awang, Jennifer S. "Dots and lines : geometric semigroup theory and finite presentability." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/6923.

Texto completo
Resumen
Geometric semigroup theory means different things to different people, but it is agreed that it involves associating a geometric structure to a semigroup and deducing properties of the semigroup based on that structure. One such property is finite presentability. In geometric group theory, the geometric structure of choice is the Cayley graph of the group. It is known that in group theory finite presentability is an invariant under quasi-isometry of Cayley graphs. We choose to associate a metric space to a semigroup based on a Cayley graph of that semigroup. This metric space is constructed by
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Finite semigroups"

1

Ganyushkin, Olexandr, and Volodymyr Mazorchuk. Classical Finite Transformation Semigroups. Springer London, 2009. http://dx.doi.org/10.1007/978-1-84800-281-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Rhodes, John, and Benjamin Steinberg. The q-theory of Finite Semigroups. Springer US, 2009. http://dx.doi.org/10.1007/b104443.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Volodymyr, Mazorchuk, ed. Classical finite transformation semigroups: An introduction. Springer, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Koli︠a︡da, S. F. Dynamics and numbers: A special program, June 1-July 31, 2014, Max Planck Institute for Mathematics, Bonn, Germany : international conference, July 21-25, 2014, Max Planck Institute for Mathematics, Bonn, Germany. Edited by Max-Planck-Institut für Mathematik. American Mathematical Society, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Finite Semigroups and Universal Algebra. World Scientific Publishing Co Pte Ltd, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Finite semigroups and universal algebra. World Scientific, 1994.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Finite Semigroups and Universal Algebra. World Scientific Publishing Co Pte Ltd, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Steinberg, Benjamin. Representation Theory of Finite Monoids. Springer International Publishing AG, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Steinberg, Benjamin. Representation Theory of Finite Monoids. Springer International Publishing AG, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Rhodes, John, and Benjamin Steinberg. The q-theory of Finite Semigroups. Springer, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Finite semigroups"

1

Straubing, Howard. "Finite Semigroups." In Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-1-4612-0289-9_5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ash, C. J. "Finite Idempotent-Commuting Semigroups." In Semigroups and Their Applications. Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3839-7_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Pin, J. E. "Structure of Finite Semigroups." In Varieties of Formal Languages. Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2215-3_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Renner, Lex E. "Finite Reductive Monoids." In Semigroups, Formal Languages and Groups. Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0149-3_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Gil’, Michael I. "Strongly Continuous Semigroups." In Stability of Finite and Infinite Dimensional Systems. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5575-9_13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Pin, J. E. "Power Semigroups and Related Varieties of Finite Semigroups." In Semigroups and Their Applications. Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3839-7_18.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Hall, T. E. "Finite Inverse Semigroups and Amalgamation." In Semigroups and Their Applications. Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3839-7_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Froidure, Véronique, and Jean-Eric Pin. "Algorithms for computing finite semigroups." In Foundations of Computational Mathematics. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60539-0_9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Rhodes, John, and Benjamin Steinberg. "The Complexity of Finite Semigroups." In Springer Monographs in Mathematics. Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-09781-7_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kublanovskii, S. I. "Algorithmic Problems for Finite Groups and Finite Semigroups." In Algorithmic Problems in Groups and Semigroups. Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1388-8_9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Finite semigroups"

1

ALMEIDA, J. "DYNAMICS OF FINITE SEMIGROUPS." In Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

BULATOV, ANDREI, PETER JEAVONS, and MIKHAIL VOLKOV. "FINITE SEMIGROUPS IMPOSING TRACTABLE CONSTRAINTS." In Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

TROTTER, PETER G. "DECIDABILITY PROBLEMS IN FINITE SEMIGROUPS." In Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kozhukhov, Igor Borisovich, and Ksenia Anatolievna Kolesnikova. "Some conditions of finiteness on polygons over semigroups." In Academician O.B. Lupanov 14th International Scientific Seminar "Discrete Mathematics and Its Applications". Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/dms-2022-68.

Texto completo
Resumen
A polygon over a semigroup is an algebraic model machine. A finiteness condition in algebra is any condition which is satisfied by all finite algebras. The following finiteness conditions in acts over semigroups: Artinianity, Noetherian, Hopfian, Kohopfian, Cantorian, Cocantorian, the relationship between them is discussed. In addition, issues are discussed preserving or not preserving these properties with respect to the take operation direct product and coproduct.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

RIBES, LUIS. "PROFINITE GROUPS AND APPLICATIONS TO FINITE SEMIGROUPS." In Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

STRAUBING, HOWARD. "FINITE SEMIGROUPS AND THE LOGICAL DESCRIPTION OF REGULAR LANGUAGES." In Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

ALMEIDA, JORGE. "FINITE SEMIGROUPS: AN INTRODUCTION TO A UNIFIED THEORY OF PSEUDOVARIETIES." In Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

VOLKOV, M. V. "THE FINITE BASIS PROBLEM FOR FINITE SEMIGROUPS: A SURVEY." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792310_0017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

FERNANDES, VíTOR H. "PRESENTATIONS FOR SOME MONOIDS OF PARTIAL TRANSFORMATIONS ON A FINITE CHAIN: A SURVEY." In Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Denecke, K., and Y. Susanti. "Semigroups of n-ary Operations on Finite Sets." In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!