Artículos de revistas sobre el tema "Fluid-structure interaction Turbulence"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Fluid-structure interaction Turbulence".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Naveen, Janjanam, A. Eswara Kumar y M. Nagaraju. "Analysis of Fluid Structure Interaction in High Pressure Elbow Pipe Connections". Applied Mechanics and Materials 813-814 (noviembre de 2015): 1075–79. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.1075.
Texto completoTian, Yifeng, Farhad A. Jaberi y Daniel Livescu. "Density effects on post-shock turbulence structure and dynamics". Journal of Fluid Mechanics 880 (18 de octubre de 2019): 935–68. http://dx.doi.org/10.1017/jfm.2019.707.
Texto completoTAKIZAWA, KENJI y TAYFUN E. TEZDUYAR. "SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS". Mathematical Models and Methods in Applied Sciences 22, supp02 (25 de julio de 2012): 1230001. http://dx.doi.org/10.1142/s0218202512300013.
Texto completoPerera, M. J. A. M., H. J. S. Fernando y D. L. Boyer. "Turbulent mixing at an inversion layer". Journal of Fluid Mechanics 267 (25 de mayo de 1994): 275–98. http://dx.doi.org/10.1017/s0022112094001187.
Texto completoTian, Yifeng, Farhad A. Jaberi, Zhaorui Li y Daniel Livescu. "Numerical study of variable density turbulence interaction with a normal shock wave". Journal of Fluid Mechanics 829 (22 de septiembre de 2017): 551–88. http://dx.doi.org/10.1017/jfm.2017.542.
Texto completoCarbone, M., A. D. Bragg y M. Iovieno. "Multiscale fluid–particle thermal interaction in isotropic turbulence". Journal of Fluid Mechanics 881 (25 de octubre de 2019): 679–721. http://dx.doi.org/10.1017/jfm.2019.773.
Texto completoSharma, A. S. y B. J. McKeon. "On coherent structure in wall turbulence". Journal of Fluid Mechanics 728 (8 de julio de 2013): 196–238. http://dx.doi.org/10.1017/jfm.2013.286.
Texto completoMiyanawala, T. P. y R. K. Jaiman. "Decomposition of wake dynamics in fluid–structure interaction via low-dimensional models". Journal of Fluid Mechanics 867 (28 de marzo de 2019): 723–64. http://dx.doi.org/10.1017/jfm.2019.140.
Texto completoTAN, F. P. P., R. TORII, A. BORGHI, R. H. MOHIADDIN, N. B. WOOD y X. Y. XU. "FLUID-STRUCTURE INTERACTION ANALYSIS OF WALL STRESS AND FLOW PATTERNS IN A THORACIC AORTIC ANEURYSM". International Journal of Applied Mechanics 01, n.º 01 (marzo de 2009): 179–99. http://dx.doi.org/10.1142/s1758825109000095.
Texto completoZhang, Liaojun, Shuo Wang, Guojiang Yin y Chaonian Guan. "Fluid–structure interaction analysis of fluid pressure pulsation and structural vibration features in a vertical axial pump". Advances in Mechanical Engineering 11, n.º 3 (marzo de 2019): 168781401982858. http://dx.doi.org/10.1177/1687814019828585.
Texto completoZHANG, LIXIANG, WENQUAN WANG y YAKUN GUO. "NUMERICAL SIMULATION OF FLOW FEATURES AND ENERGY EXCHANGE PHYSICS IN NEAR-WALL REGION WITH FLUID-STRUCTURE INTERACTION". International Journal of Modern Physics B 22, n.º 06 (10 de marzo de 2008): 651–69. http://dx.doi.org/10.1142/s0217979208038806.
Texto completoGrinderslev, Christian, Niels Nørmark Sørensen, Sergio González Horcas, Niels Troldborg y Frederik Zahle. "Wind turbines in atmospheric flow: fluid–structure interaction simulations with hybrid turbulence modeling". Wind Energy Science 6, n.º 3 (6 de mayo de 2021): 627–43. http://dx.doi.org/10.5194/wes-6-627-2021.
Texto completoBao, Wen Bo, Yu Yong Hu y Yang Cui. "Wind Loads Simulation of Tall Building Structure Subjected to Wind-Structure Interaction". Advanced Materials Research 163-167 (diciembre de 2010): 4286–89. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.4286.
Texto completoShen, Bin Xian y Wei Qiang Liu. "Numerical Simulation of Turbulence-Chemical Interaction Models on Combustible Particle MILD Combustion". Advanced Materials Research 1070-1072 (diciembre de 2014): 1752–57. http://dx.doi.org/10.4028/www.scientific.net/amr.1070-1072.1752.
Texto completoZhang, Hong Ming y Li Xiang Zhang. "Numerical Simulation of Fluid-Structure Interaction with Water Hammer in a Vertical Penstock Subjected to High Water Head". Advanced Materials Research 860-863 (diciembre de 2013): 1530–34. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.1530.
Texto completoCheng, Han, Li Yu, Wei Rong y He Jia. "A NUMERICAL STUDY OF PARACHUTE INFLATION BASED ON A MIXED METHOD". Aviation 16, n.º 4 (24 de diciembre de 2012): 115–23. http://dx.doi.org/10.3846/16487788.2012.753676.
Texto completoFormato, Gaetano, Raffaele Romano, Andrea Formato, Joonas Sorvari, Tuomas Koiranen, Arcangelo Pellegrino y Francesco Villecco. "Fluid–Structure Interaction Modeling Applied to Peristaltic Pump Flow Simulations". Machines 7, n.º 3 (9 de julio de 2019): 50. http://dx.doi.org/10.3390/machines7030050.
Texto completoNoguchi, K., I. Nezu y M. Sanjou. "Turbulence structure and fluid–particle interaction in sediment-laden flows over developing sand dunes". Environmental Fluid Mechanics 8, n.º 5-6 (7 de noviembre de 2008): 569–78. http://dx.doi.org/10.1007/s10652-008-9114-3.
Texto completoLund, E., H. Møller y L. A. Jakobsen. "Shape design optimization of stationary fluid-structure interaction problems with large displacements and turbulence". Structural and Multidisciplinary Optimization 25, n.º 5-6 (diciembre de 2003): 383–92. http://dx.doi.org/10.1007/s00158-003-0288-5.
Texto completoYang, P., J. Xiang, F. Fang y C. C. Pain. "A fidelity fluid-structure interaction model for vertical axis tidal turbines in turbulence flows". Applied Energy 236 (febrero de 2019): 465–77. http://dx.doi.org/10.1016/j.apenergy.2018.11.070.
Texto completoSakthivel, R., S. Vengadesan y S. K. Bhattacharyya. "Application of non-linear k-e turbulence model in flow simulation over underwater axisymmetric hull at higher angle of attack". Journal of Naval Architecture and Marine Engineering 8, n.º 2 (22 de noviembre de 2011): 149–63. http://dx.doi.org/10.3329/jname.v8i2.6984.
Texto completoBanerjee, Sanjoy. "Upwellings, Downdrafts, and Whirlpools: Dominant Structures in Free Surface Turbulence". Applied Mechanics Reviews 47, n.º 6S (1 de junio de 1994): S166—S172. http://dx.doi.org/10.1115/1.3124398.
Texto completoPriambudi Setyo Pratomo, Hariyo, Fandi Dwiputra Suprianto y Teng Sutrisno. "Preliminary Study on Mesh Stiffness Models for Fluid-structure Interaction Problems". E3S Web of Conferences 130 (2019): 01014. http://dx.doi.org/10.1051/e3sconf/201913001014.
Texto completoRoul, Rajendra y Awadhesh Kumar. "Fluid-Structure Interaction of Wind Turbine Blade Using Four Different Materials: Numerical Investigation". Symmetry 12, n.º 9 (7 de septiembre de 2020): 1467. http://dx.doi.org/10.3390/sym12091467.
Texto completoWang, Zhikai, Xiongliang Yao, Nana Yang y Zhenhuan Xu. "Simulation of Fluid and Structure Interface with Immersed Boundary–Lattice Boltzmann Method Involving Turbulence Models". Mathematical Problems in Engineering 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/4072758.
Texto completoYang, Jing, Zhen Lu, Ke Li y Yi Wang. "Heat Transfer Analysis of Exhaust Manifold with Water Jacket of a High Speed Gasoline Based on FSI". Applied Mechanics and Materials 532 (febrero de 2014): 439–42. http://dx.doi.org/10.4028/www.scientific.net/amm.532.439.
Texto completoGuma, Giorgia, Galih Bangga, Thorsten Lutz y Ewald Krämer. "Aeroelastic analysis of wind turbines under turbulent inflow conditions". Wind Energy Science 6, n.º 1 (14 de enero de 2021): 93–110. http://dx.doi.org/10.5194/wes-6-93-2021.
Texto completoGoh, Michael Joon Seng, Yeong Shiong Chiew y Ji Jinn Foo. "A Method for 3D Reconstruction of Net Undulation for Fluid Structure Interaction of Fractal Induced Turbulence". IEEE Sensors Journal 20, n.º 20 (15 de octubre de 2020): 12013–23. http://dx.doi.org/10.1109/jsen.2020.2987643.
Texto completoVoermans, J. J., M. Ghisalberti y G. N. Ivey. "The variation of flow and turbulence across the sediment–water interface". Journal of Fluid Mechanics 824 (6 de julio de 2017): 413–37. http://dx.doi.org/10.1017/jfm.2017.345.
Texto completoYim, Solomon C. y Wenbin Zhang. "A Multiphysics Multiscale 3-D Computational Wave Basin Model for Wave Impact Load on a Cylindrical Structure". Journal of Disaster Research 4, n.º 6 (1 de diciembre de 2009): 450–61. http://dx.doi.org/10.20965/jdr.2009.p0450.
Texto completoZIKANOV, OLEG y ANDRE THESS. "Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number". Journal of Fluid Mechanics 358 (10 de marzo de 1998): 299–333. http://dx.doi.org/10.1017/s0022112097008239.
Texto completoCAO, YIHUA, QIANFU SONG, ZHUO WU y JOHN SHERIDAN. "FLOW FIELD AND TOPOLOGICAL ANALYSIS OF HEMISPHERICAL PARACHUTE IN LOW ANGLES OF ATTACK". Modern Physics Letters B 24, n.º 15 (20 de junio de 2010): 1707–25. http://dx.doi.org/10.1142/s0217984910023323.
Texto completoGenç, Mustafa Serdar, Hacımurat Demir, Mustafa Özden y Tuna Murat Bodur. "Experimental analysis of fluid-structure interaction in flexible wings at low Reynolds number flows". Aircraft Engineering and Aerospace Technology 93, n.º 6 (13 de julio de 2021): 1060–75. http://dx.doi.org/10.1108/aeat-04-2021-0120.
Texto completoGomang, Greg G. y Ann Lee. "An Assessment of Turbulence Models in Simulating a Synthetic Jet". Applied Mechanics and Materials 465-466 (diciembre de 2013): 603–7. http://dx.doi.org/10.4028/www.scientific.net/amm.465-466.603.
Texto completoAndreopoulos, J. "Wind Tunnel Experiments on Cooling Tower Plumes: Part 2—In a Nonuniform Crossflow of Boundary Layer Type". Journal of Heat Transfer 111, n.º 4 (1 de noviembre de 1989): 949–55. http://dx.doi.org/10.1115/1.3250810.
Texto completoTian, Yu Feng y Yan Huang. "Numerical Simulation of Interactions between Waves and Pendulum Wave Power Converter". Applied Mechanics and Materials 291-294 (febrero de 2013): 1949–53. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.1949.
Texto completoLara, Javier, Inigo Javier Losada, Manuel Del Jesus, Gabriel Barajas y Raul Guanche. "IH-3VOF: A THREE-DIMENSIONAL NAVIER-STOKES MODEL FOR WAVE AND STRUCTURE INTERACTION". Coastal Engineering Proceedings 1, n.º 32 (27 de enero de 2011): 55. http://dx.doi.org/10.9753/icce.v32.waves.55.
Texto completoXia, H., N. Francois, H. Punzmann y M. Shats. "Tunable diffusion in wave-driven two-dimensional turbulence". Journal of Fluid Mechanics 865 (27 de febrero de 2019): 811–30. http://dx.doi.org/10.1017/jfm.2019.82.
Texto completoLotfi, Babak, Bengt Sunden y Qiu-Wang Wang. "3D fluid-structure interaction (FSI) simulation of new type vortex generators in smooth wavy fin-and-elliptical tube heat exchanger". Engineering Computations 33, n.º 8 (7 de noviembre de 2016): 2504–29. http://dx.doi.org/10.1108/ec-04-2015-0091.
Texto completoDuan, Lunliang, Meiling Fan, Duoyin Wang, Caixia Meng y Lei Xing. "Numerical Study of Wave- and Current-Induced Oscillatory Seabed Response near a Fully Buried Subsea Pipeline". Advances in Civil Engineering 2021 (4 de agosto de 2021): 1–15. http://dx.doi.org/10.1155/2021/9976278.
Texto completoGhazanfarian, Jafar, Roozbeh Saghatchi y Mofid Gorji-Bandpy. "Turbulent fluid-structure interaction of water-entry/exit of a rotating circular cylinder using SPH method". International Journal of Modern Physics C 26, n.º 08 (3 de mayo de 2015): 1550088. http://dx.doi.org/10.1142/s0129183115500886.
Texto completoRan, Zilin, Wenxing Ma y Chunbao Liu. "3D Cavitation Shedding Dynamics: Cavitation Flow-Fluid Vortex Formation Interaction in a Hydrodynamic Torque Converter". Applied Sciences 11, n.º 6 (21 de marzo de 2021): 2798. http://dx.doi.org/10.3390/app11062798.
Texto completoŠekutkovski, Bojan, Ivan Kostić, Aleksandar Simonović, Philip Cardiff y Vladimir Jazarević. "Three-dimensional fluid–structure interaction simulation with a hybrid RANS–LES turbulence model for applications in transonic flow domain". Aerospace Science and Technology 49 (febrero de 2016): 1–16. http://dx.doi.org/10.1016/j.ast.2015.11.028.
Texto completoHall, Philip. "Vortex–wave interaction arrays: a sustaining mechanism for the log layer?" Journal of Fluid Mechanics 850 (2 de julio de 2018): 46–82. http://dx.doi.org/10.1017/jfm.2018.425.
Texto completoJensen, Bjarne, Erik Damgaard Christensen y B. Mutlu Sumer. "WAVE INTERACTION WITH LARGE ROUGHNESS ELEMENTS ON AN IMPERMEABLE SLOPING BED". Coastal Engineering Proceedings 1, n.º 33 (25 de octubre de 2012): 23. http://dx.doi.org/10.9753/icce.v33.waves.23.
Texto completoLaouedj, Samir, Juan P. Solano y Abdelylah Benazza. "Synthetic jet cross-flow interaction with orifice obstruction". International Journal of Numerical Methods for Heat & Fluid Flow 25, n.º 4 (5 de mayo de 2015): 749–61. http://dx.doi.org/10.1108/hff-01-2014-0013.
Texto completoBoychev, K., G. N. Barakos, R. Steijl y S. Shaw. "Parametric study of multiple shock-wave/turbulent-boundary-layer interactions with a Reynolds stress model". Shock Waves 31, n.º 3 (abril de 2021): 255–70. http://dx.doi.org/10.1007/s00193-021-01011-z.
Texto completoAlbatati, F. A., A. M. Hegab, M. A. Rady, A. A. Abuhabaya y S. M. El-Behery. "Turbulent Flow Characteristics in a Model of a Solid Rocket Motor Chamber with Sidewall Mass Injection and End-Wall Disturbance". Mathematical Problems in Engineering 2021 (15 de junio de 2021): 1–17. http://dx.doi.org/10.1155/2021/9978102.
Texto completoChow, Yi-Chih, Oguz Uzol y Joseph Katz. "Flow Nonuniformities and Turbulent “Hot Spots” Due to Wake-Blade and Wake-Wake Interactions in a Multi-Stage Turbomachine". Journal of Turbomachinery 124, n.º 4 (1 de octubre de 2002): 553–63. http://dx.doi.org/10.1115/1.1509078.
Texto completoDuffy, Peter. "Bohm Diffusion and Cosmic-Ray-Modified Shocks". International Astronomical Union Colloquium 142 (1994): 981–83. http://dx.doi.org/10.1017/s0252921100078428.
Texto completo