Siga este enlace para ver otros tipos de publicaciones sobre el tema: Gas vacuum oil.

Artículos de revistas sobre el tema "Gas vacuum oil"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Gas vacuum oil".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Tomina, N. N., P. S. Solmanov, N. M. Maksimov, et al. "Hydrotreating of a Vacuum Gas Oil-Heavy Coker Gas Oil Mixture." Russian Journal of General Chemistry 88, no. 9 (2018): 1963–69. http://dx.doi.org/10.1134/s1070363218090372.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Glebov, L. S., and E. V. Glebova. "Pyrolysis of hydrotreated vacuum gas oil." Petroleum Chemistry 55, no. 3 (2015): 238–40. http://dx.doi.org/10.1134/s0965544115020103.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Halmenschlager, Cibele Melo, Maganjot Brar, Ioan Tudor Apan, and Arno de Klerk. "Hydrocracking vacuum gas oil with wax." Catalysis Today 353 (August 2020): 187–96. http://dx.doi.org/10.1016/j.cattod.2019.07.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Khasanov, R. G., T. V. Alushkina, and M. V. Klykov. "Catalytic Pyrolysis of Vacuum Gas Oil." Chemistry and Technology of Fuels and Oils 57, no. 3 (2021): 446–50. http://dx.doi.org/10.1007/s10553-021-01263-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Klykov, M. V., and T. V. Alushkina. "Development of Technological Schemes for Increasing the Selection of Vacuum Gas Oil." Chemistry and Technology of Fuels and Oils 625, no. 3 (2021): 17–20. http://dx.doi.org/10.32935/0023-1169-2021-625-3-17-20.

Texto completo
Resumen
The analysis of the operation of the vacuum columns of the ELOU AVT units showed that in a number of cases the half-gas contains up to 30% of vacuum gas oil with a boiling point of up to 560 ° C. A comparative analysis of three options for deepening the selection of heavy vacuum gas oil during the distillation of fuel oil has been carried out. A traditional scheme with a pressure reduction at the top of the vacuum column, the rectification of a half-sludge without heating it after the main vacuum column in an additional its subsequent rectification in the second column, with the selection of h
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Doronin, V. P., O. V. Potapenko, P. V. Lipin, and T. P. Sorokina. "Catalytic cracking of vegetable oils and vacuum gas oil." Fuel 106 (April 2013): 757–65. http://dx.doi.org/10.1016/j.fuel.2012.11.027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Stratiev, Dicho, Ivan Chavdarov, Ekaterina Nikolaychuk, et al. "Investigation of the fluid catalytic cracking of different H-Oil vacuum gas oils and their blends with hydrotreated vacuum gas oil." Petroleum Science and Technology 34, no. 24 (2016): 1939–45. http://dx.doi.org/10.1080/10916466.2016.1230757.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Nilssona, P., F. E. Massoth, and J.-E. Otterstedt. "Catalytic cracking of heavy vacuum gas oil." Applied Catalysis 26 (January 1986): 175–89. http://dx.doi.org/10.1016/s0166-9834(00)82550-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Alrubaye, Saleem Mohammad. "Study the Effect of Catalyst -to- Oil Ratio Parameter (COR) on Catalytic Cracking of Heavy Vacuum Gas Oil." Journal of Engineering 26, no. 7 (2020): 16–27. http://dx.doi.org/10.31026/j.eng.2020.07.02.

Texto completo
Resumen
This work deals with the production of light fuel cuts of (gasoline, kerosene and gas oil) by catalytic cracking treatment of secondary product mater (heavy vacuum gas oil) which was produced from the vacuum distillation unit in any petroleum refinery. The objective of this research was to study the effect of the catalyst -to- oil ratio parameter on catalytic cracking process of heavy vacuum gas oil feed at constant temperature (450 °C). The first step of this treatment was, catalytic cracking of this material by constructed batch reactor occupied with auxiliary control devices, at selective r
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Georgiev, V., D. Stratiev, K. Kirilov, K. Petkov, and D. Minkov. "Reasons for low heavy vacuum gas oil yield in vacuum distillation of residual fuel oil." Chemistry and Technology of Fuels and Oils 45, no. 3 (2009): 164–69. http://dx.doi.org/10.1007/s10553-009-0120-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Pinaeva, L. G., O. V. Klimov, M. O. Kazakov, and A. S. Noskov. "Development of Catalysts for Hydroprocesses in Oil Refining." Kataliz v promyshlennosti 20, no. 5 (2020): 391–406. http://dx.doi.org/10.18412/1816-0387-2020-5-391-406.

Texto completo
Resumen
The review presents an analysis of the scientific-technical level and trends in the development of advanced foreign and national catalysts for main oil refining hydroprocesses – hydrocracking of vacuum gas-oil and hydrotreatment of various distillates (cat-cracked gasoline, diesel fuel, and vacuum gas-oil). Prospects of industrial production and wide application of the hydroprocessing catalysts produced in Russia are estimated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

AOYAGI, Ko, Manabu KOBAYASHI, Seiji TOKAWA, and Hiroshi MITANI. "Molecular Transformation of Vacuum Gas Oil in Hydrodesulfurization." Journal of The Japan Petroleum Institute 40, no. 3 (1997): 213–19. http://dx.doi.org/10.1627/jpi1958.40.213.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Bezergianni, Stella, Aggeliki Kalogianni, and Iacovos A. Vasalos. "Hydrocracking of vacuum gas oil-vegetable oil mixtures for biofuels production." Bioresource Technology 100, no. 12 (2009): 3036–42. http://dx.doi.org/10.1016/j.biortech.2009.01.018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Khasanov, R. G., T. V. Alushkina, and M. V. Klykov. "Catalytic Pyrolysis of Vacuum Gas Oi." Chemistry and Technology of Fuels and Oils 625, no. 3 (2021): 21–24. http://dx.doi.org/10.32935/0023-1169-2021-625-3-21-24.

Texto completo
Resumen
Studies of thermal and catalytic pyrolysis of vacuum gas oil in a flow-type reactor have been carried out. The main regularities in the yield of the target products of the process – ethylene, propylene and butylenes – are revealed. The influence of the catalyst on the change in the conditions of catalytic pyrolysis in comparison with thermal pyrolysis is described. A mathematical model of the process is proposed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Tyurin, A. V., A. V. Burmistrov, A. A. Raykov, and S. I. Salikeev. "Experimental Study of Pumping Condensable Vapors by Oil Free Vacuum Scroll Pumps." Proceedings of Higher Educational Institutions. Маchine Building, no. 2 (731) (February 2021): 34–40. http://dx.doi.org/10.18698/0536-1044-2021-2-34-40.

Texto completo
Resumen
When operating a vacuum pump, it is often necessary to pump out liquid vapors or vapor-gas media that can condense in its working cavities. To prevent condensation in displacement pumps including scroll pumps, gas ballast device is used. The maximum tolerable water vapor pressure at the inlet and maximum pump capacity by water vapor are the main parameters of a pump with gas ballast device. The highest water vapor pressure at the inlet and the maximum capacity of the oil-free scroll vacuum pump by water vapor were determined experimentally. For this purpose pumping speed, gas flow through the
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Otsuki, Shujiro, Takeshi Nonaka, Noriko Takashima, et al. "Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction." Energy & Fuels 14, no. 6 (2000): 1232–39. http://dx.doi.org/10.1021/ef000096i.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Krishna, R., G. C. Joshi, R. C. Purohit, K. M. Agrawal, P. S. Verma, and S. Bhattacharjee. "Correlation of pour point of gas oil and vacuum gas oil fractions with compositional parameters." Energy & Fuels 3, no. 1 (1989): 15–20. http://dx.doi.org/10.1021/ef00013a003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Sardar, Razwan Muhammad, Yi Yang, Shi Juan Du, et al. "Composition of Hydrogenated Vacuum Gas Oil Analysis by Gas Chromatography Mass Spectrometry." Advanced Materials Research 455-456 (January 2012): 706–10. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.706.

Texto completo
Resumen
Many attempts are made to obtain the composition of vacuum gas oil (VGO) but the molecular composition of hydrogenated vacuum gas oil (HVGO) has not been studied in detail. HVGO is used as a feed in fluid catalytic cracking (FCC) to produce more environmentally friendly gasoline. This paper reports the presence of linear alkyl cyclohexanes (LACHs) in HVGO. Some LACHs were found in HVGO distillates of boiling point range of 370°C-550°C. Complete molecular composition was analyzed using gas chromatography mass spectrometry (GC-MS). HVGO contains LACHs from C7to C32andn-paraffins from C5to C38. O
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Volkova, L. D., N. N. Zakarina, O. K. Kim, et al. "KAOLINITE MODIFIED BY ALUMINUM IN THE CRACKING OF VACUUM GASOIL AND IT’S MIXTURE WITH FUEL OIL." SERIES CHEMISTRY AND TECHNOLOGY 2, no. 440 (2020): 107–14. http://dx.doi.org/10.32014/2020.2518-1491.30.

Texto completo
Resumen
The data of the cracking of vacuum gas oil (VG) and a mixture of VG with fuel oil (M-100) on HLaY zeolite catalyst based on acid-activated kaolinite of the Pavlodar deposit modified by aluminum are presented. The synthesis of the kaolinite matrix and the HLaY zeolite catalyst with its use, the physicochemical and acid characteristics of the catalyst and its constituent components, and the fractional and hydrocarbon compositions of vacuum gas oil are described. High mesoporosity of the H-form of the used kaolinite (86.2%), modified by aluminum of the H-form (84.1) and the HLaY catalyst (80.1%),
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Al-Ayed, Omar. "Catalytic Cracking of Vacuum Gas Oil and Used Lubricating Oil on Oil Shale Ash." Global Journal of Energy Technology Research Updates 2, no. 1 (2015): 25–32. http://dx.doi.org/10.15377/2409-5818.2014.02.01.4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Ristic, Nenad D., Marko R. Djokic, Elisabeth Delbeke, et al. "Compositional Characterization of Pyrolysis Fuel Oil from Naphtha and Vacuum Gas Oil." Energy & Fuels 32, no. 2 (2018): 1276–86. http://dx.doi.org/10.1021/acs.energyfuels.7b03242.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

AOYAGI, Ko, Takeo IMAGISHI, and Hiroshi MITANI. "Relative Desulfurization Reactivity of Thiophenes in Vacuum Gas Oil." Journal of The Japan Petroleum Institute 39, no. 6 (1996): 418–25. http://dx.doi.org/10.1627/jpi1958.39.418.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Akopyan, A. V., A. A. Domashkin, P. D. Polikarpova, A. V. Tarakanova, A. V. Anisimov, and E. A. Karakhanov. "Peroxide-Assisted Oxidative Desulfurization of Nonhydrotreated Vacuum Gas Oil." Theoretical Foundations of Chemical Engineering 52, no. 5 (2018): 894–97. http://dx.doi.org/10.1134/s0040579518050020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

KHARITONOV, B., G. VOLOKHOVA, I. VASILYEVA, S. FURER, E. KHRAMOVA, and T. MUKHINA. "Chemical composition of vacuum gas oil and its pyrolysis." Petroleum Chemistry U.S.S.R. 26, no. 3 (1986): 142–50. http://dx.doi.org/10.1016/0031-6458(86)90049-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Borzaev, H. H., and I. M. Kolesnikov. "Cracking of Activated Vacuum Gas Oil on Mesoporous Aluminosilicates." Oil and Gas Technologies 128, no. 3 (2020): 9–12. http://dx.doi.org/10.32935/1815-2600-2020-128-3-9-12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Sardar, Razwan Muhammad, Yi Yang, Shi Juan Du, et al. "Composition of Hydrogenated Vacuum Gas Oil Analysis by Gas Chromatography Mass Spectrometry." Advanced Materials Research 455-456 (January 2012): 706–10. http://dx.doi.org/10.4028/scientific5/amr.455-456.706.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Lipin, P. V., O. V. Potapenko, T. I. Gulyaeva, T. P. Sorokina, and V. P. Doronin. "Effect of Phosphorus Modification of Zeolites Y and ZSM-5 on the Cracking of Hydrotreated Vacuum Gas Oil and a Vacuum Gas Oil–Sunflower Oil Mixture." Petroleum Chemistry 59, no. 8 (2019): 894–902. http://dx.doi.org/10.1134/s0965544119080115.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Obyed, Saleem Mohammed. "Preparation of Light Fuel Fractions from Heavy Vacuum Gas Oil by Thermal Cracking Reaction." Al-Khwarizmi Engineering Journal 13, no. 1 (2017): 103–9. http://dx.doi.org/10.22153/kej.2017.11.003.

Texto completo
Resumen
This work deals with thermal cracking of heavy vacuum gas oil which produced from the top of vacuum distillation unit at Al- DURA refinery, by continuous process. An experimental laboratory plant scale was constructed in laboratories of chemical engineering department, Al-Nahrain University and Baghdad University. The thermal cracking process was carried out at temperature ranges between 460-560oC and atmospheric pressure with liquid hourly space velocity (LHSV) equal to 15hr-1.The liquid product from thermal cracking unit was distilled by atmospheric distillation device according to ASTM D-86
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Isfaroiny, Rahma, and Mitarlis Mitarlis. "PENINGKATAN KADAR PATCHOULI ALCOHOL PADA MINYAK NILAM (Pogostemon cablin Benth) DENGAN METODE DISTILASI FRAKSINASI VAKUM." Berkala Penelitian Hayati 10, no. 2 (2005): 123–27. http://dx.doi.org/10.23869/bphjbr.10.2.20056.

Texto completo
Resumen
The quality of nilam (Pogostemon cablin Benth) oil depend on it patchouli alcohol value. At there time nilam farmers just has produced nilam oil with patchouli alcohol value about 26–28 percent. To increase this value, fractional vacuum distillation had been done in this study. Nilam oil has been isolated from drying leaf of nilam plant. Patchouli alcohol in this oil was analyzed by gas chromatography, next the oil was distillated by fractional vacuum and the patchouli alcohol was determined from each fraction. This study showed that fractional vacuum distillation of nilam oil gives a higher p
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Ancheyta-Juárez, J., S. Rodríguez-Salomón, and M. A. Valenzuela-Zapata. "Experimental Evaluation of Vacuum Gas Oil−Light Cycle Oil Blends as FCC Feedstock." Energy & Fuels 15, no. 3 (2001): 675–79. http://dx.doi.org/10.1021/ef000210x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Chen, Jinwen, Hena Farooqi, and Craig Fairbridge. "Experimental Study on Co-hydroprocessing Canola Oil and Heavy Vacuum Gas Oil Blends." Energy & Fuels 27, no. 6 (2013): 3306–15. http://dx.doi.org/10.1021/ef4005835.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Alvarez-Majmutov, Anton, Sandeep Badoga, Jinwen Chen, Jacques Monnier, and Yi Zhang. "Co-Processing of Deoxygenated Pyrolysis Bio-Oil with Vacuum Gas Oil through Hydrocracking." Energy & Fuels 35, no. 12 (2021): 9983–93. http://dx.doi.org/10.1021/acs.energyfuels.1c00822.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Li, Cheng, Songbai Tian, and Xiaowei Wang. "Petroleum asphaltene stability in the blending process of vacuum gas oil and vacuum residue." SCIENTIA SINICA Chimica 48, no. 4 (2018): 427–33. http://dx.doi.org/10.1360/n032017-00164.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Мурзакаев, А. М. "Эрозия катода в газовом дуговом разряде в области пороговых токов". Журнал технической физики 91, № 11 (2021): 1649. http://dx.doi.org/10.21883/jtf.2021.11.51524.114-21.

Texto completo
Resumen
The results of experimental studies of the erosion rate of high-purity tungsten cathodes after pulsed arc discharges in a pure oil-free ultrahigh vacuum and in gases of various purities are reported. The erosion rate in high-purity argon does not change compared to the rate of erosion of electrodes in a pure oil-free vacuum. The rate of erosion in "technical" argon is 10% less than the rate of erosion of electrodes in an oil-free vacuum. The rate of erosion in "technical" nitrogen is 15-35% less than the rate of erosion of electrodes in vacuum. Particle sizes formed in gas arcs are smaller tha
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Stratiev, Dicho S., Svetoslav Nenov, Ivelina K. Shishkova, et al. "Comparison of Empirical Models to Predict Viscosity of Secondary Vacuum Gas Oils." Resources 10, no. 8 (2021): 82. http://dx.doi.org/10.3390/resources10080082.

Texto completo
Resumen
This work presents characterization data and viscosity of 34 secondary vacuum gas oils (H-Oil gas oils, visbreaker gas oils, and fluid catalytic cracking slurry oils) with aromatic content reaching up to 100 wt.%. Inter-criteria analysis was employed to define the secondary VGO characteristic parameters which have an effect on viscosity. Seven published empirical models to predict viscosity of the secondary vacuum gas oils were examined for their prediction ability. The empirical model of Aboul-Seud and Moharam was found to have the lowest error of prediction. A modification of Aboul-Seoud and
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

YANG, Ming-Gang, Ikusei NAKAMURA, and Kaoru FUJIMOTO. "Hydrothermal Cracking of Vacuum Gas Oil for Producing Middle Distillates." Journal of The Japan Petroleum Institute 40, no. 3 (1997): 172–78. http://dx.doi.org/10.1627/jpi1958.40.172.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Al-Sabawi, Mustafa, Jesús A. Atias, and Hugo de Lasa. "Heterogeneous Approach to the Catalytic Cracking of Vacuum Gas Oil." Industrial & Engineering Chemistry Research 47, no. 20 (2008): 7631–41. http://dx.doi.org/10.1021/ie701745k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Marcilla, Antonio, Andrew O. Odjo, J. C. García-Quesada, Amparo Gómez, Rosa N. Martínez, and Deseada Berenguer. "Flow properties of vacuum gas oil–low density polyethylene blends." Fuel Processing Technology 89, no. 1 (2008): 83–89. http://dx.doi.org/10.1016/j.fuproc.2007.08.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Coopmans, Jo F., Pieter Mars, and Rokus L. De Groot. "Kinetics of vacuum gas oil cracking on a zeolitic catalyst." Industrial & Engineering Chemistry Research 31, no. 9 (1992): 2093–103. http://dx.doi.org/10.1021/ie00009a005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Alvarez-Majmutov, Anton, Jinwen Chen, and Rafal Gieleciak. "Molecular-Level Modeling and Simulation of Vacuum Gas Oil Hydrocracking." Energy & Fuels 30, no. 1 (2015): 138–48. http://dx.doi.org/10.1021/acs.energyfuels.5b02084.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Naik, Desavath V., Vimal Kumar, Basheshwar Prasad, et al. "Catalytic Cracking of C2–C3 Carbonyls with Vacuum Gas Oil." Industrial & Engineering Chemistry Research 53, no. 49 (2014): 18816–23. http://dx.doi.org/10.1021/ie501331b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Ma, Xiaoliang, Kinya Sakanishi, and Isao Mochida. "Hydrodesulfurization Reactivities of Various Sulfur Compounds in Vacuum Gas Oil." Industrial & Engineering Chemistry Research 35, no. 8 (1996): 2487–94. http://dx.doi.org/10.1021/ie960137r.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Lee, Kyong-Hwan, Youn-Woo Lee, and Baik-Hyon Ha. "Catalytic Cracking of Vacuum Gas Oil on the Dealuminated Mordenites." Journal of Catalysis 178, no. 1 (1998): 328–37. http://dx.doi.org/10.1006/jcat.1998.2171.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Srivastava, S. P., T. Butz, G. B. Tiwari, H. J. Oschmann, I. Rahimian, and S. D. Phatak. "GEL FORMATION IN VACUUM GAS OIL. I. ROLE OF COMPOSITION." Petroleum Science and Technology 20, no. 3-4 (2002): 269–90. http://dx.doi.org/10.1081/lft-120002099.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Celse, B., V. Costa, F. Wahl, and J. J. Verstraete. "Dealing with uncertainties: Sensitivity analysis of vacuum gas oil hydrotreatment." Chemical Engineering Journal 278 (October 2015): 469–78. http://dx.doi.org/10.1016/j.cej.2014.11.098.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Lahiri, C. R., and Dipa Biswas. "High pressure hydrocracking of vacuum gas oil to middle distillates." Physica B+C 139-140 (May 1986): 725–28. http://dx.doi.org/10.1016/0378-4363(86)90686-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Klykov, M. V., and T. V. Alushkina. "Development of Flow Diagrams for Increasing Vacuum Gas Oil Extraction." Chemistry and Technology of Fuels and Oils 57, no. 3 (2021): 441–45. http://dx.doi.org/10.1007/s10553-021-01262-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Bergvall, Niklas, Linda Sandström, Fredrik Weiland, and Olov G. W. Öhrman. "Corefining of Fast Pyrolysis Bio-Oil with Vacuum Residue and Vacuum Gas Oil in a Continuous Slurry Hydrocracking Process." Energy & Fuels 34, no. 7 (2020): 8452–65. http://dx.doi.org/10.1021/acs.energyfuels.0c01322.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Ermakov, Sergey, Aleksey Bogdanov, Valery Mulyarchik, Valery Konstantinov, and Victor Danishevskii. "Antifriction Plastic Greases Based on Intermediate Products of Oil Refining and Liquid Crystalline Compounds." Applied Mechanics and Materials 806 (November 2015): 109–18. http://dx.doi.org/10.4028/www.scientific.net/amm.806.109.

Texto completo
Resumen
The rheological and triboengineering properties are presented of hydrated calcium plastic greases based on intermediate products of oil refining (hydrofined vacuum gas oil and vacuum distillate). It is shown that application of liquid crystalline cholesterol compounds as an additional component of the dispersion medium of plastic greases permits significant reduction of the wear and losses for friction and boosts the load – bearing capacity of tribocouples.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Pleyer, Olga, Dan Vrtiška, Petr Straka, Aleš Vráblík, Jan Jenčík, and Pavel Šimáček. "Hydrocracking of a Heavy Vacuum Gas Oil with Fischer–Tropsch Wax." Energies 13, no. 20 (2020): 5497. http://dx.doi.org/10.3390/en13205497.

Texto completo
Resumen
Catalytic hydrocracking represents an optimal process for both heavy petroleum fractions and Fischer–Tropsch (FT) wax upgrading because it offers high flexibility regarding the feedstock, reaction conditions and products’ quality. The hydrocracking of a heavy vacuum gas oil with FT wax was carried out in a continuous-flow catalytic unit with a fixed-bed reactor and a co-current flow of the feedstock and hydrogen at the reaction temperatures of 390, 400 and 410 °C and a pressure of 8 MPa. The increasing reaction temperature and content of the FT wax in the feedstock caused an increasing yield i
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!