Literatura académica sobre el tema "Gauge equivalence"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Gauge equivalence".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Gauge equivalence"

1

Wulzer, Andrea. "An Equivalent Gauge and the Equivalence Theorem." Nuclear Physics B 885 (August 2014): 97–126. http://dx.doi.org/10.1016/j.nuclphysb.2014.05.021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

LYRE, HOLGER. "A GENERALIZED EQUIVALENCE PRINCIPLE." International Journal of Modern Physics D 09, no. 06 (2000): 633–47. http://dx.doi.org/10.1142/s0218271800000694.

Texto completo
Resumen
Gauge field theories may quite generally be defined as describing the coupling of a matter-field to an interaction-field, and they are suitably represented in the mathematical framework of fiber bundles. Their underlying principle is the so-called gauge principle, which is based on the idea of deriving the coupling structure of the fields by satisfying a postulate of local gauge covariance. The gauge principle is generally considered to be sufficient to define the full structure of gauge-field theories. This paper contains a critique of this usual point of view: firstly, by emphazising an intrinsic gauge theoretic conventionalism which crucially restricts the conceptual role of the gauge principle and, secondly, by introducing a new generalized equivalence principle — the identity of inertial and field charge (as generalizations of inertial and gravitational mass) — in order to give a conceptual justification for combining the equations of motion of the matter-fields and the field equations of the interaction-fields.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

MACDOWELL, SAMUEL W., and OLA TÖRNKVIST. "ELECTROWEAK VORTICES AND GAUGE EQUIVALENCE." Modern Physics Letters A 10, no. 13n14 (1995): 1065–72. http://dx.doi.org/10.1142/s0217732395001186.

Texto completo
Resumen
Vortex configurations in the electroweak gauge theory are investigated. Two gauge-inequivalent solutions of the field equations, the Z and W vortices, have previously been found. They correspond to embeddings of the Abelian Nielsen-Olesen vortex solution into a U(1) subgroup of SU(2)×U(1). It is shown here that any electroweak vortex solution can be mapped into a solution of the same energy with a vanishing upper component of the Higgs field. The correspondence is a gauge equivalence for all vortex solutions except those for which the winding numbers of the upper and lower Higgs components add to zero. This class of solutions, which includes the W vortex, corresponds to a singular solution in the one-component gauge. The results, combined with numerical investigations, provide an argument against the existence of other vortex solutions in the gauge-Higgs sector of the Standard Model.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wei-Tou NI. "Equivalence principles and gauge fields." Physics Letters A 120, no. 4 (1987): 174–78. http://dx.doi.org/10.1016/0375-9601(87)90330-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Gomes, M. A. M., and R. R. Landim. "Equivalence classes for gauge theories." Europhysics Letters (EPL) 70, no. 6 (2005): 747–53. http://dx.doi.org/10.1209/epl/i2005-10044-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Haller, K., and E. Lim-Lombridas. "Quantum gauge equivalence in QED." Foundations of Physics 24, no. 2 (1994): 217–47. http://dx.doi.org/10.1007/bf02313123.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

CLARK, T. E., C. H. LEE, and S. T. LOVE. "SUPERSYMMETRIC TENSOR GAUGE THEORIES." Modern Physics Letters A 04, no. 14 (1989): 1343–53. http://dx.doi.org/10.1142/s0217732389001532.

Texto completo
Resumen
The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Furuuchi, Kazuyuki. "Equivalence of Projections as Gauge Equivalence¶on Noncommutative Space." Communications in Mathematical Physics 217, no. 3 (2001): 579–93. http://dx.doi.org/10.1007/pl00005554.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

FATIBENE, LORENZO, and MAURO FRANCAVIGLIA. "MATHEMATICAL EQUIVALENCE VERSUS PHYSICAL EQUIVALENCE BETWEEN EXTENDED THEORIES OF GRAVITATIONS." International Journal of Geometric Methods in Modern Physics 11, no. 01 (2013): 1450008. http://dx.doi.org/10.1142/s021988781450008x.

Texto completo
Resumen
We shall show that although Palatini [Formula: see text]-theories are equivalent to Brans–Dicke theories, still the first pass the Mercury precession of perihelia test, while the second do not. We argue that the two models are not physically equivalent due to different assumptions about free fall. We shall also go through perihelia test without fixing a conformal gauge (clocks or rulers) in order to highlight what can be measured in a conformal invariant way and what cannot. We shall argue that the conformal gauge is broken by choosing a definition of clock, rulers or, equivalently, of masses.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

DEL DUCA, V., L. MAGNEA, and P. VAN NIEUWENHUIZEN. "EQUIVALENCE OF THE LAGRANGIAN AND HAMILTONIAN BRST CHARGES FOR THE BOSONIC STRING IN THE HARMONIC AND CONFORMAL GAUGES." International Journal of Modern Physics A 03, no. 05 (1988): 1081–101. http://dx.doi.org/10.1142/s0217751x88000461.

Texto completo
Resumen
We consider the BRST formalism for the bosonic string in arbitrary gauges, both from the Hamiltonian and from the Lagrangian point of view. In the Hamiltonian formulation we construct the BRST charge Q(H) following the Batalin-Fradkin-Fradkina-Vilkovisky (BFFV) formalism in phase space. In the Lagrangian formalism, we use the Noether procedure to construct the BRST charge Q(L) in configuration space. We then discuss how to go from configuration to phase space and demonstrate that the dependence of Q(L) on the gauge fixing disappears and that both charges become equal. We work through two gauges in detail: the conformal gauge and the de Donder (harmonic) gauge. In the conformal gauge one must use equations of motion, and a simple canonical transformation is found which exhibits the equivalence. In the de Donder gauge, nontrivial canonical transformations are needed. Our results overlap with work by Beaulieu, Siegel and Zwiebach on the de Donder gauge, but since we only require BRST invariance and not anti-BRST invariance, we need simpler field redefinitions; moreover, we stay off-shell.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!