Literatura académica sobre el tema "GCaMP"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "GCaMP".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "GCaMP"
Shigetomi, Eiji, Sebastian Kracun y Baljit S. Khakh. "Monitoring astrocyte calcium microdomains with improved membrane targeted GCaMP reporters". Neuron Glia Biology 6, n.º 3 (agosto de 2010): 183–91. http://dx.doi.org/10.1017/s1740925x10000219.
Texto completoChen, Yen Lin, Thomas M. Baker, Frank Lee, Bo Shui, Jane C. Lee, Petr Tvrdik, Michael I. Kotlikoff y Swapnil K. Sonkusare. "Calcium Signal Profiles in Vascular Endothelium from Cdh5-GCaMP8 and Cx40-GCaMP2 Mice". Journal of Vascular Research 58, n.º 3 (2021): 159–71. http://dx.doi.org/10.1159/000514210.
Texto completoKrogman, William, J. Alan Sparks y Elison B. Blancaflor. "Cell Type-Specific Imaging of Calcium Signaling in Arabidopsis thaliana Seedling Roots Using GCaMP3". International Journal of Molecular Sciences 21, n.º 17 (2 de septiembre de 2020): 6385. http://dx.doi.org/10.3390/ijms21176385.
Texto completoMa, Ying, Mohammed A. Shaik, Mariel G. Kozberg, Sharon H. Kim, Jacob P. Portes, Dmitriy Timerman y Elizabeth M. C. Hillman. "Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons". Proceedings of the National Academy of Sciences 113, n.º 52 (14 de diciembre de 2016): E8463—E8471. http://dx.doi.org/10.1073/pnas.1525369113.
Texto completoAi, Minrong, Holly Mills, Makoto Kanai, Jason Lai, Jingjing Deng, Eric Schreiter, Loren Looger, Thomas Neubert y Greg Suh. "Green-to-Red Photoconversion of GCaMP". PLOS ONE 10, n.º 9 (18 de septiembre de 2015): e0138127. http://dx.doi.org/10.1371/journal.pone.0138127.
Texto completoIvashkina, Olga I., Anna M. Gruzdeva, Marina A. Roshchina, Ksenia A. Toropova y Konstantin V. Anokhin. "Imaging of C-fos Activity in Neurons of the Mouse Parietal Association Cortex during Acquisition and Retrieval of Associative Fear Memory". International Journal of Molecular Sciences 22, n.º 15 (31 de julio de 2021): 8244. http://dx.doi.org/10.3390/ijms22158244.
Texto completoHan, Su Young, Jenny Clarkson, Richard Piet y Allan E. Herbison. "Optical Approaches for Interrogating Neural Circuits Controlling Hormone Secretion". Endocrinology 159, n.º 11 (9 de octubre de 2018): 3822–33. http://dx.doi.org/10.1210/en.2018-00594.
Texto completoChen, Qian, Joseph Cichon, Wenting Wang, Li Qiu, Seok-Jin R. Lee, Nolan R. Campbell, Nicholas DeStefino et al. "Imaging Neural Activity Using Thy1-GCaMP Transgenic Mice". Neuron 76, n.º 2 (octubre de 2012): 297–308. http://dx.doi.org/10.1016/j.neuron.2012.07.011.
Texto completoCreamer, Matthew S., Kevin S. Chen, Andrew M. Leifer y Jonathan W. Pillow. "Correcting motion induced fluorescence artifacts in two-channel neural imaging". PLOS Computational Biology 18, n.º 9 (28 de septiembre de 2022): e1010421. http://dx.doi.org/10.1371/journal.pcbi.1010421.
Texto completoCho, Jung-Hwa, Carter J. Swanson, Jeannie Chen, Ang Li, Lisa G. Lippert, Shannon E. Boye, Kasey Rose, Sivaraj Sivaramakrishnan, Cheng-Ming Chuong y Robert H. Chow. "The GCaMP-R Family of Genetically Encoded Ratiometric Calcium Indicators". ACS Chemical Biology 12, n.º 4 (marzo de 2017): 1066–74. http://dx.doi.org/10.1021/acschembio.6b00883.
Texto completoTesis sobre el tema "GCaMP"
Pereira, Lucas Borges. "Caracterização da apirase do parasita P. falciparum e análise do papel do Ca2+ no egresso de T. gondii". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/42/42135/tde-17082016-151526/.
Texto completoPlasmodium falciparum and Toxoplasma gondii are protozoan parasites that belong to phylum Apicomplexa. Apirases are metabolizing enzymes of extracellular nucleotides. In this work we show for the first time the presence of an apyrase in P. falciparum, which was able to degrade extracellular ATP. RTqPCR analysis revealed the expression of apyrase throughout the intraerythrocytic cycle. Addition of apyrase inhibitors was able to impair the development of the parasites and the invasion of new erythrocytes by merozoites, thus suggesting a role of apyrase in these processes. Calcium signaling is universal and vital to all cells. To better understand the cellular physiology of P. falciparum we construct a new strain of transgenic parasites, PfGCaMP3, which enable us to monitor the Ca2+ dynamics without using invasive protocols. Similarly we use a new strain of T. gondii that stably express the Ca2+ indicator GCaMP3 to study the role Ca2+ in parasite egress. T. gondii has the Ca2+ required to promote this process, however extracellular Ca2+ acts as an enhancer factor in this crucial step of the lytic cycle.
Iguchi, Moritake. "Direct monitoring of mitochondrial calcium levels in cultured cardiac myocytes using a novel fluorescent indicator protein, GCaMP2-mt". Kyoto University, 2011. http://hdl.handle.net/2433/142548.
Texto completoSchmidt, Elke. "Investigation of spatiotemporal calcium transients in astrocytic soma and processes upon purinergic receptor activation using genetically encoded calcium sensors". Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015PA05T011.
Texto completoGrey matter protoplasmic astrocytes are compact glial cells with highly branched processes, enwrapping synapses, and one or two endfeet contacting the blood vessels. Several neurotransmitter receptors are expressed by astrocytes, among them purinergic receptors. Upon activation of these receptors, intracellular calcium (Ca2+) transients can be induced, that, in turn, trigger gliotransmitter release (e.g. glutamate, GABA, ATP, D-serine) and participate in astrocyte-to-astrocyte signaling as well as in the communication between astrocytes and neurons or other glia. During my PhD work, I first implemented and validated several approaches for targeting transgene expression specifically to cortical astrocytes and employed them to study purinergic signaling in astrocytes. To achieve astrocyte-specific transgene expression, I used either floxed adeno-associated viral (AAV) vectors or a Cre-dependent mouse line and several mouse lines expressing the Cre recombinase under astrocyte-specific promoters. Intracerebral injections of a Cre-dependent AAV serotype 5 containing the ubiquitous CAG promoter and an enhanced green fluorescent protein (AAV5.CAG.flex.EGFP) in adult mice expressing Cre recombinase under the human glial fibrillary protein (hGFAP) promoter resulted in a non-astrocyte specific expression in the cortex. Combining inducible mouse lines expressing Cre recombinase under the glutamate aspartate transporter (GLAST) promoter with the same AAV vector resulted in a virtually astrocyte-specific expression of the reporter gene. As an alternative approach for astrocyte-specific transgene expression, we used a Cre-dependent mouse line expressing the genetically encoded Ca2+ indicator GCaMP3. Crossing this mouse line with the above described GLAST-CreERT2 mouse line or a Connexin30 (Cx30)-CreERT2 line led to selective GCaMP3 expression in cortical astrocytes. Second, I investigated both spontaneous and agonist-evoked Ca2+ transients in astrocytic processes, the investigation of which has presented a major challenge in earlier studies, due to the unspecific and weak labeling by membrane-permeable chemical Ca2+ indicators. Using the strategy developed in the first part of my work allowing an astrocyte-specific expression of the genetically encoded Ca2+ indicator GCaMP3. Using two-photon excitation fluorescence (2PEF) imaging in acute slices of the primary somatosensory cortex, I recorded Ca2+ transients in the astrocytic soma and processes. By aid of a custom-made MATLAB routine based on a temporal Pearson correlation coefficient, active regions could be identified in an unbiased manner. Evoked Ca2+ transients were quantified using custom IGOR routines. Spontaneous desynchronized Ca2+ transients occurred in the processes and rarely in the soma. Ca2+ signals appeared localized in distinct microdomains. Their frequency appeared to increase during long recordings of several hundred images, suggesting that fine astrocytes are vulnerable to photodamage under imaging conditions routine in 2PEF microscopy. The possibility to minimize photodamage, by varying the length of the femtosecond laser pulses is under investigation. Bath application of adenosine (1-100 µM) and adenosine-triphosphate (ATP, 100 µM), as well as the application of the non-selective P2X7 receptor agonist (2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate, BzATP, 50-100 µM), in the presence of tetrodotoxin to block neuronal action potentials, evoked synchronized Ca2+ rises in the soma and the processes of astrocytes. The effect of adenosine was dose-dependent. No significant effect of the specific P2Y1 agonist (MRS2365, 50 µM) was seen. Altogether, my work sets up a powerful and versatile toolbox for studying astrocytic Ca2+ signaling at the sub-cellular level. It also pinpoints possible limits of standard two-photon recording protocols to investigate the local Ca2+ signals in fine astrocytic processes
Schröder, Thomas [Verfasser], Hauke [Akademischer Betreuer] Lilie, Daniel [Akademischer Betreuer] Huster y Karl-Wilhelm [Akademischer Betreuer] Koch. "Konformationsänderung des Guanylatzyklase-aktivierenden Proteins 2 (GCAP-2) zur Aktivierung der Sehstäbchenaußensegment-Guanylatzyklase (ROS-GC1) / Thomas Schröder. Betreuer: Hauke Lilie ; Daniel Huster ; Karl-Wilhelm Koch". Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2011. http://d-nb.info/102513513X/34.
Texto completoMatthus, Elsa. "Phosphate starvation alters calcium signalling in roots of Arabidopsis thaliana". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/290260.
Texto completoGualtieri, Charles J. "Sensory Representation of Social Stimuli in Aromatase Expressing Neurons in the Medial Amygdala". 2021. https://scholarworks.umass.edu/masters_theses_2/1050.
Texto completoTurrini, Lapo. "Development of optical methods for real-time whole-brain functional imaging of zebrafish neuronal activity". Doctoral thesis, 2019. http://hdl.handle.net/2158/1152459.
Texto completoGilyan, Andrew. "Optimizing Genetically Encoded Calcium Indicators to Measure Presynaptic Calcium Transients". 2012. http://hdl.handle.net/10222/50610.
Texto completo"Visual Analytics Tool for the Global Change Assessment Model". Master's thesis, 2015. http://hdl.handle.net/2286/R.I.35998.
Texto completoDissertation/Thesis
Masters Thesis Computer Science 2015
Mati, Jacob Mwathi. "Global civil society advocacy alliances and networks in the changing terrain of global governance and development : a critical inquiry into the politics and dynamics in crafting and operations of the Global Action against Poverty (GCAP)". Thesis, 2009. http://hdl.handle.net/10539/6102.
Texto completoLibros sobre el tema "GCaMP"
J, Foose Thomas y IUCN/SSC Captive Breeding Specialist Group., eds. Rhino global captive action plan (GCAP): 1 September 1992. [S.l.]: IUCN/SSC Captive Breeding Specialist Group, 1992.
Buscar texto completoCinzia, Virno, ed. GCAMC: Roma, Galleria comunale d'arte moderna e contemporanea : catalogo generale delle collezioni : autori dell'Ottocento. Roma: F.lli Palombi, 2004.
Buscar texto completoCinzia, Virno y Bonasegale Pittei Giovanna, eds. GCAMC: Roma, Galleria comunale d'arte moderna e contemporanea : catalogo generale delle collezioni : autori dell'Ottocento. Roma: F.lli Palombi, 2004.
Buscar texto completoCapítulos de libros sobre el tema "GCaMP"
Anil Sethi, Anjula Garg, Jan Sacharko, Regina List, Jesse O. Bollinger, Lisiunia Romanienko, Allyson Reaves, David B. Howard et al. "GCAP". En International Encyclopedia of Civil Society, 751. New York, NY: Springer US, 2010. http://dx.doi.org/10.1007/978-0-387-93996-4_9115.
Texto completoBaehr, Wolfgang, Iswari Subbaraya, Wojciech A. Gorczyca y Krzysztof Palczewski. "Guanylate Cyclase-Activating Protein (GCAP)". En Degenerative Diseases of the Retina, 339–47. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1897-6_38.
Texto completoKoch, Karl-Wilhelm. "GCAP (Guanylate Cyclase–Activating Protein)". En Encyclopedia of Signaling Molecules, 2041–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_12.
Texto completoKoch, Karl-Wilhelm. "GCAP (Guanylate Cyclase–Activating Protein)". En Encyclopedia of Signaling Molecules, 1–5. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_12-1.
Texto completoMeigs, Thomas E., Alex Lyakhovich, Hoon Shim, Ching-Kang Chen, Denis J. Dupré, Terence E. Hébert, Joe B. Blumer et al. "GCAP (Guanylate Cyclase–Activating Protein)". En Encyclopedia of Signaling Molecules, 769–73. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_12.
Texto completoAnil Sethi, Anjula Garg, Jan Sacharko, Regina List, Jesse O. Bollinger, Lisiunia Romanienko, Allyson Reaves, David B. Howard et al. "Global Call to Action Against Poverty (GCAP)". En International Encyclopedia of Civil Society, 769–70. New York, NY: Springer US, 2010. http://dx.doi.org/10.1007/978-0-387-93996-4_759.
Texto completoDiaz, Michel, Roberto Canonico, Luis Costa, Serge Fdida, David Hutchison, Laurent Mathy, Andreas Meissner, Stephane Owezarski, Rolland Vida y Lars Wolf. "GCAP: A New Multimedia Multicast Architecture for QoS". En Protocols for Multimedia Systems, 103–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45481-0_9.
Texto completoMendez, Ana y Jeannie Chen. "Mouse Models to Study GCAP Functions In Intact Photoreceptors". En Advances in Experimental Medicine and Biology, 361–88. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0121-3_22.
Texto completoZammali, Saloua, Khedija Arour y Amel Bouzeghoub. "GCAPM: A Generic Context-Aware Model in Peer-to-Peer Environment". En Lecture Notes in Computer Science, 364–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40173-2_29.
Texto completoAmes, B. y Mitsuhiko Ikura. "Structure and Membrane-Targeting Mechanism of Retinal Ca2+-Binding Proteins, Recoverin and GCAP-2". En Advances in Experimental Medicine and Biology, 333–48. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0121-3_20.
Texto completoActas de conferencias sobre el tema "GCaMP"
Hubert, Antoine, Fabrice Harms, Sophia Imperato, Vincent Loriette, Cynthia Veilly, Xavier Levecq, Georges Farkouh, François Rouyer y Alexandra Fragola. "Adaptive Optics Light-Sheet Microscopy for Functional Neuroimaging". En European Conference on Biomedical Optics. Washington, D.C.: Optica Publishing Group, 2021. http://dx.doi.org/10.1364/ecbo.2021.em2b.1.
Texto completoCiuparu, Andrei y Raul C. Muresan. "Jittered sampling - a potential solution for detecting high frequencies in GCaMP recordings". En 2021 IEEE 17th International Conference on Intelligent Computer Communication and Processing (ICCP). IEEE, 2021. http://dx.doi.org/10.1109/iccp53602.2021.9733598.
Texto completoPerez-Zoghbi, J. F., G. T. Yocum y C. W. Emala. "Intracellular Calcium Dynamics in Murine Airway Smooth Muscle Studied with a GCaMP Probe". En American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a4331.
Texto completoZhu, Xiaobo. "Computer Simulation on Global Atmospheric Transport of Mercury by GEOS-Chem/GCAP". En 2018 3rd International Conference on Modelling, Simulation and Applied Mathematics (MSAM 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/msam-18.2018.21.
Texto completoBrondi, Marco, Manuel Molano-Mazón, Stefano Panzeri y Tommaso Fellin. "High Accuracy Two-Photon Population Imaging of GCaMP6 Signals with Fast Smart Line Scan". En Optics and the Brain. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/brain.2018.bw2c.5.
Texto completoNajafizadeh, Laleh, David Margolis, Li Zhu y Christian Lee. "Probing the dynamics of spontaneous cortical activities via widefield Ca+2 imaging in GCaMP6 transgenic mice". En Wavelets and Sparsity XVII, editado por Yue M. Lu, Manos Papadakis y Dimitri Van De Ville. SPIE, 2017. http://dx.doi.org/10.1117/12.2274119.
Texto completoWang, Tianyu, Dimitre G. Ouzounov, Mengran Wang, Danielle Feng, Jean C. Cruz-Hernandez, Jacob Reimer, Andreas Tolias, Nozomi Nishimura y Chris Xu. "In vivo three-photon activity imaging of GCaMP6-labeled neurons in deep cortex and the hippocampus of the mouse brain". En SPIE BiOS, editado por Ammasi Periasamy, Peter T. C. So, Karsten König y Xiaoliang S. Xie. SPIE, 2017. http://dx.doi.org/10.1117/12.2251220.
Texto completoFutia, Gregory L., Arjun Fontaine, Samuel Littich, Connor McCullough, Diego Restrepo, Richard Weir, John Caldwell y Emily A. Gibson. "In vivo holographic photo-stimulation and two photon GCaMP6 imaging of vagus nerve axons using a GRIN lens integrated nerve cuff". En Optogenetics and Optical Manipulation 2019, editado por Samarendra K. Mohanty y E. Duco Jansen. SPIE, 2019. http://dx.doi.org/10.1117/12.2521830.
Texto completoLazarou, Stavros, Christos Christodoulou y Vasiliki Vita. "Global Change Assessment Model (GCAM) considerations of the primary sources energy mix for an energetic scenario that could meet Paris agreement". En 2019 54th International Universities Power Engineering Conference (UPEC). IEEE, 2019. http://dx.doi.org/10.1109/upec.2019.8893507.
Texto completoInformes sobre el tema "GCaMP"
Smith, S. J., A. H. Mizrahi, J. F. Karas y M. Nathan. US Renewable Futures in the GCAM. Office of Scientific and Technical Information (OSTI), octubre de 2011. http://dx.doi.org/10.2172/1219303.
Texto completoSmith, Steven J., Andrew H. Mizrahi, Joseph F. Karas y Mayda Nathan. US Renewable Futures in the GCAM. Office of Scientific and Technical Information (OSTI), octubre de 2011. http://dx.doi.org/10.2172/1027702.
Texto completoDooley, James J. y Yuyu Zhou. Explicitly Accounting for Protected Lands within the GCAM 3.0. Office of Scientific and Technical Information (OSTI), mayo de 2012. http://dx.doi.org/10.2172/1068653.
Texto completoSmith, Steven J., April C. Volke y Sabrina Delgado Arias. Enhancement of Solar Energy Representation in the GCAM Model. Office of Scientific and Technical Information (OSTI), febrero de 2010. http://dx.doi.org/10.2172/1033089.
Texto completoKyle, G. Page, Patrick Luckow, Katherine V. Calvin, William R. Emanuel, Mayda Nathan y Yuyu Zhou. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods. Office of Scientific and Technical Information (OSTI), diciembre de 2011. http://dx.doi.org/10.2172/1036082.
Texto completoHannam, Phil, G. Page Kyle y Steven J. Smith. Global Deployment of Geothermal Energy Using a New Characterization in GCAM 1.0. Office of Scientific and Technical Information (OSTI), septiembre de 2009. http://dx.doi.org/10.2172/991595.
Texto completoEdmonds, J. A., M. A. Wise y C. N. MacCracken. ADVANCED ENERGY TECHNOLOGIES AND CLIMATE CHANGE: AN ANALYSIS USING THE GLOBAL CHANGE ASSESSMENT MODEL (GCAM). Office of Scientific and Technical Information (OSTI), mayo de 1994. http://dx.doi.org/10.2172/1127203.
Texto completoBinsted, Matthew, Harry Suchyta, Ying Zhang, Laura Vimmerstedt, Matt Mowers, Catherine Ledna, Matteo Muratori y Chioke Harris. Renewable Energy and Efficiency Technologies in Scenarios of U.S. Decarbonization in Two Types of Models: Comparison of GCAM Modeling and Sector-Specific Modeling. Office of Scientific and Technical Information (OSTI), diciembre de 2022. http://dx.doi.org/10.2172/1903177.
Texto completo