Artículos de revistas sobre el tema "Generative sequence models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Generative sequence models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Wang, Yongkang, Xuan Liu, Feng Huang, Zhankun Xiong, and Wen Zhang. "A Multi-Modal Contrastive Diffusion Model for Therapeutic Peptide Generation." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 1 (2024): 3–11. http://dx.doi.org/10.1609/aaai.v38i1.27749.
Texto completoWu, Zachary, Kadina E. Johnston, Frances H. Arnold, and Kevin K. Yang. "Protein sequence design with deep generative models." Current Opinion in Chemical Biology 65 (December 2021): 18–27. http://dx.doi.org/10.1016/j.cbpa.2021.04.004.
Texto completoAkl, Hoda, Brooke Emison, Xiaochuan Zhao, Arup Mondal, Alberto Perez, and Purushottam D. Dixit. "GENERALIST: A latent space based generative model for protein sequence families." PLOS Computational Biology 19, no. 11 (2023): e1011655. http://dx.doi.org/10.1371/journal.pcbi.1011655.
Texto completoFeinauer, Christoph, Barthelemy Meynard-Piganeau, and Carlo Lucibello. "Interpretable pairwise distillations for generative protein sequence models." PLOS Computational Biology 18, no. 6 (2022): e1010219. http://dx.doi.org/10.1371/journal.pcbi.1010219.
Texto completoWon, K. J., C. Saunders, and A. Prügel-Bennett. "Evolving Fisher Kernels for Biological Sequence Classification." Evolutionary Computation 21, no. 1 (2013): 83–105. http://dx.doi.org/10.1162/evco_a_00065.
Texto completoLiu, Yitian, and Zhouhui Lian. "DeepCalliFont: Few-Shot Chinese Calligraphy Font Synthesis by Integrating Dual-Modality Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 4 (2024): 3774–82. http://dx.doi.org/10.1609/aaai.v38i4.28168.
Texto completoSafranchik, Esteban, Shiying Luo, and Stephen Bach. "Weakly Supervised Sequence Tagging from Noisy Rules." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 5570–78. http://dx.doi.org/10.1609/aaai.v34i04.6009.
Texto completoPolceanu, Mihai, Julie Porteous, Alan Lindsay, and Marc Cavazza. "Narrative Plan Generation with Self-Supervised Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 7 (2021): 5984–92. http://dx.doi.org/10.1609/aaai.v35i7.16747.
Texto completoZhang, Zhiyuan, and Zhanshan Wang. "Multi-Objective Prediction of Integrated Energy System Using Generative Tractive Network." Mathematics 11, no. 20 (2023): 4350. http://dx.doi.org/10.3390/math11204350.
Texto completoHawkins-Hooker, Alex, Florence Depardieu, Sebastien Baur, Guillaume Couairon, Arthur Chen, and David Bikard. "Generating functional protein variants with variational autoencoders." PLOS Computational Biology 17, no. 2 (2021): e1008736. http://dx.doi.org/10.1371/journal.pcbi.1008736.
Texto completoTang, Fangfang, Mengyuan Ren, Xiaofan Li, Zhanglin Lin, and Xiaofeng Yang. "Generating Novel and Soluble Class II Fructose-1,6-Bisphosphate Aldolase with ProteinGAN." Catalysts 13, no. 12 (2023): 1457. http://dx.doi.org/10.3390/catal13121457.
Texto completoLu, Zhengdong, Todd K. Leen, and Jeffrey Kaye. "Kernels for Longitudinal Data with Variable Sequence Length and Sampling Intervals." Neural Computation 23, no. 9 (2011): 2390–420. http://dx.doi.org/10.1162/neco_a_00164.
Texto completoPhilip, Philemon, and Sidra Minhas. "A Brief Survey on Natural Language Processing Based Text Generation and Evaluation Techniques." VFAST Transactions on Software Engineering 10, no. 3 (2022): 24–36. http://dx.doi.org/10.21015/vtse.v10i3.1104.
Texto completoBitard-Feildel, Tristan. "Navigating the amino acid sequence space between functional proteins using a deep learning framework." PeerJ Computer Science 7 (September 17, 2021): e684. http://dx.doi.org/10.7717/peerj-cs.684.
Texto completoRamakers, Julius, Christopher Frederik Blum, Sabrina König, Stefan Harmeling, and Markus Kollmann. "De novo prediction of RNA 3D structures with deep generative models." PLOS ONE 19, no. 2 (2024): e0297105. http://dx.doi.org/10.1371/journal.pone.0297105.
Texto completoHazra, Debapriya, Mi-Ryung Kim, and Yung-Cheol Byun. "Generative Adversarial Networks for Creating Synthetic Nucleic Acid Sequences of Cat Genome." International Journal of Molecular Sciences 23, no. 7 (2022): 3701. http://dx.doi.org/10.3390/ijms23073701.
Texto completoZhang, Zhaohui, Lijun Yang, Ligong Chen, et al. "A generative adversarial network–based method for generating negative financial samples." International Journal of Distributed Sensor Networks 16, no. 2 (2020): 155014772090705. http://dx.doi.org/10.1177/1550147720907053.
Texto completoShen, Xiaojuan, Tao Zeng, Nianhang Chen, Jiabo Li, and Ruibo Wu. "NIMO: A Natural Product-Inspired Molecular Generative Model Based on Conditional Transformer." Molecules 29, no. 8 (2024): 1867. http://dx.doi.org/10.3390/molecules29081867.
Texto completoXuan, Bona, Jin Li, and Yafei Song. "SFCWGAN-BiTCN with Sequential Features for Malware Detection." Applied Sciences 13, no. 4 (2023): 2079. http://dx.doi.org/10.3390/app13042079.
Texto completoTruong, Thanh-Dat, Chi Nhan Duong, Minh-Triet Tran, Ngan Le, and Khoa Luu. "Fast Flow Reconstruction via Robust Invertible n × n Convolution." Future Internet 13, no. 7 (2021): 179. http://dx.doi.org/10.3390/fi13070179.
Texto completoYou, Yuyang, Xiaoyu Guo, Xuyang Zhong, and Zhihong Yang. "A Few-Shot Learning-Based EEG and Stage Transition Sequence Generator for Improving Sleep Staging Performance." Biomedicines 10, no. 12 (2022): 3006. http://dx.doi.org/10.3390/biomedicines10123006.
Texto completoWang, Zhenyi, Ping Yu, Yang Zhao, et al. "Learning Diverse Stochastic Human-Action Generators by Learning Smooth Latent Transitions." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 07 (2020): 12281–88. http://dx.doi.org/10.1609/aaai.v34i07.6911.
Texto completoKim, Ha Young, and Dongsup Kim. "Prediction of mutation effects using a deep temporal convolutional network." Bioinformatics 36, no. 7 (2019): 2047–52. http://dx.doi.org/10.1093/bioinformatics/btz873.
Texto completoHärkönen, Erik, Miika Aittala, Tuomas Kynkäänniemi, Samuli Laine, Timo Aila, and Jaakko Lehtinen. "Disentangling random and cyclic effects in time-lapse sequences." ACM Transactions on Graphics 41, no. 4 (2022): 1–13. http://dx.doi.org/10.1145/3528223.3530170.
Texto completoWilburn, Grey W., and Sean R. Eddy. "Remote homology search with hidden Potts models." PLOS Computational Biology 16, no. 11 (2020): e1008085. http://dx.doi.org/10.1371/journal.pcbi.1008085.
Texto completoHu, Yijia. "Performance exploration of Generative Pre-trained Transformer-2 for lyrics generation." Applied and Computational Engineering 48, no. 1 (2024): 53–60. http://dx.doi.org/10.54254/2755-2721/48/20241154.
Texto completoNguyen, Viet, Giang Vu, Tung Nguyen Thanh, Khoat Than, and Toan Tran. "On Inference Stability for Diffusion Models." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 13 (2024): 14449–56. http://dx.doi.org/10.1609/aaai.v38i13.29359.
Texto completoLi, Shuyu, and Yunsick Sung. "Transformer-Based Seq2Seq Model for Chord Progression Generation." Mathematics 11, no. 5 (2023): 1111. http://dx.doi.org/10.3390/math11051111.
Texto completoZAKI, NAZAR M., SAFAAI DERIS, and ROSLI M. ILLIAS. "FEATURES EXTRACTION FOR PROTEIN HOMOLOGY DETECTION USING HIDDEN MARKOV MODELS COMBINING SCORES." International Journal of Computational Intelligence and Applications 04, no. 01 (2004): 1–12. http://dx.doi.org/10.1142/s1469026804001161.
Texto completoIsacchini, Giulio, Aleksandra M. Walczak, Thierry Mora, and Armita Nourmohammad. "Deep generative selection models of T and B cell receptor repertoires with soNNia." Proceedings of the National Academy of Sciences 118, no. 14 (2021): e2023141118. http://dx.doi.org/10.1073/pnas.2023141118.
Texto completoWang, Chuantao, Xuexin Yang, and Linkai Ding. "Imbalanced sentiment classification based on sequence generative adversarial nets." Journal of Intelligent & Fuzzy Systems 39, no. 5 (2020): 7909–19. http://dx.doi.org/10.3233/jifs-201370.
Texto completoStokes, James, and John Terilla. "Probabilistic Modeling with Matrix Product States." Entropy 21, no. 12 (2019): 1236. http://dx.doi.org/10.3390/e21121236.
Texto completoWang, Xun, Changnan Gao, Peifu Han, et al. "PETrans: De Novo Drug Design with Protein-Specific Encoding Based on Transfer Learning." International Journal of Molecular Sciences 24, no. 2 (2023): 1146. http://dx.doi.org/10.3390/ijms24021146.
Texto completoWu, Shaohan, Jingfeng Xue, Yong Wang, and Zixiao Kong. "Black-Box Evasion Attack Method Based on Confidence Score of Benign Samples." Electronics 12, no. 11 (2023): 2346. http://dx.doi.org/10.3390/electronics12112346.
Texto completoRuss, William P., Matteo Figliuzzi, Christian Stocker, et al. "An evolution-based model for designing chorismate mutase enzymes." Science 369, no. 6502 (2020): 440–45. http://dx.doi.org/10.1126/science.aba3304.
Texto completoChen, Yunjie, Marius Staring, Olaf M. Neve, et al. "CoNeS: Conditional neural fields with shift modulation for multi-sequence MRI translation." Machine Learning for Biomedical Imaging 2, Generative Models (2024): 657–85. http://dx.doi.org/10.59275/j.melba.2024-d61g.
Texto completoQi, Jingyuan, Minqian Liu, Ying Shen, Zhiyang Xu, and Lifu Huang. "MULTISCRIPT: Multimodal Script Learning for Supporting Open Domain Everyday Tasks." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 17 (2024): 18888–96. http://dx.doi.org/10.1609/aaai.v38i17.29854.
Texto completoLiu, Danyang, Juntao Li, Meng-Hsuan Yu, et al. "A Character-Centric Neural Model for Automated Story Generation." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 02 (2020): 1725–32. http://dx.doi.org/10.1609/aaai.v34i02.5536.
Texto completoTubiana, Jérôme, Lucia Adriana-Lifshits, Michael Nissan, et al. "Funneling modulatory peptide design with generative models: Discovery and characterization of disruptors of calcineurin protein-protein interactions." PLOS Computational Biology 19, no. 2 (2023): e1010874. http://dx.doi.org/10.1371/journal.pcbi.1010874.
Texto completoShen, Kevin. "Multi-world Model in Continual Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 21 (2024): 23757–59. http://dx.doi.org/10.1609/aaai.v38i21.30555.
Texto completoVaškevičius, Mantas, Jurgita Kapočiūtė-Dzikienė, and Liudas Šlepikas. "Generative LLMs in Organic Chemistry: Transforming Esterification Reactions into Natural Language Procedures." Applied Sciences 13, no. 24 (2023): 13140. http://dx.doi.org/10.3390/app132413140.
Texto completoMarocco, Paolo, and Roberto Gigliucci. "An Investigation about Entailment and Narrative by AI Techniques (Generative Models)." Communication, Society and Media 3, no. 4 (2020): p61. http://dx.doi.org/10.22158/csm.v3n4p61.
Texto completoLee, Sangho, Hayun Lee, and Dongkun Shin. "Proxyformer: Nyström-Based Linear Transformer with Trainable Proxy Tokens." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 12 (2024): 13418–26. http://dx.doi.org/10.1609/aaai.v38i12.29244.
Texto completoLEE, CHAN-SU, and DIMITRIS SAMARAS. "ANALYSIS AND CONTROL OF FACIAL EXPRESSIONS USING DECOMPOSABLE NONLINEAR GENERATIVE MODELS." International Journal of Pattern Recognition and Artificial Intelligence 28, no. 05 (2014): 1456009. http://dx.doi.org/10.1142/s0218001414560096.
Texto completoLiu, Zuozhu, Thiparat Chotibut, Christopher Hillar, and Shaowei Lin. "Biologically Plausible Sequence Learning with Spiking Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 02 (2020): 1316–23. http://dx.doi.org/10.1609/aaai.v34i02.5487.
Texto completoZhou, Kun, Wenyong Wang, Teng Hu, and Kai Deng. "Time Series Forecasting and Classification Models Based on Recurrent with Attention Mechanism and Generative Adversarial Networks." Sensors 20, no. 24 (2020): 7211. http://dx.doi.org/10.3390/s20247211.
Texto completoWang, Yi. "Intelligent auxiliary system for music performance under edge computing and long short-term recurrent neural networks." PLOS ONE 18, no. 5 (2023): e0285496. http://dx.doi.org/10.1371/journal.pone.0285496.
Texto completoLi, Longyuan, Jihai Zhang, Junchi Yan, et al. "Synergetic Learning of Heterogeneous Temporal Sequences for Multi-Horizon Probabilistic Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (2021): 8420–28. http://dx.doi.org/10.1609/aaai.v35i10.17023.
Texto completoMurad, Taslim, Sarwan Ali, and Murray Patterson. "Exploring the Potential of GANs in Biological Sequence Analysis." Biology 12, no. 6 (2023): 854. http://dx.doi.org/10.3390/biology12060854.
Texto completoTrinquier, Jeanne, Guido Uguzzoni, Andrea Pagnani, Francesco Zamponi, and Martin Weigt. "Efficient generative modeling of protein sequences using simple autoregressive models." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-25756-4.
Texto completo