Literatura académica sobre el tema "Gevrey classes"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Gevrey classes".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Gevrey classes"
Hua, Chen y Luigi Rodino. "Paradifferential calculus in Gevrey classes". Journal of Mathematics of Kyoto University 41, n.º 1 (2001): 1–31. http://dx.doi.org/10.1215/kjm/1250517647.
Texto completoKajitani, Kunihiko y Seiichiro Wakabayashi. "Microhyperbolic operators in Gevrey classes". Publications of the Research Institute for Mathematical Sciences 25, n.º 2 (1989): 169–221. http://dx.doi.org/10.2977/prims/1195173608.
Texto completoColombini, Ferruccio, Nicola Orrù y Giovanni Taglialatela. "Strong hyperbolicity in Gevrey classes". Journal of Differential Equations 272 (enero de 2021): 222–54. http://dx.doi.org/10.1016/j.jde.2020.09.033.
Texto completoLascar, Bernard y Richard Lascar. "FBI transforms in Gevrey classes". Journal d'Analyse Mathématique 72, n.º 1 (diciembre de 1997): 105–25. http://dx.doi.org/10.1007/bf02843155.
Texto completoCalvo, Daniela, Alessandro Morando y Luigi Rodino. "Inhomogeneous Gevrey classes and ultradistributions". Journal of Mathematical Analysis and Applications 297, n.º 2 (septiembre de 2004): 720–39. http://dx.doi.org/10.1016/j.jmaa.2004.04.043.
Texto completoCalvo, Daniela y María del Carmen Gómez-Collado. "On some generalizations of Gevrey classes". Mathematische Nachrichten 284, n.º 7 (6 de abril de 2011): 856–74. http://dx.doi.org/10.1002/mana.200910840.
Texto completoYonemura, Akiyoshi. "Newton polygons and formal Gevrey classes". Publications of the Research Institute for Mathematical Sciences 26, n.º 1 (1990): 197–204. http://dx.doi.org/10.2977/prims/1195171666.
Texto completoJannelli, Enrico. "Regularly hyperbolic systems and Gevrey classes". Annali di Matematica Pura ed Applicata 140, n.º 1 (diciembre de 1985): 133–45. http://dx.doi.org/10.1007/bf01776846.
Texto completoAlbanese, Angela A., Andrea Corli y Luigi Rodino. "Hypoellipticity and Local Solvability in Gevrey Classes". Mathematische Nachrichten 242, n.º 1 (julio de 2002): 5–16. http://dx.doi.org/10.1002/1522-2616(200207)242:1<5::aid-mana5>3.0.co;2-e.
Texto completoKAJITANI, Kunihiko y Seiichiro WAKABAYASHI. "The hyperbolic mixed problem in Gevrey classes". Japanese journal of mathematics. New series 15, n.º 2 (1989): 309–83. http://dx.doi.org/10.4099/math1924.15.309.
Texto completoTesis sobre el tema "Gevrey classes"
Rodrigues, Nicholas Braun. "Classes de Gevrey em grupos de Lie compactos e aplicações". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23082016-201051/.
Texto completoIn this work we study the Gevrey class of functions and ultrudistribuitions on compact Lie groups, which is the most natural generalization of the torus in the context of Fourier analysis. For such we used the theory of Gevrey vectors. We get a characterization of such class by the behaviour of the Fourier transform, as in [DR14], using the Laplace-Beltrami operator associated to a specific metric. At the end we give an aplication of this characterization in a global hypoellipticity problem as in [GW73].
Jahnke, Max Reinhold. "A equação de Euler e a análise assintótica de Gevrey". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-07022014-205830/.
Texto completoIn this work, we introduce the notion of Gevrey asymptotic expansion and we show how the classical concept of a convergent power series can be generalized to include the case in which the radius of convergence is zero. This technique can be useful in situations where it is necessary to work with formal power series, as in the study of Differential Equations. We characterize the set of holomorphic functions which admit Gevrey asymptotic expansion and we define in each Gevrey class a map that associates to function in the class a formal series. We determine under which conditions such a map is surjective and under which it is injective, allowing the extension of the concept of convergence and applications of the theory. Furthermore, we show how this technique can be used to obtain results in Differential Equations. For this, we briefly recall the theory of Differential Equations in one complex variable and we introduce the concept of the Newton Polygon, a tool that allows us to find the Gevrey class of a formal solution. Finally, we find suficient conditions for the sum of a formal solution of a differential equation to be a classical solution.
Coelho, Laurencie Salles. "Regularidade global Gevrey das soluções de certas classes de operadores parciais lineares de primeira ordem". Universidade Federal de São Carlos, 2004. https://repositorio.ufscar.br/handle/ufscar/5851.
Texto completoFinanciadora de Estudos e Projetos
In this work we study global Gevrey hypoellipticity on the Euclidean 2-space R² for a class of first order linear partial differential operators with coeffcients in Cw2χ (R). Necessary and suffcient conditions for global Gevrey hypoellipticity are proposed.
Neste trabalho estudamos a Hipoeliticidade Global Gevrey em R² para uma classe de operadores diferenciais parciais lineares de 1ª ordem, com coeficientes em Cw2χ (R)Condições necessárias e suficientes para a Hipoeliticidade Global Gevrey são propostas.
Thilliez, Vincent. "Classes de Gevrey non isotropes et interpolation dans les domaines de type fini de C2". Paris 11, 1991. http://www.theses.fr/1991PA112114.
Texto completoGalstian, Anahit y Karen Yagdjian. "Exponential function of pseudo-differential operators". Universität Potsdam, 1997. http://opus.kobv.de/ubp/volltexte/2008/2498/.
Texto completoAbabou-Boumaâz, Rachida. "Ensembles de zéros et ensembles pics pour des classes de fonctions holomorphes dans des domaines strictement pseudoconvexes de Cⁿ". Paris 11, 1985. http://www.theses.fr/1985PA112357.
Texto completoIn this thesis, a sufficient condition is given for a closed boundary subset E of a strictly pseudoconvex domain D in ₵ⁿ to be a zero set for a function in G ₁₊₁/α (D), 0 < α < 1, the class of functions holomorphic in D, satisfying a Gevrey condition of index 1 + 1/α in D̅ and a peak set for Lipα(D), 0 < α < 1, the class of functions holomorphic in D, satisfying a Lipschitz condition of order α in D̅. This condition generalizes result of S. V. Kruscev and J. Bruna and bans the simply expressed in terms of the lengths of radius of pseudo-balls of a Whitney covering of δ D\E
Beaugendre, Pascal. "Intersections de classes non quasi-analytiques". Phd thesis, Université Paris Sud - Paris XI, 2002. http://tel.archives-ouvertes.fr/tel-00001335.
Texto completoFilip, Tomić. "A new type of regularity with applications to the wave front sets". Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2016. https://www.cris.uns.ac.rs/record.jsf?recordId=101444&source=NDLTD&language=en.
Texto completoU ovoj tezi definišemo novu klasu glatkih funkcija i izučavamo njihove osnovne osobine. Pokazujemo da naše klase imaju svojsto algebre kao i da su zatvorene u odnosu na delovanje operatora izvoda konačnog reda.Sta više, konstruišemo diferencijalne operatore beskonačnog reda i to nas dovodi do definicije ultradiferencijabilnih klasa funkcija. Takode dokazujemo osobinu zatvorenosti u odnosu na inverze, i taj rezultat je najvažniji deo u dokazu glavne teoreme koja je formulisana u poslednjoj glavi. Koristeći tehnike mikrolokalne analize, uvodimo i izučavamo odgovarajuće talasne frontove, i pokazujemo odgovarajuća tvrdjenja vezana za singularni nosač distribucije. Naš glavni rezultat pokazuje kako se prostiru singulariteti rešenja linearnih parcijalnih diferencijalnih jednačina u okviru naše regularnosti.
Marques, Jorge Manuel da Silva. "Problemas de Goursat em classes de Gevrey". Doctoral thesis, 2007. http://hdl.handle.net/10316/455.
Texto completoLibros sobre el tema "Gevrey classes"
Capítulos de libros sobre el tema "Gevrey classes"
Liess, Otto y Luigi Rodino. "Microlocal analysis for inhomogeneous gevrey classes". En Lecture Notes in Mathematics, 270–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0100799.
Texto completoNishitani, Tatsuo. "Cauchy Problem in the Gevrey Classes". En Lecture Notes in Mathematics, 149–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67612-8_7.
Texto completoGourdin, Daniel y Mustapha Mechab. "A Global Cauchy—Kowalewski Theorem in Some Gevrey Classes". En Partial Differential Equations and Mathematical Physics, 97–104. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0011-6_8.
Texto completoKomatsu, Hikosaburo. "Microlocal analysis in gevrey classes and in complex domains". En Microlocal Analysis and Applications, 161–236. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0085124.
Texto completoMizohata, Sigeru. "On the cauchy problem for hyperbolic equations in C∞ and gevrey classes". En Lecture Notes in Mathematics, 197–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0100793.
Texto completoKomatsu, Hikosaburo. "The Necessity of the Irregularity Condition for Solvability in Gevrey Classes (s) and {s}". En Advances in Microlocal Analysis, 151–64. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4606-4_6.
Texto completoPopivanov, P. R. "Gevrey and Analytic Properties of the Solutions of Several Classes of Partial Differential Equations". En Partial Differential Equations and Spectral Theory, 245–50. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8231-6_28.
Texto completoSpagnolo, Sergio. "Some Existence, Uniqueness, and Non-Uniqueness Results for Weakly Hyperbolic Equations in the Gevrey Classes". En Dynamical Problems in Continuum Physics, 311–21. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-1058-0_16.
Texto completo"BASIC PROBLEMS AND BASIC OPERATORS IN GEVREY CLASSES". En Linear Partial Differential Operators in Gevrey Spaces, 60–111. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814360036_0003.
Texto completo"Chapter 6. Well-posedness in the Gevrey classes". En Mathematical Society of Japan Memoirs, 91–119. Tokyo, Japan: The Mathematical Society of Japan, 2013. http://dx.doi.org/10.2969/msjmemoirs/03001c060.
Texto completoActas de conferencias sobre el tema "Gevrey classes"
CALVO, D. "CAUCHY PROBLEM IN INHOMOGENEOUS GEVREY CLASSES". En Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0118.
Texto completoCalvo, Daniela. "Cauchy problem in generalized Gevrey classes". En Evolution Equations Propagation Phenomena - Global Existence - Influence of Non-Linearities. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc60-0-21.
Texto completoNussbaum, Roger y Gabriella Vas. "Gevrey class regularity for analytic differential-delay equations". En The 10'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2016. http://dx.doi.org/10.14232/ejqtde.2016.8.17.
Texto completo