Literatura académica sobre el tema "Gevrey classes"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Gevrey classes".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Gevrey classes"

1

Hua, Chen y Luigi Rodino. "Paradifferential calculus in Gevrey classes". Journal of Mathematics of Kyoto University 41, n.º 1 (2001): 1–31. http://dx.doi.org/10.1215/kjm/1250517647.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kajitani, Kunihiko y Seiichiro Wakabayashi. "Microhyperbolic operators in Gevrey classes". Publications of the Research Institute for Mathematical Sciences 25, n.º 2 (1989): 169–221. http://dx.doi.org/10.2977/prims/1195173608.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Colombini, Ferruccio, Nicola Orrù y Giovanni Taglialatela. "Strong hyperbolicity in Gevrey classes". Journal of Differential Equations 272 (enero de 2021): 222–54. http://dx.doi.org/10.1016/j.jde.2020.09.033.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lascar, Bernard y Richard Lascar. "FBI transforms in Gevrey classes". Journal d'Analyse Mathématique 72, n.º 1 (diciembre de 1997): 105–25. http://dx.doi.org/10.1007/bf02843155.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Calvo, Daniela, Alessandro Morando y Luigi Rodino. "Inhomogeneous Gevrey classes and ultradistributions". Journal of Mathematical Analysis and Applications 297, n.º 2 (septiembre de 2004): 720–39. http://dx.doi.org/10.1016/j.jmaa.2004.04.043.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Calvo, Daniela y María del Carmen Gómez-Collado. "On some generalizations of Gevrey classes". Mathematische Nachrichten 284, n.º 7 (6 de abril de 2011): 856–74. http://dx.doi.org/10.1002/mana.200910840.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Yonemura, Akiyoshi. "Newton polygons and formal Gevrey classes". Publications of the Research Institute for Mathematical Sciences 26, n.º 1 (1990): 197–204. http://dx.doi.org/10.2977/prims/1195171666.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jannelli, Enrico. "Regularly hyperbolic systems and Gevrey classes". Annali di Matematica Pura ed Applicata 140, n.º 1 (diciembre de 1985): 133–45. http://dx.doi.org/10.1007/bf01776846.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Albanese, Angela A., Andrea Corli y Luigi Rodino. "Hypoellipticity and Local Solvability in Gevrey Classes". Mathematische Nachrichten 242, n.º 1 (julio de 2002): 5–16. http://dx.doi.org/10.1002/1522-2616(200207)242:1<5::aid-mana5>3.0.co;2-e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

KAJITANI, Kunihiko y Seiichiro WAKABAYASHI. "The hyperbolic mixed problem in Gevrey classes". Japanese journal of mathematics. New series 15, n.º 2 (1989): 309–83. http://dx.doi.org/10.4099/math1924.15.309.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Gevrey classes"

1

Rodrigues, Nicholas Braun. "Classes de Gevrey em grupos de Lie compactos e aplicações". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23082016-201051/.

Texto completo
Resumen
Nesse trabalho estudamos as classes de Gevrey e as ultradistribuições em grupos de Lie compactos, que é a generalização natural do toro no contexto de análise de Fourier. Para tal utilizamos a teoria de vetores Gevrey. Fazemos a caracterização dessas classes via o comportamento da transformada de Fourier como em [DR14], utilizando o operador de Laplace-Beltrami associado à uma métrica específica. Por final fazemos uma aplicação dessa caracterização em um problema de hipoelipticidade global como em [GW73].
In this work we study the Gevrey class of functions and ultrudistribuitions on compact Lie groups, which is the most natural generalization of the torus in the context of Fourier analysis. For such we used the theory of Gevrey vectors. We get a characterization of such class by the behaviour of the Fourier transform, as in [DR14], using the Laplace-Beltrami operator associated to a specific metric. At the end we give an aplication of this characterization in a global hypoellipticity problem as in [GW73].
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Jahnke, Max Reinhold. "A equação de Euler e a análise assintótica de Gevrey". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-07022014-205830/.

Texto completo
Resumen
Neste trabalho, introduzimos a noção de desenvolvimento assintótico em classes de Gevrey e mostramos como o conceito clássico de convergência de séries de potências pode ser generalizado para englobar o caso em que o raio de convergência é nulo. Essa técnica pode ser útil em situações em que é necessário trabalhar com séries formais, como no estudo de Equações Diferenciais. Caracterizamos o conjunto das funções holomorfas que admitem desenvolvimento assintótico e, em cada classe de Gevrey, definimos uma aplicação que associa uma função a uma série formal. Determinamos sob quais condições tal aplicação é sobrejetora e sob quais ela é injetora, possibilitando a ampliação do conceito de convergência e as aplicações da teoria. Além disso, mostramos como essa técnica pode ser usada para obter resultados em equações diferenciais. Para isso, fazemos uma breve introdução de Equações Diferenciais com uma variável complexa e introduzimos o conceito de Polígono de Newton, ferramenta que permite obter a classe de Gevrey de uma solução formal. Finalmente, encontramos condições para que a soma de uma solução formal de uma equação diferencial seja uma solução clássica.
In this work, we introduce the notion of Gevrey asymptotic expansion and we show how the classical concept of a convergent power series can be generalized to include the case in which the radius of convergence is zero. This technique can be useful in situations where it is necessary to work with formal power series, as in the study of Differential Equations. We characterize the set of holomorphic functions which admit Gevrey asymptotic expansion and we define in each Gevrey class a map that associates to function in the class a formal series. We determine under which conditions such a map is surjective and under which it is injective, allowing the extension of the concept of convergence and applications of the theory. Furthermore, we show how this technique can be used to obtain results in Differential Equations. For this, we briefly recall the theory of Differential Equations in one complex variable and we introduce the concept of the Newton Polygon, a tool that allows us to find the Gevrey class of a formal solution. Finally, we find suficient conditions for the sum of a formal solution of a differential equation to be a classical solution.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Coelho, Laurencie Salles. "Regularidade global Gevrey das soluções de certas classes de operadores parciais lineares de primeira ordem". Universidade Federal de São Carlos, 2004. https://repositorio.ufscar.br/handle/ufscar/5851.

Texto completo
Resumen
Made available in DSpace on 2016-06-02T20:28:23Z (GMT). No. of bitstreams: 1 DissLSC.pdf: 406749 bytes, checksum: f0ce9d3a9cc67b804cde4ea5a3282268 (MD5) Previous issue date: 2004-01-01
Financiadora de Estudos e Projetos
In this work we study global Gevrey hypoellipticity on the Euclidean 2-space R² for a class of first order linear partial differential operators with coeffcients in Cw2χ (R). Necessary and suffcient conditions for global Gevrey hypoellipticity are proposed.
Neste trabalho estudamos a Hipoeliticidade Global Gevrey em R² para uma classe de operadores diferenciais parciais lineares de 1ª ordem, com coeficientes em Cw2χ (R)Condições necessárias e suficientes para a Hipoeliticidade Global Gevrey são propostas.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Thilliez, Vincent. "Classes de Gevrey non isotropes et interpolation dans les domaines de type fini de C2". Paris 11, 1991. http://www.theses.fr/1991PA112114.

Texto completo
Resumen
Au voisinage d'un point p de type fini m sur le bord d'un domaine d du plan complexe de dimension deux, on definit une classe de gevrey non isotrope qui contient les fonctions holomorphes satisfaisant des conditions de gevrey usuelles d'ordre donne. Dans ce but, des outils geometriques fins sont construits. On etablit pour cette classe une formule de taylor specifique. On definit aussi, pour une partie compacte e du bord de d, situee dans un voisinage convenable de p et dont les points sont tous de type m, une classe de jets gevrey non isotropes pour laquelle on prouve un theoreme d'extension de type whitney. Ensuite on suppose d pseudoconvexe et on donne des conditions suffisantes pour que e soit un ensemble d'interpolation a l'ordre infini pour les fonctions holomorphes d'une classe de gevrey usuelle donnee
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Galstian, Anahit y Karen Yagdjian. "Exponential function of pseudo-differential operators". Universität Potsdam, 1997. http://opus.kobv.de/ubp/volltexte/2008/2498/.

Texto completo
Resumen
The paper is devoted to the construction of the exponential function of a matrix pseudo-differential operator which do not satisfy any of the known theorems (see, Sec.8 Ch.VIII and Sec.2 Ch.XI of [17]). The applications to the construction of the fundamental solution for the Cauchy problem for the hyperbolic operators with the characteristics of variable multiplicity are given, too.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ababou-Boumaâz, Rachida. "Ensembles de zéros et ensembles pics pour des classes de fonctions holomorphes dans des domaines strictement pseudoconvexes de Cⁿ". Paris 11, 1985. http://www.theses.fr/1985PA112357.

Texto completo
Resumen
Dans cette thèse, on donne une condition suffisante pour qu’un sous-ensemble fermé E de la frontière d’un domaine D strictement pseudoconvexe dans ₵ⁿ soit à la fois l’ensemble des zéros d’une fonction de G ₁₊₁/α (D), 0 < α < 1, la classe des fonctions holomorphes dans D vérifiant une condition de Gevrey d’indice 1 + 1/α dans D̅ et un ensemble pic pour Lipα(D), 0 < α < 1, la classe des fonctions holomorphes dans D vérifiant une condition de Lipschitz d’ordre α dans D̅. Cette condition généralise des travaux de S. V. Kruscev et de J. Bruna et s’exprime simplement en termes de longueurs des rayons de pseudo-boules d’un recouvrement de type Whitney de δ D\E
In this thesis, a sufficient condition is given for a closed boundary subset E of a strictly pseudoconvex domain D in ₵ⁿ to be a zero set for a function in G ₁₊₁/α (D), 0 < α < 1, the class of functions holomorphic in D, satisfying a Gevrey condition of index 1 + 1/α in D̅ and a peak set for Lipα(D), 0 < α < 1, the class of functions holomorphic in D, satisfying a Lipschitz condition of order α in D̅. This condition generalizes result of S. V. Kruscev and J. Bruna and bans the simply expressed in terms of the lengths of radius of pseudo-balls of a Whitney covering of δ D\E
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Beaugendre, Pascal. "Intersections de classes non quasi-analytiques". Phd thesis, Université Paris Sud - Paris XI, 2002. http://tel.archives-ouvertes.fr/tel-00001335.

Texto completo
Resumen
Dans le cadre d'intersections de classes non quasi-analytiques à croissance modérée, J. Chaumat et A. M. Chollet ont démontré, notamment, un théorème d'extension de Whitney, pour des jets définis sur un compact et un théorème de Lojasiewicz sur la régulière situation. Ces intersections sont contenues dans l'intersection des classes de Gevrey. On établit ici un théorème d'extension dans une famille d'intersections de classes plus vaste, en ce sens que, tout jet de Whitney appartient à l'une des intersections considérées. Ensuite, en utilisant une méthode d'interpolation à l'aide de polynômes de Lagrange, due à W. Pawlucki et W. Plesniak, on établit aussi un théorème d'extension linéaire pour les jets définis sur des compacts ayant la propriété de Markov. Ces extensions de jets peuvent être choisies réelles analytiques sur le complémentaire du compact. Ces résultats sont complétés par trois exemples de situations pour lesquelles il n'existe pas d'opérateur d'extension linéaire continu. Enfin, on démontre un théorème de Lojasiewicz. Tous ces résultats sont étroitement reliés aux théorèmes classiques de la théorie des fonctions infiniment dérivables.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Filip, Tomić. "A new type of regularity with applications to the wave front sets". Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2016. https://www.cris.uns.ac.rs/record.jsf?recordId=101444&source=NDLTD&language=en.

Texto completo
Resumen
We introduce a family of smooth functions which are "less regu-lar" than the Gevrey functions, and study its basic properties. In particular we prove the standard results concerning algebra property and stability under finite order derivation. Moreover, we  construct infnite order operators which leads us to the definition of class with ultradifferentiable property. We also prove that our classes are inverse-closed, and this result is the essential part in the proof of our main result presented in the final Chapter. Moreover, using the techniques of microlocal analysis, we introduce and investigate thecorresponding wave front sets, and the prove the results related to singular support of a distribution. Our main results shows how the singularities of solutions to partial differential equations (PDE's in short) propagate in the framework of our regularity.
U ovoj tezi definišemo novu klasu glatkih funkcija i izučavamo njihove osnovne osobine. Pokazujemo da naše klase imaju svojsto algebre kao i da su zatvorene u odnosu na delovanje operatora izvoda konačnog reda.Sta više, konstruišemo diferencijalne operatore beskonačnog reda i to nas dovodi do definicije ultradiferencijabilnih klasa funkcija. Takode dokazujemo osobinu zatvorenosti u odnosu na inverze, i taj rezultat je najvažniji deo u dokazu glavne teoreme koja je formulisana u poslednjoj glavi. Koristeći tehnike mikrolokalne analize, uvodimo i izučavamo odgovarajuće talasne frontove, i pokazujemo odgovarajuća tvrdjenja vezana za singularni nosač distribucije. Naš glavni rezultat pokazuje kako se prostiru singulariteti rešenja linearnih parcijalnih diferencijalnih jednačina u okviru naše regularnosti.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Marques, Jorge Manuel da Silva. "Problemas de Goursat em classes de Gevrey". Doctoral thesis, 2007. http://hdl.handle.net/10316/455.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Gevrey classes"

1

Geveret Ṿarburg: Mrs. Varburg. Tel Aviv: Aḥuzat bayit, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Gevrey classes"

1

Liess, Otto y Luigi Rodino. "Microlocal analysis for inhomogeneous gevrey classes". En Lecture Notes in Mathematics, 270–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0100799.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Nishitani, Tatsuo. "Cauchy Problem in the Gevrey Classes". En Lecture Notes in Mathematics, 149–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67612-8_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Gourdin, Daniel y Mustapha Mechab. "A Global Cauchy—Kowalewski Theorem in Some Gevrey Classes". En Partial Differential Equations and Mathematical Physics, 97–104. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0011-6_8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Komatsu, Hikosaburo. "Microlocal analysis in gevrey classes and in complex domains". En Microlocal Analysis and Applications, 161–236. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0085124.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Mizohata, Sigeru. "On the cauchy problem for hyperbolic equations in C∞ and gevrey classes". En Lecture Notes in Mathematics, 197–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0100793.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Komatsu, Hikosaburo. "The Necessity of the Irregularity Condition for Solvability in Gevrey Classes (s) and {s}". En Advances in Microlocal Analysis, 151–64. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4606-4_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Popivanov, P. R. "Gevrey and Analytic Properties of the Solutions of Several Classes of Partial Differential Equations". En Partial Differential Equations and Spectral Theory, 245–50. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8231-6_28.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Spagnolo, Sergio. "Some Existence, Uniqueness, and Non-Uniqueness Results for Weakly Hyperbolic Equations in the Gevrey Classes". En Dynamical Problems in Continuum Physics, 311–21. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-1058-0_16.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

"BASIC PROBLEMS AND BASIC OPERATORS IN GEVREY CLASSES". En Linear Partial Differential Operators in Gevrey Spaces, 60–111. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814360036_0003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

"Chapter 6. Well-posedness in the Gevrey classes". En Mathematical Society of Japan Memoirs, 91–119. Tokyo, Japan: The Mathematical Society of Japan, 2013. http://dx.doi.org/10.2969/msjmemoirs/03001c060.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Gevrey classes"

1

CALVO, D. "CAUCHY PROBLEM IN INHOMOGENEOUS GEVREY CLASSES". En Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0118.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Calvo, Daniela. "Cauchy problem in generalized Gevrey classes". En Evolution Equations Propagation Phenomena - Global Existence - Influence of Non-Linearities. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc60-0-21.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Nussbaum, Roger y Gabriella Vas. "Gevrey class regularity for analytic differential-delay equations". En The 10'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2016. http://dx.doi.org/10.14232/ejqtde.2016.8.17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía