Siga este enlace para ver otros tipos de publicaciones sobre el tema: Gevrey classes.

Artículos de revistas sobre el tema "Gevrey classes"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Gevrey classes".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Hua, Chen y Luigi Rodino. "Paradifferential calculus in Gevrey classes". Journal of Mathematics of Kyoto University 41, n.º 1 (2001): 1–31. http://dx.doi.org/10.1215/kjm/1250517647.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kajitani, Kunihiko y Seiichiro Wakabayashi. "Microhyperbolic operators in Gevrey classes". Publications of the Research Institute for Mathematical Sciences 25, n.º 2 (1989): 169–221. http://dx.doi.org/10.2977/prims/1195173608.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Colombini, Ferruccio, Nicola Orrù y Giovanni Taglialatela. "Strong hyperbolicity in Gevrey classes". Journal of Differential Equations 272 (enero de 2021): 222–54. http://dx.doi.org/10.1016/j.jde.2020.09.033.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lascar, Bernard y Richard Lascar. "FBI transforms in Gevrey classes". Journal d'Analyse Mathématique 72, n.º 1 (diciembre de 1997): 105–25. http://dx.doi.org/10.1007/bf02843155.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Calvo, Daniela, Alessandro Morando y Luigi Rodino. "Inhomogeneous Gevrey classes and ultradistributions". Journal of Mathematical Analysis and Applications 297, n.º 2 (septiembre de 2004): 720–39. http://dx.doi.org/10.1016/j.jmaa.2004.04.043.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Calvo, Daniela y María del Carmen Gómez-Collado. "On some generalizations of Gevrey classes". Mathematische Nachrichten 284, n.º 7 (6 de abril de 2011): 856–74. http://dx.doi.org/10.1002/mana.200910840.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Yonemura, Akiyoshi. "Newton polygons and formal Gevrey classes". Publications of the Research Institute for Mathematical Sciences 26, n.º 1 (1990): 197–204. http://dx.doi.org/10.2977/prims/1195171666.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jannelli, Enrico. "Regularly hyperbolic systems and Gevrey classes". Annali di Matematica Pura ed Applicata 140, n.º 1 (diciembre de 1985): 133–45. http://dx.doi.org/10.1007/bf01776846.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Albanese, Angela A., Andrea Corli y Luigi Rodino. "Hypoellipticity and Local Solvability in Gevrey Classes". Mathematische Nachrichten 242, n.º 1 (julio de 2002): 5–16. http://dx.doi.org/10.1002/1522-2616(200207)242:1<5::aid-mana5>3.0.co;2-e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

KAJITANI, Kunihiko y Seiichiro WAKABAYASHI. "The hyperbolic mixed problem in Gevrey classes". Japanese journal of mathematics. New series 15, n.º 2 (1989): 309–83. http://dx.doi.org/10.4099/math1924.15.309.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

CICOGNANI, M. y L. ZANGHIRATI. "NONLINEAR HYPERBOLIC CAUCHY PROBLEMS IN GEVREY CLASSES". Chinese Annals of Mathematics 22, n.º 04 (octubre de 2001): 417–26. http://dx.doi.org/10.1142/s0252959901000413.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Oliaro, Alessandro, Luigi Rodino y Patrik Wahlberg. "Almost periodic pseudodifferential operators and Gevrey classes". Annali di Matematica Pura ed Applicata 191, n.º 4 (10 de mayo de 2011): 725–60. http://dx.doi.org/10.1007/s10231-011-0203-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Liess, Otto y Luigi Rodino. "Fourier integral operators and inhomogeneous Gevrey classes". Annali di Matematica Pura ed Applicata 150, n.º 1 (diciembre de 1988): 167–262. http://dx.doi.org/10.1007/bf01761469.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Calvo, Daniela y L. Rodino. "Inhomogeneous Gevrey ultradistributions and Cauchy problem". Bulletin: Classe des sciences mathematiques et natturalles 133, n.º 31 (2006): 176–86. http://dx.doi.org/10.2298/bmat0631176c.

Texto completo
Resumen
After a short survey on Gevrey functions and ultradistributions, we present the inhomogeneous Gevrey ultradistributions introduced recently by the authors in collaboration with A. Morando, cf. [7]. Their definition depends on a given weight function ?, satisfying suitable hypotheses, according to Liess-Rodino [16]. As an application, we define (s, ?)-hyperbolic partial differential operators with constant coefficients (for s > 1), and prove for them the well-posedness of the Cauchy problem in the frame of the corresponding inhomogeneous ultradistributions. This sets in the dual spaces a similar result of Calvo [4] in the inhomogeneous Gevrey classes, that in turn extends a previous result of Larsson [14] for weakly hyperbolic operators in standard homogeneous Gevrey classes. AMS Mathematics Subject Classification (2000): 46F05, 35E15, 35S05.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

FUJITA, Keiko y Mitsuo MORIMOTO. "Gevrey Classes on Compact Real Analytic Riemannian Manifolds". Tokyo Journal of Mathematics 18, n.º 2 (diciembre de 1995): 341–55. http://dx.doi.org/10.3836/tjm/1270043467.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Rodino, Luigi. "Pseudodifferential operators with multiple characteristics and Gevrey classes". Banach Center Publications 19, n.º 1 (1987): 263–67. http://dx.doi.org/10.4064/-19-1-263-267.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Schmets, Jean y Manuel Valdivia. "The Zahorski theorem is valid in Gevrey classes". Fundamenta Mathematicae 151, n.º 2 (1996): 149–66. http://dx.doi.org/10.4064/fm-151-2-149-166.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Zanghirati, Luisa. "Pseudodifferential operators of infinite order and Gevrey classes". ANNALI DELL'UNIVERSITA' DI FERRARA 31, n.º 1 (enero de 1985): 197–219. http://dx.doi.org/10.1007/bf02831766.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Bendib, Elmostafa y Hicham Zoubeir. "Développement en série de fonctions holomorphes des fonctions d'une classe de Gevrey sur l'intervalle [-1;1]". Publications de l'Institut Math?matique (Belgrade) 98, n.º 112 (2015): 287–93. http://dx.doi.org/10.2298/pim141101010b.

Texto completo
Resumen
We characterize Gevrey functions on the unit interval [-1; 1] as sums of holomorphic functions in specific neighborhoods of [-1; 1]. As an application of our main theorem, we perform a simple proof for Dyn'kin's theorem of pseudoanalytic extension for Gevrey classes on [-1; 1].
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Chaumat, Jacques y Anne-Marie Chollet. "Propriétés de l'intersection des classes de Gevrey et de certaines autres classes". Bulletin des Sciences Mathématiques 122, n.º 6 (octubre de 1998): 455–85. http://dx.doi.org/10.1016/s0007-4497(98)80003-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Pilipovic, Stevan, Nenad Teofanov y Filip Tomic. "Beyond gevrey regularity: Superposition and propagation of singularities". Filomat 32, n.º 8 (2018): 2763–82. http://dx.doi.org/10.2298/fil1808763p.

Texto completo
Resumen
We propose the relaxation of Gevrey regularity condition by using sequences which depend on two parameters, and define spaces of ultradifferentiable functions which contain Gevrey classes. It is shown that such a space is closed under superposition, and therefore inverse closed as well. Furthermore, we study partial differential operators whose coefficients are less regular then Gevrey-type ultradifferentiable functions. To that aim we introduce appropriate wave front sets and prove a theorem on propagation of singularities. This extends related known results in the sense that assumptions on the regularity of the coefficients are weakened.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Ermine, Jean-Louis. "Développements asymptotiques et microfonctions dans les classes de Gevrey". Publications of the Research Institute for Mathematical Sciences 21, n.º 4 (1985): 737–59. http://dx.doi.org/10.2977/prims/1195178927.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

SANZ, J. "LINEAR CONTINUOUS EXTENSION OPERATORS FOR GEVREY CLASSES ON POLYSECTORS". Glasgow Mathematical Journal 45, n.º 2 (mayo de 2003): 199–216. http://dx.doi.org/10.1017/s0017089503001319.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Liess, Otto. "Microlocality of the cauchy problem in inhomogeneous gevrey classes". Communications in Partial Differential Equations 11, n.º 13 (enero de 1986): 1379–437. http://dx.doi.org/10.1080/03605308608820468.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Taniguchi, Kazuo. "On multi-products of pseudo-differential operators in Gevrey classes and its application to Gevrey hypoellipticity". Proceedings of the Japan Academy, Series A, Mathematical Sciences 61, n.º 9 (1985): 291–93. http://dx.doi.org/10.3792/pjaa.61.291.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Stepanets, A. I., A. S. Serdyuk y A. L. Shidlich. "On relationship between classes of $(\Psi, \overline\upbeta)$ -differentiable functions and Gevrey classes". Ukrainian Mathematical Journal 61, n.º 1 (enero de 2009): 171–77. http://dx.doi.org/10.1007/s11253-009-0189-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Ider, Mostefa. "On the superpostition of functions in carleman classes". Bulletin of the Australian Mathematical Society 39, n.º 3 (junio de 1989): 471–76. http://dx.doi.org/10.1017/s0004972700003397.

Texto completo
Resumen
In this paper we deal with classes of infinitely differentiable functions known in the literature as Carleman classes. Our main result is a characterisation of those Carleman classes that are closed under superposition. This result enables us to give a complete solution to a problem that has been considered by Gevrey, Cartan and Bang.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Zoubeir, Hicham. "Solvability in Gevrey Classes of Some Nonlinear Fractional Functional Differential Equations". International Journal of Differential Equations 2020 (29 de junio de 2020): 1–10. http://dx.doi.org/10.1155/2020/3739249.

Texto completo
Resumen
Our purpose in this paper is to prove, under some regularity conditions on the data, the solvability in a Gevrey class of bound −1 on the interval −1,1 of a class of nonlinear fractional functional differential equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Cicognani, Massimo y Luisa Zanghirati. "Nonlinear weakly hyperbolic equations with Levi condition in Gevrey classes". Tsukuba Journal of Mathematics 25, n.º 1 (junio de 2001): 85–102. http://dx.doi.org/10.21099/tkbjm/1496164214.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Itoh, Shigeharu. "The cauchy problem for weakly hyperbolic equations in gevrey classes". Communications in Partial Differential Equations 14, n.º 1 (enero de 1989): 27–61. http://dx.doi.org/10.1080/03605308908820590.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Shinkai, Kenzo y Kazuo Taniguchi. "Fundamental solution for a degenerate hyperbolic operator in Gevrey classes". Publications of the Research Institute for Mathematical Sciences 28, n.º 2 (1992): 169–205. http://dx.doi.org/10.2977/prims/1195168661.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Castellanos, Jairo E., Paulo D. Cordaro y Gerson Petronilho. "Gevrey vectors in involutive tube structures and Gevrey regularity for the solutions of certain classes of semilinear systems". Journal d'Analyse Mathématique 119, n.º 1 (abril de 2013): 333–64. http://dx.doi.org/10.1007/s11854-013-0011-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Markin, Marat V. "Comment on “On the Carleman Classes of Vectors of a Scalar Type Spectral Operator”". International Journal of Mathematics and Mathematical Sciences 2018 (2018): 1–3. http://dx.doi.org/10.1155/2018/2135740.

Texto completo
Resumen
The results of three papers, in which the author inadvertently overlooks certain deficiencies in the descriptions of the Carleman classes of vectors, in particular the Gevrey classes, of a scalar type spectral operator in a complex Banach space established in “On the Carleman Classes of Vectors of a Scalar Type Spectral Operator,” Int. J. Math. Math. Sci. 2004 (2004), no. 60, 3219–3235, are observed to remain true due to more recent findings.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Komlov, A. V. "Estimates of the Gevrey classes of scattering data for polynomial potentials". Russian Mathematical Surveys 63, n.º 4 (31 de agosto de 2008): 788–89. http://dx.doi.org/10.1070/rm2008v063n04abeh004559.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Colombini, F. y J. Rauch. "Sharp Finite Speed for Hyperbolic Problems Well Posed in Gevrey Classes". Communications in Partial Differential Equations 36, n.º 1 (enero de 2011): 1–9. http://dx.doi.org/10.1080/03605302.2010.531859.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Honda, Naofumi. "On the reconstruction theorem of holonomic modules in the Gevrey classes". Publications of the Research Institute for Mathematical Sciences 27, n.º 6 (1991): 923–43. http://dx.doi.org/10.2977/prims/1195169005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Morando, Alessandro. "Hypoellipticity and local solvability of pseudolocal continuous linear operators in Gevrey classes". Tsukuba Journal of Mathematics 28, n.º 1 (junio de 2004): 137–53. http://dx.doi.org/10.21099/tkbjm/1496164718.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Colombini, Ferruccio y Tatsuo Nishitani. "Systèmes fois fortement hyperboliques dans C∞ et dans les classes de Gevrey". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 330, n.º 11 (junio de 2000): 969–72. http://dx.doi.org/10.1016/s0764-4442(00)00297-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Langenbruch, Michael. "Surjectivity of Partial Differential Operators on Gevrey Classes and Extension of Regularity". Mathematische Nachrichten 196, n.º 1 (1998): 103–40. http://dx.doi.org/10.1002/mana.19981960106.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Albanese, A. A. y P. Popivanov. "On the global solvability in Gevrey classes on the n-dimensional torus". Journal of Mathematical Analysis and Applications 297, n.º 2 (septiembre de 2004): 659–72. http://dx.doi.org/10.1016/j.jmaa.2004.04.033.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Kostic, Marko. "Regularization of some classes of ultradistribution semigroups and sines". Publications de l'Institut Math?matique (Belgrade) 87, n.º 101 (2010): 9–37. http://dx.doi.org/10.2298/pim1001009k.

Texto completo
Resumen
We systematically analyze regularization of different kinds of ultradistribution semigroups and sines, in general, with nondensely defined generators and contemplate several known results concerning the regularization of Gevrey type ultradistribution semigroups. We prove that, for every closed linear operator A which generates an ultradistribution semigroup (sine), there exists a bounded injective operator C such that A generates a global differentiable C-semigroup (C-cosine function) whose derivatives possess some expected properties of operator valued ultradifferentiable functions. With the help of regularized semigroups, we establish the new important characterizations of abstract Beurling spaces associated to nondensely defined generators of ultradistribution semigroups (sines). The study of regularization of ultradistribution sines also enables us to perceive significant ultradifferentiable properties of higher-order abstract Cauchy problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Gramchev, Todor V. "The stationary phase method in Gevrey classes and Fourier integral operators on ultradistributions". Banach Center Publications 19, n.º 1 (1987): 101–12. http://dx.doi.org/10.4064/-19-1-101-112.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Tahara, Hidetoshi. "Cauchy problems for Fuchsian hyperbolic equations in spaces of functions of Gevrey classes". Proceedings of the Japan Academy, Series A, Mathematical Sciences 61, n.º 3 (1985): 63–65. http://dx.doi.org/10.3792/pjaa.61.63.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

WAKABAYASHI, Seiiehiro. "Singularities of solutions of the Cauchy problem for hyperbolic systems in Gevrey classes". Japanese journal of mathematics. New series 11, n.º 1 (1985): 157–201. http://dx.doi.org/10.4099/math1924.11.157.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

TAHARA, Hidetoshi. "Singular hyperbolic systems, VI. Asymptotic analysis for Fuchsian hyperbolic equations in Gevrey classes". Journal of the Mathematical Society of Japan 39, n.º 4 (octubre de 1987): 551–80. http://dx.doi.org/10.2969/jmsj/03940551.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Thilliez, Vincent. "Classes de Gevrey non isotropes dans les domaines de type fini de ℂ2". Journal d Analyse Mathematique 60, n.º 1 (diciembre de 1993): 259–305. http://dx.doi.org/10.1007/bf03341976.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Albanese, A. A. y L. Zanghirati. "Global hypoellipticity and global solvability in Gevrey classes on the n-dimensional torus". Journal of Differential Equations 199, n.º 2 (mayo de 2004): 256–68. http://dx.doi.org/10.1016/j.jde.2004.01.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Itoh, Shigeharu. "Well-posedness of the Cauchy problem for some weakly hyperbolic operators in Gevrey classes". Proceedings of the Japan Academy, Series A, Mathematical Sciences 61, n.º 3 (1985): 66–69. http://dx.doi.org/10.3792/pjaa.61.66.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Li, Qifan. "Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes". Communications on Pure & Applied Analysis 11, n.º 3 (2012): 1097–109. http://dx.doi.org/10.3934/cpaa.2012.11.1097.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Corli, Andrea. "On local solvability in gevrey classes of linear partial differential operators with multiple characteristics". Communications in Partial Differential Equations 14, n.º 1 (enero de 1989): 1–25. http://dx.doi.org/10.1080/03605308908820589.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía