Literatura académica sobre el tema "Giant gaseous planets"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Giant gaseous planets".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Giant gaseous planets"

1

Veras, Dimitri, and Jim Fuller. "Tidal circularization of gaseous planets orbiting white dwarfs." Monthly Notices of the Royal Astronomical Society 489, no. 2 (2019): 2941–53. http://dx.doi.org/10.1093/mnras/stz2339.

Texto completo
Resumen
ABSTRACT A gas giant planet which survives the giant branch stages of evolution at a distance of many au and then is subsequently perturbed sufficiently close to a white dwarf will experience orbital shrinkage and circularization due to star–planet tides. The circularization time-scale, when combined with a known white dwarf cooling age, can place coupled constraints on the scattering epoch as well as the active tidal mechanisms. Here, we explore this coupling across the entire plausible parameter phase space by computing orbit shrinkage and potential self-disruption due to chaotic f-mode excitation and heating in planets on orbits with eccentricities near unity, followed by weakly dissipative equilibrium tides. We find that chaotic f-mode evolution activates only for orbital pericentres which are within twice the white dwarf Roche radius, and easily restructures or destroys ice giants but not gas giants. This type of internal thermal destruction provides an additional potential source of white dwarf metal pollution. Subsequent tidal evolution for the surviving planets is dominated by non-chaotic equilibrium and dynamical tides which may be well-constrained by observations of giant planets around white dwarfs at early cooling ages.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Boss, Alan P. "Metallicity and Planet Formation: Models." Proceedings of the International Astronomical Union 5, S265 (2009): 391–98. http://dx.doi.org/10.1017/s1743921310001067.

Texto completo
Resumen
AbstractPlanets typically are considerably more metal-rich than even the most metal-rich stars, one indication that planet formation must differ greatly from star formation. There is general agreement that terrestrial planets form by the collisional accumulation of solids composed of heavy elements in the inner regions of protoplanetary disks. Two competing mechanisms exist for the formation of giant planets, core accretion and disk instability, though hybrid combinations are possible as well. In core accretion, a higher metallicity in the protoplanetary disk leads directly to larger core masses and hence to more gas giant planets. Given the strong correlation of gas giant planets detected by Doppler spectroscopy with stellar metallicity, this has often been taken as proof that core accretion is the mechanism that forms giant planets. Recent work, however, implies that the formation of gas giants by disk instability can be enhanced by higher metallicities, though not as dramatically as for core accretion. In both scenarios, the ongoing accretion of planetesimals by gas giant protoplanets leads to strong enrichments of heavy elements in their gaseous envelopes. Both scenarios also imply that gas giant planets should have significant solid cores, raising questions for gas giant interior models without cores. Exoplanets with large inferred core masses seem likely to have formed by core accretion, while gas giants at distances beyond 20 AU seem more likely to have formed by disk instability. Given the wide variety of exoplanets found to date, it appears that both mechanisms are needed to explain the formation of the known population of giant planets.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Guenel, M., S. Mathis, and F. Remus. "Unravelling tidal dissipation in gaseous giant planets." Astronomy & Astrophysics 566 (June 2014): L9. http://dx.doi.org/10.1051/0004-6361/201424010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Carleo, Ilaria, Paolo Giacobbe, Gloria Guilluy, et al. "The GAPS Programme at TNG XXXIX. Multiple Molecular Species in the Atmosphere of the Warm Giant Planet WASP-80 b Unveiled at High Resolution with GIANO-B ." Astronomical Journal 164, no. 3 (2022): 101. http://dx.doi.org/10.3847/1538-3881/ac80bf.

Texto completo
Resumen
Abstract Detections of molecules in the atmosphere of gas giant exoplanets allow us to investigate the physico-chemical properties of the atmospheres. Their inferred chemical composition is used as tracer of planet formation and evolution mechanisms. Currently, an increasing number of detections is showing a possible rich chemistry of the hotter gaseous planets, but whether this extends to cooler giants is still unknown. We observed four transits of WASP-80 b, a warm transiting giant planet orbiting a late-K dwarf star with the near-infrared GIANO-B spectrograph installed at the Telescopio Nazionale Galileo and performed high-resolution transmission spectroscopy analysis. We report the detection of several molecular species in its atmosphere. Combining the four nights and comparing our transmission spectrum to planetary atmosphere models containing the signature of individual molecules within the cross-correlation framework, we find the presence of H2O, CH4, NH3, and HCN with high significance, tentative detection of CO2, and inconclusive results for C2H2 and CO. A qualitative interpretation of these results, using physically motivated models, suggests an atmosphere consistent with solar composition and the presence of disequilibrium chemistry and we therefore recommend the inclusion of the latter in future modeling of sub-1000 K planets.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Raymond, Sean N. "Terrestrial planet formation in extra-solar planetary systems." Proceedings of the International Astronomical Union 3, S249 (2007): 233–50. http://dx.doi.org/10.1017/s1743921308016645.

Texto completo
Resumen
AbstractTerrestrial planets form in a series of dynamical steps from the solid component of circumstellar disks. First, km-sized planetesimals form likely via a combination of sticky collisions, turbulent concentration of solids, and gravitational collapse from micron-sized dust grains in the thin disk midplane. Second, planetesimals coalesce to form Moon- to Mars-sized protoplanets, also called “planetary embryos”. Finally, full-sized terrestrial planets accrete from protoplanets and planetesimals. This final stage of accretion lasts about 10-100 Myr and is strongly affected by gravitational perturbations from any gas giant planets, which are constrained to form more quickly, during the 1-10 Myr lifetime of the gaseous component of the disk. It is during this final stage that the bulk compositions and volatile (e.g., water) contents of terrestrial planets are set, depending on their feeding zones and the amount of radial mixing that occurs. The main factors that influence terrestrial planet formation are the mass and surface density profile of the disk, and the perturbations from giant planets and binary companions if they exist. Simple accretion models predicts that low-mass stars should form small, dry planets in their habitable zones. The migration of a giant planet through a disk of rocky bodies does not completely impede terrestrial planet growth. Rather, “hot Jupiter” systems are likely to also contain exterior, very water-rich Earth-like planets, and also “hot Earths”, very close-in rocky planets. Roughly one third of the known systems of extra-solar (giant) planets could allow a terrestrial planet to form in the habitable zone.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Boss, Alan P. "Modes of Gaseous Planet Formation." Symposium - International Astronomical Union 202 (2004): 141–48. http://dx.doi.org/10.1017/s0074180900217725.

Texto completo
Resumen
The discovery of gas giant planets around nearby stars has launched a new era in our understanding of the formation and evolution of planetary systems. However, none of the over four dozen companions detected to date strongly resembles Jupiter or Saturn: their inferred masses range from sub-Saturn-mass to 10 Jupiter-masses or more, while their orbits extend from periods of a few days to a few years. Given this situation, it seems prudent to re-examine mechanisms for gas giant planet formation. The two extreme cases are top-down or bottom-up. The latter is the core accretion mechanism, long favored for our Solar System, where a roughly 10 Earth-mass solid core forms by collisional accumulation of planetesimals, followed by hydrodynamic accretion of a gaseous envelope. The former is the long-discarded disk instability mechanism, where the protoplanetary disk forms self-gravitating, gaseous protoplanets through a gravitational instability of the gas, accompanied by settling and coagulation of dust grains to form solid cores. Both of these mechanisms have a number of advantages and disadvantages, making a purely theoretical choice between them difficult at present. Observations should be able to decide the dominant mechanism by dating the epoch of gas giant planet formation: core accretion requires more than a million years to form a Jupiter-mass planet, whereas disk instability is much more rapid.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Mayor, M., D. Naef, F. Pepe, et al. "HD 83443: a system with two Saturns." Symposium - International Astronomical Union 202 (2004): 84–86. http://dx.doi.org/10.1017/s0074180900217543.

Texto completo
Resumen
We report the discovery of an extrasolar planetary system with two Saturnian planets around the star HD 83443. The new planetary system is unusual by more than one aspect, as it contains two very low–mass gaseous giant planets, both on very tight orbits. Among the planets detected so far, the inner planet has the smallest semi–major axis (0.038 AU) and period (2.985 days) whereas the outer planet is the lightest one with m2 sin i = 0.53 MSat. A preliminary dynamical study confirms the stability of the system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Masset, Frédéric S. "Planetary migration in gaseous protoplanetary disks." Proceedings of the International Astronomical Union 3, S249 (2007): 331–46. http://dx.doi.org/10.1017/s1743921308016797.

Texto completo
Resumen
AbstractTides come from the fact that different parts of a system do not fall in exactly the same way in a non-uniform gravity field. In the case of a protoplanetary disk perturbed by an orbiting, prograde protoplanet, the protoplanet tides raise a wake in the disk which causes the orbital elements of the planet to change over time. The most spectacular result of this process is a change in the protoplanet's semi-major axis, which can decrease by orders of magnitude on timescales shorter than the disk lifetime. This drift in the semi-major axis is called planetary migration. In a first part, we describe how the planet and disk exchange angular momentum and energy at the Lindblad and corotation resonances. Next we review the various types of planetary migration that have so far been contemplated: type I migration, which corresponds to low-mass planets (less than a few Earth masses) triggering a linear disk response; type II migration, which corresponds to massive planets (typically at least one Jupiter mass) that open up a gap in the disk; “runaway” or type III migration, which corresponds to sub-giant planets that orbit in massive disks; and stochastic or diffusive migration, which is the migration mode of low- or intermediate-mass planets embedded in turbulent disks. Lastly, we present some recent results in the field of planetary migration.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Bitsch, Bertram, Andre Izidoro, Anders Johansen, et al. "Formation of planetary systems by pebble accretion and migration: growth of gas giants." Astronomy & Astrophysics 623 (March 2019): A88. http://dx.doi.org/10.1051/0004-6361/201834489.

Texto completo
Resumen
Giant planets migrate though the protoplanetary disc as they grow their solid core and attract their gaseous envelope. Previously, we have studied the growth and migration of an isolated planet in an evolving disc. Here, we generalise such models to include the mutual gravitational interaction between a high number of growing planetary bodies. We have investigated how the formation of planetary systems depends on the radial flux of pebbles through the protoplanetary disc and on the planet migration rate. Our N-body simulations confirm previous findings that Jupiter-like planets in orbits outside the water ice line originate from embryos starting out at 20–40 AU when using nominal type-I and type-II migration rates and a pebble flux of approximately 100–200 Earth masses per million years, enough to grow Jupiter within the lifetime of the solar nebula. The planetary embryos placed up to 30 AU migrate into the inner system (rP < 1AU). There they form super-Earths or hot and warm gas giants, producing systems that are inconsistent with the configuration of the solar system, but consistent with some exoplanetary systems. We also explored slower migration rates which allow the formation of gas giants from embryos originating from the 5–10 AU region, which are stranded exterior to 1 AU at the end of the gas-disc phase. These giant planets can also form in discs with lower pebbles fluxes (50–100 Earth masses per Myr). We identify a pebble flux threshold below which migration dominates and moves the planetary core to the inner disc, where the pebble isolation mass is too low for the planet to accrete gas efficiently. In our model, giant planet growth requires a sufficiently high pebble flux to enable growth to out-compete migration. An even higher pebble flux produces systems with multiple gas giants. We show that planetary embryos starting interior to 5 AU do not grow into gas giants, even if migration is slow and the pebble flux is large. These embryos instead grow to just a few Earth masses, the mass regime of super-Earths. This stunted growth is caused by the low pebble isolation mass in the inner disc and is therefore independent of the pebble flux. Additionally, we show that the long-term evolution of our formed planetary systems can naturally produce systems with inner super-Earths and outer gas giants as well as systems of giant planets on very eccentric orbits.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hansen, Bradley M. S. "Formation of exoplanetary satellites by pull-down capture." Science Advances 5, no. 10 (2019): eaaw8665. http://dx.doi.org/10.1126/sciadv.aaw8665.

Texto completo
Resumen
The large size and wide orbit of the recently announced exomoon candidate Kepler-1625b-i are hard to explain within traditional theories of satellite formation. We show that these properties can be reproduced if the satellite began as a circumstellar co-orbital body with the original core of the giant planet Kepler-1625b. This body was then drawn down into a circumplanetary orbit during the rapid accretion of the giant planet gaseous envelope, a process termed “pull-down capture.” Our numerical integrations demonstrate the stability of the original configuration and the capture process. In this model, the exomoon Kepler-1625b-i is the protocore of a giant planet that never accreted a substantial gas envelope. Different initial conditions can give rise to capture into other co-orbital configurations, motivating the search for Trojan-like companions to this and other giant planets.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía