Literatura académica sobre el tema "Glaucoma Optic nerve Machine learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Glaucoma Optic nerve Machine learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Glaucoma Optic nerve Machine learning"
Barella, Kleyton Arlindo, Vital Paulino Costa, Vanessa Gonçalves Vidotti, Fabrício Reis Silva, Marcelo Dias y Edson Satoshi Gomi. "Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT". Journal of Ophthalmology 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/789129.
Texto completoSułot, Dominika, David Alonso-Caneiro, Paweł Ksieniewicz, Patrycja Krzyzanowska-Berkowska y D. Robert Iskander. "Glaucoma classification based on scanning laser ophthalmoscopic images using a deep learning ensemble method". PLOS ONE 16, n.º 6 (4 de junio de 2021): e0252339. http://dx.doi.org/10.1371/journal.pone.0252339.
Texto completoAn, Guangzhou, Kazuko Omodaka, Kazuki Hashimoto, Satoru Tsuda, Yukihiro Shiga, Naoko Takada, Tsutomu Kikawa, Hideo Yokota, Masahiro Akiba y Toru Nakazawa. "Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images". Journal of Healthcare Engineering 2019 (18 de febrero de 2019): 1–9. http://dx.doi.org/10.1155/2019/4061313.
Texto completoAbidi, Syed S. R., Patrice C. Roy, Muhammad S. Shah, Jin Yu y Sanjun Yan. "A Data Mining Framework for Glaucoma Decision Support Based on Optic Nerve Image Analysis Using Machine Learning Methods". Journal of Healthcare Informatics Research 2, n.º 4 (20 de junio de 2018): 370–401. http://dx.doi.org/10.1007/s41666-018-0028-7.
Texto completoOmar, Yasser, Mohamed Abd-ElSalam ElSheikh y Rania Hodhod. "GLAUDIA: A predicative system for glaucoma diagnosis in mass scanning". Health Informatics Journal 27, n.º 2 (abril de 2021): 146045822110092. http://dx.doi.org/10.1177/14604582211009276.
Texto completoAn, Guangzhou, Kazuko Omodaka, Satoru Tsuda, Yukihiro Shiga, Naoko Takada, Tsutomu Kikawa, Toru Nakazawa, Hideo Yokota y Masahiro Akiba. "Comparison of Machine-Learning Classification Models for Glaucoma Management". Journal of Healthcare Engineering 2018 (19 de junio de 2018): 1–8. http://dx.doi.org/10.1155/2018/6874765.
Texto completoDiwakaran y S. Sheeba Jeya Sophia. "Survey on Automatic Detection of Glaucoma through Deep Learning Using Retinal Fundus Images". Journal of Biomedical Engineering and Medical Imaging 7, n.º 4 (1 de agosto de 2020): 11–15. http://dx.doi.org/10.14738/jbemi.74.8055.
Texto completoSreng, Syna, Noppadol Maneerat, Kazuhiko Hamamoto y Khin Yadanar Win. "Deep Learning for Optic Disc Segmentation and Glaucoma Diagnosis on Retinal Images". Applied Sciences 10, n.º 14 (17 de julio de 2020): 4916. http://dx.doi.org/10.3390/app10144916.
Texto completoSHARMA, RAHUL, PRADIP SIRCAR, R. B. PACHORI, SULATHA V. BHANDARY y U. RAJENDRA ACHARYA. "AUTOMATED GLAUCOMA DETECTION USING CENTER SLICE OF HIGHER ORDER STATISTICS". Journal of Mechanics in Medicine and Biology 19, n.º 01 (febrero de 2019): 1940011. http://dx.doi.org/10.1142/s0219519419400116.
Texto completoXiao, Zhang, Geng, Zhang, Wu y Liu. "Research on the Method of Color Fundus Image Optic Cup Segmentation Based on Deep Learning". Symmetry 11, n.º 7 (17 de julio de 2019): 933. http://dx.doi.org/10.3390/sym11070933.
Texto completoTesis sobre el tema "Glaucoma Optic nerve Machine learning"
Twa, Michael Duane. "Structural classification of glaucomatous optic neuropathy". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1155267844.
Texto completoMiri, Mohammad Saleh. "A multimodal machine-learning graph-based approach for segmenting glaucomatous optic nerve head structures from SD-OCT volumes and fundus photographs". Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/5574.
Texto completoCapítulos de libros sobre el tema "Glaucoma Optic nerve Machine learning"
Antony Ammal, M., D. Gladis y Atheek Shaik. "Metric Measures of Optic Nerve Head in Screening Glaucoma with Machine Learning". En Advances in Intelligent Systems and Computing, 583–99. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4389-4_54.
Texto completoMuramatsu, Chisako. "Diagnosis of Glaucoma on Retinal Fundus Images Using Deep Learning: Detection of Nerve Fiber Layer Defect and Optic Disc Analysis". En Advances in Experimental Medicine and Biology, 121–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33128-3_8.
Texto completoLuo, Jiamin, Alex Noel Joseph Raj, Nersisson Ruban y Vijayalakshmi G. V. Mahesh. "Segmentation of Optic Disc From Fundus Image Based on Morphology and SVM Classifier". En Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments, 116–44. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6690-9.ch007.
Texto completoActas de conferencias sobre el tema "Glaucoma Optic nerve Machine learning"
Manassakorn, Anita, Kitiwat Khamwan, Dhammathat Owasirikul, Rath Itthipanichpong, Vera Sa-Ing y Supatana Auethavekiat. "Retinal Nerve Fiber Layer Defect Detection using Machine Learning on Optic Disc Photograph". En 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE, 2021. http://dx.doi.org/10.1109/bhi50953.2021.9508567.
Texto completoYu, Abidi y Artes. "A hybrid feature selection strategy for image defining features: towards interpretation of optic nerve images". En Proceedings of 2005 International Conference on Machine Learning and Cybernetics. IEEE, 2005. http://dx.doi.org/10.1109/icmlc.2005.1527847.
Texto completo