Artículos de revistas sobre el tema "Glaucoma Optic nerve Machine learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Glaucoma Optic nerve Machine learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Barella, Kleyton Arlindo, Vital Paulino Costa, Vanessa Gonçalves Vidotti, Fabrício Reis Silva, Marcelo Dias y Edson Satoshi Gomi. "Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT". Journal of Ophthalmology 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/789129.
Texto completoSułot, Dominika, David Alonso-Caneiro, Paweł Ksieniewicz, Patrycja Krzyzanowska-Berkowska y D. Robert Iskander. "Glaucoma classification based on scanning laser ophthalmoscopic images using a deep learning ensemble method". PLOS ONE 16, n.º 6 (4 de junio de 2021): e0252339. http://dx.doi.org/10.1371/journal.pone.0252339.
Texto completoAn, Guangzhou, Kazuko Omodaka, Kazuki Hashimoto, Satoru Tsuda, Yukihiro Shiga, Naoko Takada, Tsutomu Kikawa, Hideo Yokota, Masahiro Akiba y Toru Nakazawa. "Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images". Journal of Healthcare Engineering 2019 (18 de febrero de 2019): 1–9. http://dx.doi.org/10.1155/2019/4061313.
Texto completoAbidi, Syed S. R., Patrice C. Roy, Muhammad S. Shah, Jin Yu y Sanjun Yan. "A Data Mining Framework for Glaucoma Decision Support Based on Optic Nerve Image Analysis Using Machine Learning Methods". Journal of Healthcare Informatics Research 2, n.º 4 (20 de junio de 2018): 370–401. http://dx.doi.org/10.1007/s41666-018-0028-7.
Texto completoOmar, Yasser, Mohamed Abd-ElSalam ElSheikh y Rania Hodhod. "GLAUDIA: A predicative system for glaucoma diagnosis in mass scanning". Health Informatics Journal 27, n.º 2 (abril de 2021): 146045822110092. http://dx.doi.org/10.1177/14604582211009276.
Texto completoAn, Guangzhou, Kazuko Omodaka, Satoru Tsuda, Yukihiro Shiga, Naoko Takada, Tsutomu Kikawa, Toru Nakazawa, Hideo Yokota y Masahiro Akiba. "Comparison of Machine-Learning Classification Models for Glaucoma Management". Journal of Healthcare Engineering 2018 (19 de junio de 2018): 1–8. http://dx.doi.org/10.1155/2018/6874765.
Texto completoDiwakaran y S. Sheeba Jeya Sophia. "Survey on Automatic Detection of Glaucoma through Deep Learning Using Retinal Fundus Images". Journal of Biomedical Engineering and Medical Imaging 7, n.º 4 (1 de agosto de 2020): 11–15. http://dx.doi.org/10.14738/jbemi.74.8055.
Texto completoSreng, Syna, Noppadol Maneerat, Kazuhiko Hamamoto y Khin Yadanar Win. "Deep Learning for Optic Disc Segmentation and Glaucoma Diagnosis on Retinal Images". Applied Sciences 10, n.º 14 (17 de julio de 2020): 4916. http://dx.doi.org/10.3390/app10144916.
Texto completoSHARMA, RAHUL, PRADIP SIRCAR, R. B. PACHORI, SULATHA V. BHANDARY y U. RAJENDRA ACHARYA. "AUTOMATED GLAUCOMA DETECTION USING CENTER SLICE OF HIGHER ORDER STATISTICS". Journal of Mechanics in Medicine and Biology 19, n.º 01 (febrero de 2019): 1940011. http://dx.doi.org/10.1142/s0219519419400116.
Texto completoXiao, Zhang, Geng, Zhang, Wu y Liu. "Research on the Method of Color Fundus Image Optic Cup Segmentation Based on Deep Learning". Symmetry 11, n.º 7 (17 de julio de 2019): 933. http://dx.doi.org/10.3390/sym11070933.
Texto completoEscamez, Carlos Salvador Fernandez, Susana Perucho Martinez y Nicolas Toledano Fernandez. "High interpretable machine learning classifier for early glaucoma diagnosis". International Journal of Ophthalmology 14, n.º 3 (18 de marzo de 2021): 393–98. http://dx.doi.org/10.18240/ijo.2021.03.10.
Texto completoWang, Peiyu, Jian Shen, Ryuna Chang, Maemae Moloney, Mina Torres, Bruce Burkemper, Xuejuan Jiang, Damien Rodger, Rohit Varma y Grace M. Richter. "Machine Learning Models for Diagnosing Glaucoma from Retinal Nerve Fiber Layer Thickness Maps". Ophthalmology Glaucoma 2, n.º 6 (noviembre de 2019): 422–28. http://dx.doi.org/10.1016/j.ogla.2019.08.004.
Texto completoOh, Sejong, Yuli Park, Kyong Jin Cho y Seong Jae Kim. "Explainable Machine Learning Model for Glaucoma Diagnosis and Its Interpretation". Diagnostics 11, n.º 3 (13 de marzo de 2021): 510. http://dx.doi.org/10.3390/diagnostics11030510.
Texto completoRomeni, Simone, Davide Zoccolan y Silvestro Micera. "A machine learning framework to optimize optic nerve electrical stimulation for vision restoration". Patterns 2, n.º 7 (julio de 2021): 100286. http://dx.doi.org/10.1016/j.patter.2021.100286.
Texto completoWu, Chao-Wei, Hsiang-Li Shen, Chi-Jie Lu, Ssu-Han Chen y Hsin-Yi Chen. "Comparison of Different Machine Learning Classifiers for Glaucoma Diagnosis Based on Spectralis OCT". Diagnostics 11, n.º 9 (19 de septiembre de 2021): 1718. http://dx.doi.org/10.3390/diagnostics11091718.
Texto completoOmodaka, Kazuko, Guangzhou An, Satoru Tsuda, Yukihiro Shiga, Naoko Takada, Tsutomu Kikawa, Hidetoshi Takahashi, Hideo Yokota, Masahiro Akiba y Toru Nakazawa. "Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters". PLOS ONE 12, n.º 12 (19 de diciembre de 2017): e0190012. http://dx.doi.org/10.1371/journal.pone.0190012.
Texto completoKim, Mijung, Jong Chul Han, Seung Hyup Hyun, Olivier Janssens, Sofie Van Hoecke, Changwon Kee y Wesley De Neve. "Medinoid: Computer-Aided Diagnosis and Localization of Glaucoma Using Deep Learning †". Applied Sciences 9, n.º 15 (29 de julio de 2019): 3064. http://dx.doi.org/10.3390/app9153064.
Texto completoSchwaner, Stephen A., Andrew J. Feola y C. Ross Ethier. "Factors affecting optic nerve head biomechanics in a rat model of glaucoma". Journal of The Royal Society Interface 17, n.º 165 (abril de 2020): 20190695. http://dx.doi.org/10.1098/rsif.2019.0695.
Texto completoAntaki, Fares, Razek Georges Coussa, Karim Hammamji y Renaud Duval. "Revisiting the Problem of Optic Nerve Detection in a Retinal Image Using Automated Machine Learning". Asia-Pacific Journal of Ophthalmology 10, n.º 3 (mayo de 2021): 335–36. http://dx.doi.org/10.1097/apo.0000000000000398.
Texto completoAlipanahi, Babak, Farhad Hormozdiari, Babak Behsaz, Justin Cosentino, Zachary R. McCaw, Emanuel Schorsch, D. Sculley et al. "Large-scale machine-learning-based phenotyping significantly improves genomic discovery for optic nerve head morphology". American Journal of Human Genetics 108, n.º 7 (julio de 2021): 1217–30. http://dx.doi.org/10.1016/j.ajhg.2021.05.004.
Texto completoWang, Hui Bin, Yu Rong Wu, Jie Shen y Zhe Chen. "Research on Underwater Polarization Image Segmentation Inspired by Biological Optic Nerve". Applied Mechanics and Materials 347-350 (agosto de 2013): 2178–84. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.2178.
Texto completoFumero Batista, Francisco José, Tinguaro Diaz-Aleman, Jose Sigut, Silvia Alayon, Rafael Arnay y Denisse Angel-Pereira. "RIM-ONE DL: A Unified Retinal Image Database for Assessing Glaucoma Using Deep Learning". Image Analysis & Stereology 39, n.º 3 (25 de noviembre de 2020): 161–67. http://dx.doi.org/10.5566/ias.2346.
Texto completoOdaibo, Stephen G. "Re: Wang et al.: Machine learning models for diagnosing glaucoma from retinal nerve fiber layer thickness maps (Ophthalmology Glaucoma. 2019;2:422–428)". Ophthalmology Glaucoma 3, n.º 3 (mayo de 2020): e3. http://dx.doi.org/10.1016/j.ogla.2020.03.002.
Texto completoKirar, Bhupendra y Dheeraj Agrawal. "Glaucoma diagnosis using discrete wavelet transform and histogram features from fundus images". International Journal of Engineering & Technology 7, n.º 4 (25 de septiembre de 2018): 2546. http://dx.doi.org/10.14419/ijet.v7i4.14809.
Texto completoSoh, Zhi Da, Mihir Deshmukh, Tyler Hyungtaek Rim y Ching-Yu Cheng. "Response to: Revisiting the Problem of Optic Nerve Detection in a Retinal Image Using Automated Machine Learning". Asia-Pacific Journal of Ophthalmology 10, n.º 3 (mayo de 2021): 337. http://dx.doi.org/10.1097/01.apo.0000769904.75814.b5.
Texto completoZangwill, Linda M., Kwokleung Chan, Christopher Bowd, Jicuang Hao, Te-Won Lee, Robert N. Weinreb, Terrence J. Sejnowski y Michael H. Goldbaum. "Heidelberg Retina Tomograph Measurements of the Optic Disc and Parapapillary Retina for Detecting Glaucoma Analyzed by Machine Learning Classifiers". Investigative Opthalmology & Visual Science 45, n.º 9 (1 de septiembre de 2004): 3144. http://dx.doi.org/10.1167/iovs.04-0202.
Texto completoGonzalez-Hernandez, Marta, Daniel Gonzalez-Hernandez, Daniel Perez-Barbudo, Paloma Rodriguez-Esteve, Nisamar Betancor-Caro y Manuel Gonzalez de la Rosa. "Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma". Journal of Clinical Medicine 10, n.º 15 (22 de julio de 2021): 3231. http://dx.doi.org/10.3390/jcm10153231.
Texto completoChristopher, Mark, Akram Belghith, Robert N. Weinreb, Christopher Bowd, Michael H. Goldbaum, Luke J. Saunders, Felipe A. Medeiros y Linda M. Zangwill. "Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression". Investigative Opthalmology & Visual Science 59, n.º 7 (1 de junio de 2018): 2748. http://dx.doi.org/10.1167/iovs.17-23387.
Texto completoBizios, Dimitrios, Anders Heijl, Jesper Leth Hougaard y Boel Bengtsson. "Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT". Acta Ophthalmologica 88, n.º 1 (febrero de 2010): 44–52. http://dx.doi.org/10.1111/j.1755-3768.2009.01784.x.
Texto completoElze, Tobias, Louis R. Pasquale, Lucy Q. Shen, Teresa C. Chen, Janey L. Wiggs y Peter J. Bex. "Patterns of functional vision loss in glaucoma determined with archetypal analysis". Journal of The Royal Society Interface 12, n.º 103 (febrero de 2015): 20141118. http://dx.doi.org/10.1098/rsif.2014.1118.
Texto completoGaillet, Vivien, Eleonora Borda, Elodie Geneviève Zollinger y Diego Ghezzi. "A machine-learning algorithm correctly classifies cortical evoked potentials from both visual stimulation and electrical stimulation of the optic nerve". Journal of Neural Engineering 18, n.º 4 (26 de abril de 2021): 046031. http://dx.doi.org/10.1088/1741-2552/abf523.
Texto completoBhuiyan, Alauddin, Arun Govindaiah y R. Theodore Smith. "An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging". Journal of Ophthalmology 2021 (28 de mayo de 2021): 1–10. http://dx.doi.org/10.1155/2021/6694784.
Texto completoKasaragod, Deepa, Shuichi Makita, Young-Joo Hong y Yoshiaki Yasuno. "Machine-learning based segmentation of the optic nerve head using multi-contrast Jones matrix optical coherence tomography with semi-automatic training dataset generation". Biomedical Optics Express 9, n.º 7 (21 de junio de 2018): 3220. http://dx.doi.org/10.1364/boe.9.003220.
Texto completoHitzl, W., H. A. Reitsamer, K. Hornykewycz, A. Mistlberger y G. Grabner. "Application of Discriminant, Classification Tree and Neural Network Analysis to Differentiate between Potential Glaucoma Suspects with and without Visual Field Defects". Journal of Theoretical Medicine 5, n.º 3-4 (2003): 161–70. http://dx.doi.org/10.1080/10273360410001728011.
Texto completoCavaliere, Carlo, Elisa Vilades, Mª Alonso-Rodríguez, María Rodrigo, Luis Pablo, Juan Miguel, Elena López-Guillén, Eva Morla, Luciano Boquete y Elena Garcia-Martin. "Computer-Aided Diagnosis of Multiple Sclerosis Using a Support Vector Machine and Optical Coherence Tomography Features". Sensors 19, n.º 23 (3 de diciembre de 2019): 5323. http://dx.doi.org/10.3390/s19235323.
Texto completoLi, Shuo, Chiru Ge, Xiaodan Sui, Yuanjie Zheng y Weikuan Jia. "Channel and Spatial Attention Regression Network for Cup-to-Disc Ratio Estimation". Electronics 9, n.º 6 (29 de mayo de 2020): 909. http://dx.doi.org/10.3390/electronics9060909.
Texto completoSarhan, Abdullah, Andrew Swift, Adam Gorner, Jon Rokne, Reda Alhajj, Gavin Docherty y Andrew Crichton. "Utilizing a responsive web portal for studying disc tracing agreement in retinal images". PLOS ONE 16, n.º 5 (25 de mayo de 2021): e0251703. http://dx.doi.org/10.1371/journal.pone.0251703.
Texto completoPrakash, K. y M. Sudharsan. "A Mathematical Study of Glaucoma using Machine Learning Algorithms for Retina". International Journal of Advanced Research in Science, Communication and Technology, 15 de febrero de 2021, 31–33. http://dx.doi.org/10.48175/ijarsct-v2-i3-305.
Texto completoKayani, Huma. "Artificial intelligence and its applications in ophthalmology". Journal of Fatima Jinnah Medical University 13, n.º 4 (15 de enero de 2020). http://dx.doi.org/10.37018/jfjmu.724.
Texto completoKhan, Sibghatullah I., Shruti Bhargava Choubey, Abhishek Choubey, Abhishek Bhatt, Pandya Vyomal Naishadhkumar y Mohammed Mahaboob Basha. "Automated glaucoma detection from fundus images using wavelet-based denoising and machine learning". Concurrent Engineering, 9 de julio de 2021, 1063293X2110266. http://dx.doi.org/10.1177/1063293x211026620.
Texto completoChandrinos, Aristeidis y Dorotheos-Dimitrios Tzamouranis. "A Review of Learning Effect in Perimetry". Ophthalmology Research: An International Journal, 21 de abril de 2020, 23–30. http://dx.doi.org/10.9734/or/2020/v12i230144.
Texto completoRomeni, Simone, Davide Zoccolan y Silvestro Micera. "A Machine Learning Framework to Optimize Optic Nerve Electrical Stimulation for Vision Restoration". SSRN Electronic Journal, 2021. http://dx.doi.org/10.2139/ssrn.3787903.
Texto completoZou, Beiji, Changlong Chen, Rongchang Zhao, Pingbo Ouyang, Chengzhang Zhu, Qilin Chen y Xuanchu Duan. "A novel glaucomatous representation method based on Radon and wavelet transform". BMC Bioinformatics 20, S25 (diciembre de 2019). http://dx.doi.org/10.1186/s12859-019-3267-6.
Texto completoXu, Yongli, Man Hu, Hanruo Liu, Hao Yang, Huaizhou Wang, Shuai Lu, Tianwei Liang et al. "A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis". npj Digital Medicine 4, n.º 1 (11 de marzo de 2021). http://dx.doi.org/10.1038/s41746-021-00417-4.
Texto completo"Recent Automated Glaucoma Detection Techniques using Color Fundus Images". International Journal of Innovative Technology and Exploring Engineering 8, n.º 9S (23 de agosto de 2019): 737–42. http://dx.doi.org/10.35940/ijitee.i1119.0789s19.
Texto completo"Automated Fundoscopy for Glaucoma Detection and Classifiction". International Journal of Recent Technology and Engineering 8, n.º 5 (30 de enero de 2020): 3274–78. http://dx.doi.org/10.35940/ijrte.e6370.018520.
Texto completoNwokocha, C. G. y C. S. Ejimadu. "Analysis of Optic Disc and Vertical Cup Disc Ratio among Glaucoma Suspects in a Black Population". Journal of Advances in Medicine and Medical Research, 15 de junio de 2019, 1–8. http://dx.doi.org/10.9734/jammr/2019/v29i1130145.
Texto completoRezapour, Jasmin, Christopher Bowd, Jade Dohleman, Akram Belghith, James A. Proudfoot, Mark Christopher, Leslie Hyman et al. "The influence of axial myopia on optic disc characteristics of glaucoma eyes". Scientific Reports 11, n.º 1 (23 de abril de 2021). http://dx.doi.org/10.1038/s41598-021-88406-1.
Texto completoSeo, Sat byul y Hyun-kyung Cho. "Deep learning classification of early normal-tension glaucoma and glaucoma suspects using Bruch’s membrane opening-minimum rim width and RNFL". Scientific Reports 10, n.º 1 (4 de noviembre de 2020). http://dx.doi.org/10.1038/s41598-020-76154-7.
Texto completoDatta, Shounak, Eduardo B. Mariottoni, David Dov, Alessandro A. Jammal, Lawrence Carin y Felipe A. Medeiros. "RetiNerveNet: using recursive deep learning to estimate pointwise 24-2 visual field data based on retinal structure". Scientific Reports 11, n.º 1 (15 de junio de 2021). http://dx.doi.org/10.1038/s41598-021-91493-9.
Texto completo