Literatura académica sobre el tema "Global exact boundary controllability"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Global exact boundary controllability".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Global exact boundary controllability"

1

CHAPOULY, MARIANNE. "GLOBAL CONTROLLABILITY OF A NONLINEAR KORTEWEG–DE VRIES EQUATION". Communications in Contemporary Mathematics 11, n.º 03 (junio de 2009): 495–521. http://dx.doi.org/10.1142/s0219199709003454.

Texto completo
Resumen
We are interested in both the global exact controllability to the trajectories and in the global exact controllability of a nonlinear Korteweg–de Vries equation in a bounded interval. The local exact controllability to the trajectories by means of one boundary control, namely the boundary value at the left endpoint, has already been proved independently by Rosier, and Glass and Guerrero. We first introduce here two more controls: the boundary value at the right endpoint and the right member of the equation, assumed to be x-independent. Then, we prove that, thanks to these three controls, one has the global exact controllability to the trajectories, for any positive time T. Finally, we introduce a fourth control on the first derivative at the right endpoint, and we get the global exact controllability, for any positive time T.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Araújo, Raul K. C., Enrique Fernández-Cara y Diego A. Souza. "On the uniform controllability for a family of non-viscous and viscous Burgers-α systems". ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 78. http://dx.doi.org/10.1051/cocv/2021073.

Texto completo
Resumen
In this paper we study the global controllability of families of the so called non-viscous and viscous Burgers-α systems by using boundary and space independent distributed controls. In these equations, the usual convective velocity of the Burgers equation is replaced by a regularized velocity, induced by a Helmholtz filter of characteristic wavelength α. First, we prove a global exact controllability result (uniform with respect to α) for the non-viscous Burgers-α system, using the return method and a fixed-point argument. Then, the global uniform exact controllability to constant states is deduced for the viscous equations. To this purpose, we first prove a local exact controllability property and, then, we establish a global approximate controllability result for smooth initial and target states.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Li (Daqian Li), Tatsien. "Global exact boundary controllability for first order quasilinear hyperbolic systems". Discrete & Continuous Dynamical Systems - B 14, n.º 4 (2010): 1419–32. http://dx.doi.org/10.3934/dcdsb.2010.14.1419.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wang, Ke. "Global exact boundary controllability for 1-D quasilinear wave equations". Mathematical Methods in the Applied Sciences 34, n.º 3 (23 de agosto de 2010): 315–24. http://dx.doi.org/10.1002/mma.1358.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Li, Tatsien y Lei Yu. "Local exact boundary controllability of entropy solutions to linearly degenerate quasilinear hyperbolic systems of conservation laws". ESAIM: Control, Optimisation and Calculus of Variations 24, n.º 2 (abril de 2018): 793–810. http://dx.doi.org/10.1051/cocv/2017072.

Texto completo
Resumen
In this paper, we study the local exact boundary controllability of entropy solutions to linearly degenerate quasilinear hyperbolic systems of conservation laws with characteristics of constant multiplicity. We prove the two-sided boundary controllability, the one-sided boundary controllability and the two-sided boundary controllability with fewer controls, by applying the strategy used in [T. Li and L. Yu, J. Math. Pures et Appl. 107 (2017) 1–40; L. Yu, Chinese Ann. Math., Ser. B (To appear)]. Our constructive method is based on the well-posedness of semi-global solutions constructed by the limit of ε-approximate front tracking solutions to the mixed initial-boundary value problem with general nonlinear boundary conditions, and on some further properties of both ε-approximate front tracking solutions and limit solutions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Liu, Cunming y Peng Qu. "Global exact boundary controllability for general first-order quasilinear hyperbolic systems". Chinese Annals of Mathematics, Series B 36, n.º 6 (25 de octubre de 2015): 895–906. http://dx.doi.org/10.1007/s11401-015-0968-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Capistrano–Filho, Roberto A., Ademir F. Pazoto y Lionel Rosier. "Control of a Boussinesq system of KdV–KdV type on a bounded interval". ESAIM: Control, Optimisation and Calculus of Variations 25 (2019): 58. http://dx.doi.org/10.1051/cocv/2018036.

Texto completo
Resumen
We consider a Boussinesq system of KdV–KdV type introduced by J.L. Bona, M. Chen and J.-C. Saut as a model for the motion of small amplitude long waves on the surface of an ideal fluid. This system of two equations can describe the propagation of waves in both directions, while the single KdV equation is limited to unidirectional waves. We are concerned here with the exact controllability of the Boussinesq system by using some boundary controls. By reducing the controllability problem to a spectral problem which is solved by using the Paley–Wiener method introduced by the third author for KdV, we determine explicitly all the critical lengths for which the exact controllability fails for the linearized system, and give a complete picture of the controllability results with one or two boundary controls of Dirichlet or Neumann type. The extension of the exact controllability to the full Boussinesq system is derived in the energy space in the case of a control of Neumann type. It is obtained by incorporating a boundary feedback in the control in order to ensure a global Kato smoothing effect.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Yin, Zhongqi. "Null exact controllability of the parabolic equations with equivalued surface boundary condition". Journal of Applied Mathematics and Stochastic Analysis 2006 (13 de abril de 2006): 1–10. http://dx.doi.org/10.1155/jamsa/2006/62694.

Texto completo
Resumen
This paper is devoted to showing the null exact controllability for a class of parabolic equations with equivalued surface boundary condition. Our method is based on the duality argument and global Carleman-type estimate for a parabolic operator.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

CORON, JEAN-MICHEL y EMMANUEL TRÉLAT. "GLOBAL STEADY-STATE STABILIZATION AND CONTROLLABILITY OF 1D SEMILINEAR WAVE EQUATIONS". Communications in Contemporary Mathematics 08, n.º 04 (agosto de 2006): 535–67. http://dx.doi.org/10.1142/s0219199706002209.

Texto completo
Resumen
This paper is concerned with the exact boundary controllability of semilinear wave equations in one space dimension. We prove that it is possible to move from any steady-state to any other one by means of a boundary control, provided that they are in the same connected component of the set of steady-states. The proof is based on an expansion of the solution in a one-parameter Riesz basis of generalized eigenvectors, and on an effective feedback stabilization procedure which is implemented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Li, Tatsien y Zhiqiang Wang. "Global exact boundary controllability for first order quasilinear hyperbolic systems of diagonal form". International Journal of Dynamical Systems and Differential Equations 1, n.º 1 (2007): 12. http://dx.doi.org/10.1504/ijdsde.2007.013741.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Global exact boundary controllability"

1

De-Xing, Kong y Yao Hui. "Global exact boundary controllability of a class of quasilinear hyperbolic systems of conservation laws II". Universität Potsdam, 2003. http://opus.kobv.de/ubp/volltexte/2008/2656/.

Texto completo
Resumen
In this paper, by a new constructive method, the authors reprove the global exact boundary controllability of a class of quasilinear hyperbolic systems of conservation laws with linearly degenerate fields. It is shown that the system with nonlinear boundary conditions is globally exactly boundary controllable in the class of piecewise C¹ functions. In particular, the authors give the optimal control time of the system. Finally, a new application is also given.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lu, Xing. "La contrôlabilité frontière exacte et la synchronisation frontière exacte pour un système couplé d’équations des ondes avec des contrôles frontières de Neumann et des contrôles frontières couplés de Robin". Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD013/document.

Texto completo
Resumen
Dans cette thèse, nous étudions la synchronisation, qui est un phénomène bien répandu dans la nature. Elle a été observée pour la première fois par Huygens en 1665. En se basant sur les résultats de la contrôlabilité frontière exacte, pour un système couplé d’équations des ondes avec des contrôles frontières de Neumann, nous considérons la synchronisation frontière exacte (par groupes), ainsi que la détermination de l’état de synchronisation. Ensuite, nous considérons la contrôlabilité exacte et la synchronisation exacte (par groupes) pour le système couplé avec des contrôles frontières couplés de Robin. A cause du manque de régularité de la solution, nous rencontrons beaucoup plus de difficultés. Afin de surmonter ces difficultés, on obtient un résultat sur la trace de la solution faible du problème de Robin grâce aux résultats de régularité optimale de Lasiecka-Triggiani sur le problème de Neumann. Ceci nous a permis d’établir la contrôlabilité exacte, et, par la méthode de la perturbation compacte, la non-contrôlabilité exacte du système. De plus, nous allons étudier la détermination de l’état de synchronisation, ainsi que la nécessité des conditions de compatibilité des matrices de couplage
This thesis studies the widespread natural phenomenon of synchronization, which was first observed by Huygens en 1665. On the basis of the results on the exact boundary controllability, for a coupled system of wave equations with Neumann boundary controls, we consider its exact boundary synchronization (by groups), as well as the determination of the state of synchronization. Then, we consider the exact boundary controllability and the exact boundary synchronization (by groups) for the coupled system with coupled Robin boundary controls. Due to difficulties from the lack of regularity of the solution, we have to face a bigger challenge. In order to overcome this difficulty, we take advantage of the regularity results for the mixed problem with Neumann boundary conditions (Lasiecka and Triggiani) to discuss the exact boundary controllability, and by the method of compact perturbation, to obtain the non-exact controllability for the system
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hu, Long. "Contrôle frontière, stabilisation et synchronisation pour des systèmes de lois de bilan en dimension un d'espace". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066401/document.

Texto completo
Resumen
Cette thèse est consacrée à trois sujets dans le domaine du contrôle, qui sont la contrôlabilité exacte frontière, la stabilisation frontière et la synchronisation exacte frontière, des systèmes hyperboliques de lois de bilan. Pour la partie sur la contrôlabilité exacte frontière, on améliore le temps de contrôlabilité exacte pour les systèmes hyperboliques de lois de conservation pour des conditions aux limites générales. On montre aussi que ce temps est optimal. En ce qui concerne les systèmes hyperboliques couplés avec une vitesse caractéristique nulle, nous prouvons que l'on n'a pas la contrôlabilité exacte, même avec des couplages internes dans les équations. Cependant, on montre que l'on peut stabiliser les systèmes par les lois de rétroaction à la frontière du domaine. Dans la deuxième partie, nous nous intéressons à la stabilisation frontière des systèmes hyperboliques de lois de bilan. En utilisant une approche "backstepping", on montre comment stabiliser des systèmes d'abord dans les cas linéaires puis dans les cas quasi-lin éaires. La troisième partie concerne la synchronisation exacte frontière. Nous rappelons d'abord les résultats de contrôlabilité et d'observabilité exacte frontière pour les systèmes couplés d' équations des ondes quasi-linéaires. Puis nous introduisons plusieurs types de synchronisations pour un système d' équations des ondes linéaires, puis quasi-linéaires, couplées avec des conditions aux limites de type Dirichlet, de type Neumann, de type Robin et de type dissipatif dans le cadre de solutions de classe C2. Nous montrons que toutes ces synchronisations peuvent être réalisées en imposant peu de contrôles aux frontières
This thesis is devoted to three topics in the control field, namely, exact boundary controllability, boundary stabilization and exact boundary synchronization, for hyperbolic systems of balance laws. For the exact boundary controllability part, we first improve the boundary control time for hyperbolic systems of conservation laws with general boundary conditions and show that this control time is sharp. Then for a coupled hyperbolic system with zero characteristic speed, we prove that it is impossible to achieve the corresponding exact boundary controllability even with inner couplings in the equation. However, one can stabilize the system in infinite time by means of boundary feedback laws. For the boundary stabilization part, we show how to stabilize both the n×n linear and quasilinear hyperbolic systems by means of one-sided closed-loop boundary controls. For that a backstepping method is developed. For the exact boundary synchronization part, we first recall both the exact boundary controllability and observability results for coupled systems of quasilinear wave equations. Then several kinds of exact synchronizations are introduced for a coupled system of 1-D linear and quasilinear wave equations with boundary conditions of Dirichlet type, Neumann type, coupled third type and coupled dissipative type in the framework of C2 solutions. We show that all these synchronizations can be realized by means of few boundary controls
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Toufayli, Laila. "Stabilisation polynomiale et contrôlabilité exacte des équations des ondes par des contrôles indirects et dynamiques". Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00780215.

Texto completo
Resumen
La thèse est portée essentiellement sur la stabilisation et la contrôlabilité de deux équations des ondes moyennant un seul contrôle agissant sur le bord du domaine. Dans le cas du contrôle dynamique, le contrôle est introduit dans le système par une équation différentielle agissant sur le bord. C'est en effet un système hybride. Le contrôle peut être aussi applique directement sur le bord d'une équation, c'est le cas du contrôle indirecte mais non borne. La nature du système ainsi coupledépend du couplage des équations, et ceci donne divers résultats par la stabilisation (exponentielle et polynomiale) et la contrôlabilité exacte (espace contrôlable). Des nouvelles inégalités d'énergie permettent de mettre en oeuvre la Méthode fréquentielle et la Méthode d'Unicité de Hilbert.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Rajaram, Rajeev. "Exact boundary controllability results for sandwich beam systems /". 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Li, Po-Wei y 李柏緯. "A Survey on Exact Boundary Controllability for the Korteweg-De Vries Equation on a Bounded Domain". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/22789748306006548802.

Texto completo
Resumen
碩士
國立臺灣大學
數學研究所
104
In this paper we shall survey Lionel Rosier’s theorem ([9]) about control theory. Roughly speaking, by controllability ([3]) we mean: given the initial state and the terminal state, we want to find a control function which can steer the system, such that the system with initial data can ensure the terminal state is the desired. In this paper, we study the KdV equation.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Global exact boundary controllability"

1

Li, Tatsien, Ke Wang y Qilong Gu. Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2842-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Komornik, V. Exact controllability and stabilization: The multiplier method. Chichester: J. Wiley, 1994.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Rao, Bopeng. Exact boundary controllability of a hybrid system of elasticity by the hum method. Strasbourg: Institut de recherche mathématique avancée, 2000.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Li, Tatsien, Ke Wang y Qilong Gu. Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems. Springer, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Li, Tatsien, Ke Wang y Qilong Gu. Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems. Springer, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Komornik, V. Exact Controllability and Stabilization: The Multiplier Method (Research in Applied Mathematics). John Wiley & Sons Inc, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Global exact boundary controllability"

1

Li, Tatsien y Bopeng Rao. "Exact Boundary Controllability and Non-exact Boundary Controllability". En Progress in Nonlinear Differential Equations and Their Applications, 155–71. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32849-8_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Li, Tatsien y Bopeng Rao. "Exact Boundary Controllability and Non-exact Boundary Controllability". En Progress in Nonlinear Differential Equations and Their Applications, 239–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32849-8_20.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Li, Tatsien y Bopeng Rao. "Exact Boundary Controllability and Non-exact Boundary Controllability". En Progress in Nonlinear Differential Equations and Their Applications, 33–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32849-8_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tatsien, Li. "Exact Boundary Controllability for Quasilinear Wave Equations". En Progress in Nonlinear Differential Equations and Their Applications, 149–60. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7317-2_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Avalos, George y Irena Lasiecka. "Exact-Approximate Boundary Controllability of Thermoelastic Systems under Free Boundary Conditions". En Control of Distributed Parameter and Stochastic Systems, 3–11. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-0-387-35359-3_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Shih, Yu-Ying, Te-Chung Liu, Chui-Yu Chiu y D. Y. Chao. "Exact Controllability for Dependent Siphons in S3PMR". En Global Perspective for Competitive Enterprise, Economy and Ecology, 29–40. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-762-2_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Taylor, Stephen W. "Exact Boundary Controllability of a Beam and Mass System". En Computation and Control IV, 305–21. Boston, MA: Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-2574-4_20.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Eller, M., I. Lasiecka y R. Triggiani. "Exact Boundary Controllability of Thermo-Elastic Plates with Variable Coefficients". En Semigroups of Operators: Theory and Applications, 335–51. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8417-4_33.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Grisvard, Pierre. "Singularities in Boundary Value Problems and Exact Controllability of Hyperbolic Systems". En Optimization, Optimal Control and Partial Differential Equations ISNM 107, 77–84. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-8625-3_8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Li, Tatsien, Ke Wang y Qilong Gu. "Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations". En SpringerBriefs in Mathematics, 75–82. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2842-7_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Global exact boundary controllability"

1

Salem, Ali, Lotfi Beji, Samir Otmane y Azgal Abichou. "Exact boundary controllability for Korteweg-de Vries equation". En INTELLIGENT SYSTEMS AND AUTOMATION: 2nd Mediterranean Conference on Intelligent Systems and Automation (CISA’09). AIP, 2009. http://dx.doi.org/10.1063/1.3106478.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hansen, Scott W. y Rajeev Rajaram. "Exact boundary controllability of a Rao-Nakra sandwich beam". En Smart Structures and Materials, editado por Ralph C. Smith. SPIE, 2005. http://dx.doi.org/10.1117/12.598258.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hansen, Scott W. y A. Ozkan Ozer. "Exact boundary controllability of an abstract Mead-Marcus sandwich beam model". En 2010 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010. http://dx.doi.org/10.1109/cdc.2010.5717319.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

LI, TA-TSIEN y BOPENG RAO. "SOME RESULTS ON THE EXACT BOUNDARY CONTROLLABILITY FOR QUASILINEAR HYPERBOLIC SYSTEMS". En Proceedings of the International Conference on Inverse Problems. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704924_0042.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Hansen, Scott W. "Exact boundary controllability of a Schrödinger equation with an internal point mass". En 2017 American Control Conference (ACC). IEEE, 2017. http://dx.doi.org/10.23919/acc.2017.7963538.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

LI, TATSIEN. "EXACT BOUNDARY CONTROLLABILITY OF UNSTEADY FLOWS IN A NETWORK OF OPEN CANALS". En Differential Equations & Asymptotic Theory in Mathematical Physics. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702395_0008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Liu, Yuxiang y Pengfei Yao. "Exact boundary controllability for the wave equation with time-dependent and variable coefficients". En 2014 33rd Chinese Control Conference (CCC). IEEE, 2014. http://dx.doi.org/10.1109/chicc.2014.6897062.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Shklyar, B. "Exact Null-Controllability of Abstract Evolution Equations With Boundary Input Operators by Smooth Control". En ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82535.

Texto completo
Resumen
The paper deals with exact null-controllability problem for a linear control system governed by smooth controls. Applications to the exact null-controllability for partial parabolic equations are considered.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Fengyan, Yang y Yao Pengfei. "Exact controllability of the Euler-Bernoulli plate with variable coefficients and mixed boundary conditions". En 2015 34th Chinese Control Conference (CCC). IEEE, 2015. http://dx.doi.org/10.1109/chicc.2015.7259837.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hansen, Scott W. "Exact controllability of a multilayer Rao-Nakra beam with minimal number of boundary controls". En The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, editado por Douglas K. Lindner. SPIE, 2007. http://dx.doi.org/10.1117/12.715941.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía