Tesis sobre el tema "Graph and hypergraph drawing"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Graph and hypergraph drawing".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Sallaberry, Arnaud. "Visualisation d'information : de la théorie sémiotique à des exemples pratiques basés sur la représentation de graphes et d'hypergraphes". Phd thesis, Université Sciences et Technologies - Bordeaux I, 2011. http://tel.archives-ouvertes.fr/tel-00646397.
Texto completoYilma, Zelealem Belaineh. "Results in Extremal Graph and Hypergraph Theory". Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/49.
Texto completoSuderman, Matthew. "Layered graph drawing". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86054.
Texto completoAs a first very drastic restriction, we consider layered drawings that are planar. Even with this restriction, however, the resulting problems can still be NP -hard. In addition to proving one such hardness result, we do succeed in deriving efficient algorithms for two problems. In both cases, we correct previously published results that claimed extremely simple and efficient algorithmic solutions to these problems. Our solutions, though efficient as well, show that the truth about these problems is significantly more complex than the published results would suggest.
We also study non-planar layered drawings, particularly drawings obtained by crossing minimization and minimum planarization. Though the corresponding problems are NP -hard, they become tractable when the value to be minimized is upper-bounded by a constant. This approach to obtaining tractable problems is formalized in a theory called parameterized complexity, and the resulting tractable problems and algorithmic solutions are said to be fixed-parameter tractable ( FPT ). Though relatively new, this theory has attracted a rapidly growing body of theoretical results. Indeed, we derive original FPT algorithms with the best-known asymptotic running times for planarization in two layer drawings.
Because parameterized complexity is so new, little is known about its implications to the practice of graph drawing. Consequently, we have implemented a few FPT algorithms and compared them experimentally with previously implemented approaches, especially integer linear programming (ILP). Our experiments show that the performance of our FPT planarization algorithms are competitive with current ILP algorithms, but that, for crossing minimization, current ILP algorithms remain the clear winners.
Puppe, Thomas. "Spectral graph drawing". [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11759114.
Texto completoSchulz, Michael. "Simultaneous graph drawing". Tönning Marburg Lübeck Der Andere Verl, 2008. http://d-nb.info/992494834/04.
Texto completoWang, Guan. "STREAMING HYPERGRAPH PARTITION FOR MASSIVE GRAPHS". Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1385097649.
Texto completoPampel, Barbara [Verfasser]. "Constrained Graph Drawing / Barbara Pampel". Konstanz : Bibliothek der Universität Konstanz, 2012. http://d-nb.info/1024457656/34.
Texto completoHe, Dayu. "Algorithms for Graph Drawing Problems". Thesis, State University of New York at Buffalo, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10284151.
Texto completoA graph G is called planar if it can be drawn on the plan such that no two distinct edges intersect each other but at common endpoints. Such drawing is called a plane embedding of G. A plane graph is a graph with a fixed embedding. A straight-line drawing G of a graph G = (V, E) is a drawing where each vertex of V is drawn as a distinct point on the plane and each edge of G is drawn as a line segment connecting two end vertices. In this thesis, we study a set of planar graph drawing problems.
First, we consider the problem of monotone drawing: A path P in a straight line drawing Γ is monotone if there exists a line l such that the orthogonal projections of the vertices of P on l appear along l in the order they appear in P. We call l a monotone line (or monotone direction) of P. G is called a monotone drawing of G if it contains at least one monotone path Puw between every pair of vertices u,w of G. Monotone drawings were recently introduced by Angelini et al. and represent a new visualization paradigm, and is also closely related to several other important graph drawing problems. As in many graph drawing problems, one of the main concerns of this research is to reduce the drawing size, which is the size of the smallest integer grid such that every graph in the graph class can be drawn in such a grid. We present two approaches for the problem of monotone drawings of trees. Our first approach show that every n-vertex tree T admits a monotone drawing on a grid of size O(n1.205) × O( n1.205) grid. Our second approach further reduces the size of drawing to 12n × 12n, which is asymptotically optimal. Both of our two drawings can be constructed in O(n) time.
We also consider monotone drawings of 3-connected plane graphs. We prove that the classical Schnyder drawing of 3-connected plane graphs is a monotone drawing on a f × f grid, which can be constructed in O(n) time.
Second, we consider the problem of orthogonal drawing. An orthogonal drawing of a plane graph G is a planar drawing of G such that each vertex of G is drawn as a point on the plane, and each edge is drawn as a sequence of horizontal and vertical line segments with no crossings. Orthogonal drawing has attracted much attention due to its various applications in circuit schematics, relationship diagrams, data flow diagrams etc. . Rahman et al. gave a necessary and sufficient condition for a plane graph G of maximum degree 3 to have an orthogonal drawing without bends. An orthogonal drawing D(G) is orthogonally convex if all faces of D(G) are orthogonally convex polygons. Chang et al. gave a necessary and sufficient condition (which strengthens the conditions in the previous result) for a plane graph G of maximum degree 3 to have an orthogonal convex drawing without bends. We further strengthen the results such that if G satisfies the same conditions as in previous papers, it not only has an orthogonally convex drawing, but also a stronger star-shaped orthogonal drawing.
Lauw, Madelaine L. "TiddlyGraph : graph drawing tool for TiddlyWiki /". Leeds : University of Leeds, School of Computer Studies, 2008. http://www.comp.leeds.ac.uk/fyproj/reports/0708/Lauw.pdf.
Texto completoAspegren, Villiam. "CluStic – Automatic graph drawing with clusters". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179251.
Texto completoMålet med automatiserad grafritning är att utifrån en uppsättning noder och kanter hitta en layout som är visuellt tillfredställande. Ett delområde som inte utforskats nog är möjligheten till att låsa vissa komponenter i grafen som sedan inte får alterneras av grafritningsalgoritmen. En användare som exempel, strukturerar vissa delar av grafen manuellt och applicerar sedan automatisk layout av resterande element utan att förstöra den struktur som manuellt skapats. CluStic, grafritningsverktyget som skapats och utvärderats i denna masters uppsats fyller denna funktion. CluStic bevarar den interna strukturen för ett kluster genom att tilldela en högre prioritet för noder i klustret med avseende på övriga element i grafen. Efter att högprioritets element placerats tilldelas resterande element sina bäst tillgängliga positioner. Utöver detta så uppfyller CluStic några av de vanligaste estetiska mål inom grafritning: minimera antalet kantkorsningar, minimera höjden, och räta ut kanter. Metoden som används i denna master uppsatts var att först gör en inledande studie där vi undersöker fyra populära grafritnings verktyg: Cytogate, GraphDraw, Diagram.Net och GraphNet. En uppsättning grafer genereras av dessa verktyg och vi mäter hur lång tid det tar för en användare att hitta den längsta vägen i grafen. Genom denna studie konstaterar vi att Cytogate presenterade grafer med best kvalitet. Från kunskap samlad i den inledande studien utvecklar vi CluStic och utför uppsatsens huvud studie där vi jämför CluStic med avseende på Cytogate och en bas layout Breddenförst algoritm. CluStic uppnår ett visualiserings effektivitetsvärde på 1,4 vilket är en ökning jämtemot Bredden-först algoritmen (-3,8). CluStic levererar inte layouter som är mer visuellt tillfredställande än de som skapats av Cytogate som får ett visualiserings effektivitetsvärde på 1,9. CluStic tillskillnad från Cytogate bevarar den internt fixa strukturen mellan element med hög prioritet vilket gör CluStic till det bättre verktyget för grafer med statiska element.
Klein, Karsten [Verfasser]. "Interactive graph drawing with constraints / Karsten Klein". Dortmund : Universitätsbibliothek Technische Universität Dortmund, 2011. http://d-nb.info/1011569876/34.
Texto completoCornelsen, Sabine. "Drawing families of cuts in a graph". [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967110165.
Texto completoKlemz, Boris [Verfasser]. "Facets of Planar Graph Drawing / Boris Klemz". Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1221130323/34.
Texto completo陳建銘 y Kin-ming Chan. "Using graph drawing techniques to visualise software". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B31212086.
Texto completoChan, Kin-ming. "Using graph drawing techniques to visualise software /". [Hong Kong] : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B1479634X.
Texto completoBaker, Robert. "A method for graph drawing utilising patterns". Thesis, University of Kent, 2017. https://kar.kent.ac.uk/63895/.
Texto completoKutz, Martin. "The Angel problem, positional games, and digraph roots strategies and complexity /". [S.l. : s.n.], 2004. http://www.diss.fu-berlin.de/2004/250/index.html.
Texto completoMa, Wenbin. "GDC, a graph drawing application with clustering techniques". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ60460.pdf.
Texto completoFörster, Henry [Verfasser]. "Graph Drawing Beyond the Beaten Tracks / Henry Förster". Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1220689629/34.
Texto completoArchambault, Daniel William. "Feature-based graph visualization". Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2839.
Texto completoLightcap, Andrew. "Minimum Degree Conditions for Tilings in Graphs and Hypergraphs". Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/math_theses/111.
Texto completoKim, Dong Hyun. "Three-dimensional orthogonal graph drawing with direction constrained edges". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18469.
Texto completoLe dessin de graphe étudie le problème de produire des plans de structures relationnelles pouvant être représentées par des graphes combinatoires. Un dessin orthogonal est un graphe dont les arêtes sont des lignes polygonales parallèles aux axes de coordonnées. Les dessins orthogonaux sont utiles dans plusieurs applications de divers champs comme la visualisation d'information et la fabrication de plan pour l'intégration de circuits à très grande échelle (very large scale integration - VLSI). Une des meilleures méthodes pour générer des plans orthogonaux bidimensionnels de graphes est l'approche dite de «Topology-Shape-Metrics» [Topologie-Forme-Métrique], où la tâche de définir les formes combinatoires du dessin est séparée de celle de déterminer les coordonnées géométriques des sommets dans le dessin final. Par opposition à son équivalent bidimensionnel, la méthode de «Topology-Shape-Metric» mentionnée précédemment n'a pas encore été exploitée en trois dimensions. La première étape afin d'atteindre ce but est énoncée par Di Battista et autres [10, 11] lorsqu'il donne les caractéristiques combinatoires des chemins et cycles d'une forme donnée tels qu'ils admettent des dessins 3D simples, (c'est-à-dire: sans intersections). En particulier, [10] étudie le problème suivant: étant donné un cycle avec une étiquette associant chaque arête à son axe parallèle, peut-on obtenir un dessin orthogonal simple du cycle? La preuve de la condition nécessaire pour la caractérisation dans [10] s'est néanmoins révélée comme étant incomplète par les auteurs. Le but de ce mémoire est donc de compléter la preuve de la caractérisation donnée par Di Battista et autres et aussi de discuter les résultats futurs résultant des conséquences de la complétion de la caractérisation.
Newton, Matthew. "Sequential and parallel algorithms for low-crossing graph drawing". Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/12944.
Texto completoMondal, Debajyoti. "Visualizing graphs: optimization and trade-offs". CCCG, 2014. http://hdl.handle.net/1993/31673.
Texto completoOctober 2016
Behzadi, Lila. "An improved spring-based graph embedding algorithm and LayoutShow, a Java environment for graph drawing". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq43368.pdf.
Texto completoKlimenta, Mirza [Verfasser]. "Extending the Usability of Multidimensional Scaling for Graph Drawing / Mirza Klimenta". Konstanz : Bibliothek der Universität Konstanz, 2012. http://d-nb.info/1030479127/34.
Texto completoIsmaeel, Alaa Aly Khalaf [Verfasser] y H. [Akademischer Betreuer] Schmeck. "Dynamic Hierarchical Graph Drawing / Alaa Aly Khalaf Ismaeel. Betreuer: H. Schmeck". Karlsruhe : KIT-Bibliothek, 2012. http://d-nb.info/1023081776/34.
Texto completoKrug, Robert [Verfasser] y Michael [Akademischer Betreuer] Kaufmann. "New Approaches on Octilinear Graph Drawing / Robert Krug ; Betreuer: Michael Kaufmann". Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1163396907/34.
Texto completoMONDAL, DEBAJYOTI. "Embedding a Planar Graph on a Given Point Set". Springer-Verlag Berlin, 2012. http://hdl.handle.net/1993/8869.
Texto completoJezný, Lukáš. "Automatické rozvržení diagramů". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2008. http://www.nusl.cz/ntk/nusl-412807.
Texto completoKindermann, Philipp [Verfasser], Alexander [Gutachter] Wolff y André [Gutachter] Schulz. "Angular Schematization in Graph Drawing / Philipp Kindermann. Gutachter: Alexander Wolff ; André Schulz". Würzburg : Würzburg University Press, 2015. http://d-nb.info/1111783756/34.
Texto completoRadermacher, Marcel [Verfasser] y D. [Akademischer Betreuer] Wagner. "Geometric Graph Drawing Algorithms - Theory, Engineering and Experiments / Marcel Radermacher ; Betreuer: D. Wagner". Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1206646632/34.
Texto completoTsuchida, Kensei. "The complexity and algorithms of graph drawing = Gurafu byōga no keisanryō to arugorizumu /". Electronic version of summary, 1994. http://www.wul.waseda.ac.jp/gakui/gaiyo/2089.pdf.
Texto completoJAIN, RACHANA. "IMPROVED TECHNIQUES IN GRAPH DRAWING USING FORCE DIRECTED METHODS FOR MODERATE SIZE GRAPHS". University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1081543392.
Texto completoRahman, Md Ahsanur. "Unstable Communities in Network Ensembles". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/78290.
Texto completoPh. D.
Fink, Martin Verfasser], Alexander [Gutachter] Wolff y Michael [Gutachter] [Kaufmann. "Crossings, Curves, and Constraints in Graph Drawing / Martin Fink. Gutachter: Alexander Wolff ; Michael Kaufmann". Würzburg : Würzburg University Press, 2014. http://d-nb.info/1111508038/34.
Texto completoFink, Martin [Verfasser], Alexander Gutachter] Wolff y Michael [Gutachter] [Kaufmann. "Crossings, Curves, and Constraints in Graph Drawing / Martin Fink. Gutachter: Alexander Wolff ; Michael Kaufmann". Würzburg : Würzburg University Press, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98235.
Texto completoGaconnet, Christopher James. "Force-Directed Graph Drawing and Aesthetics Measurement in a Non-Strict Pure Functional Programming Language". Thesis, University of North Texas, 2009. https://digital.library.unt.edu/ark:/67531/metadc12125/.
Texto completoHeinsohn, Niklas [Verfasser] y Michael [Akademischer Betreuer] Kaufmann. "Ply and Bar Visibility - Some Advanced Concepts in Graph Drawing / Niklas Heinsohn ; Betreuer: Michael Kaufmann". Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1210484250/34.
Texto completoGaconnet, Christopher James Tarau Paul. "Force-directed graph drawing and aesthetics measurement in a non-strict pure functional programming language". [Denton, Tex.] : University of North Texas, 2009. http://digital.library.unt.edu/ark:/67531/metadc12125.
Texto completoWinkelmolen, Guus. "Improving The Visualization And Animation Of Weighted Dynamic Networks Using Force-Directed Graph Drawing Algorithms". Thesis, Linköpings universitet, Institutet för analytisk sociologi, IAS, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-178699.
Texto completoHuang, Sangxia. "Hardness of Constraint Satisfaction and Hypergraph Coloring : Constructions of Probabilistically Checkable Proofs with Perfect Completeness". Doctoral thesis, KTH, Teoretisk datalogi, TCS, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168576.
Texto completoEtt probabilistiskt verifierbart bevis (eng: Probabilistically Checkable Proof, PCP) av en matematisk sats är ett bevis skrivet på ett speciellt sätt vilket möjliggör en effektiv probabilistisk verifiering. Den berömda PCP-satsen säger att för varje familj av påståenden i NP finns det en probabilistisk verifierare som kontrollerar om en PCP bevis är giltigt genom att läsa endast 3 bitar från det. Denna banbrytande sats, och arbetena som ledde fram till det, lade grunden för många senare arbeten inom komplexitetsteorin, framförallt inom studiet av approximerbarhet av kombinatoriska optimeringsproblem. I denna avhandling fokuserar vi på en bred klass av optimeringsproblem i form av villkorsuppfyllningsproblem (engelska ``Constraint Satisfaction Problems'' CSPs). En instans av ett CSP av aritet k ges av en mängd variabler som tar värden från någon ändlig domän, och ett antal villkor som vart och ett beror på en delmängd av högst k variabler. Målet är att hitta ett tilldelning av variablerna som samtidigt uppfyller så många som möjligt av villkoren. En alternativ formulering av målet som ofta används är Gap-CSP, där målet är att avgöra om en CSP-instans är satisfierbar eller långt ifrån satisfierbar, där den exakta innebörden av att vara ``långt ifrån satisfierbar'' varierar beroende på problemet.Först studerar vi booleska CSPer, där domänen är {0,1}. Den fråga vi studerar är svårigheten av att särskilja satisfierbara boolesk CSP-instanser från instanser där den bästa tilldelningen satisfierar högst en andel epsilon av villkoren. Intuitivt, när ariten ökar blir CSP mer komplexa och därmed bör svårighetsparametern epsilon avta med ökande aritet. Detta visar sig vara sant och ett första resultat är att för booleska CSP av aritet k är det NP-svårt att särskilja satisfierbara instanser från dem som är högst 2^{~O(k^{1/3})}/2^k-satisfierbara. Vidare studerar vi färgläggning av grafer och hypergrafer. Givet en graf eller en hypergraf, är en färgläggning en tilldelning av färger till noderna, så att ingen kant eller hyperkant är monokromatisk. Problemet vi analyserar är att särskilja instanser som är färgbara med ett litet antal färger från dem som behöver många färger. För grafer visar vi att det finns en konstant K_0>0, så att för alla K >= K_0 är det NP-svårt att särskilja grafer som är K-färgbara från dem som kräver minst 2^{Omega(K^{1/3})} färger. För hypergrafer visar vi att det är kvasi-NP-svårt att särskilja 2-färgbara 8-likformiga hypergrafer som har N noder från dem som kräv minst 2^{(log N)^{1/4-o(1)}} färger. Samtliga dessa resultat bygger på konstruktioner av PCPer med perfekt fullständighet. Det vill säga PCPer där verifieraren alltid accepterar ett korrekt bevis. Inte bara är detta en mycket naturlig egenskap för PCPer, men det kan också vara ett nödvändigt krav för vissa tillämpningar. Konstruktionen av PCPer med perfekt fullständighet för NP-påståenden ger tekniska komplikationer och kräver delvis utvecklande av nya metoder. Vårt booleska CSPer resultat och vårt Färgläggning resultat bevisas genom att anpassa ``Direktsumman-metoden'' introducerad av Siu On Chan till fallet med perfekt fullständighet. Vårt bevis för hypergraffärgningssvårighet förbättrar och förenklar ett färskt resultat av Khot och Saket, där de föreslog begreppet superpositionskomplexitet av CSP.
QC 20150916
Deveci, Mehmet. "Load-Balancing and Task Mapping for Exascale Systems". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429199721.
Texto completoChan, Hubert. "A Parameterized Algorithm for Upward Planarity Testing of Biconnected Graphs". Thesis, University of Waterloo, 2003. http://hdl.handle.net/10012/1090.
Texto completoDo, Nascimento Hugo Alexandre Dantas. "User hints for optimisation processes". University of Sydney. Information Technologies, 2003. http://hdl.handle.net/2123/591.
Texto completoRevoori, Soundarya. "Computing the Rectilinear Crossing Number of K". Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6936.
Texto completoBadaoui, Mohamad. "G-graphs and Expander graphs". Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC207/document.
Texto completoApplying algebraic and combinatorics techniques to solve graph problems leads to the birthof algebraic and combinatorial graph theory. This thesis deals mainly with a crossroads questbetween the two theories, that is, the problem of constructing infinite families of expandergraphs.From a combinatorial point of view, expander graphs are sparse graphs that have strongconnectivity properties. Expanders constructions have found extensive applications in bothpure and applied mathematics. Although expanders exist in great abundance, yet their explicitconstructions, which are very desirable for applications, are in general a hard task. Mostconstructions use deep algebraic and combinatorial approaches. Following the huge amountof research published in this direction, mainly through Cayley graphs and the Zig-Zagproduct, we choose to investigate this problem from a new perspective; namely by usingG-graphs theory and spectral hypergraph theory as well as some other techniques. G-graphsare like Cayley graphs defined from groups, but they correspond to an alternative construction.The reason that stands behind our choice is first a notable identifiable link between thesetwo classes of graphs that we prove. This relation is employed significantly to get many newresults. Another reason is the general form of G-graphs, that gives us the intuition that theymust have in many cases such as the relatively high connectivity property.The adopted methodology in this thesis leads to the identification of various approaches forconstructing an infinite family of expander graphs. The effectiveness of our techniques isillustrated by presenting new infinite expander families of Cayley and G-graphs on certaingroups. Also, since expanders stand in no single stem of graph theory, this brings us toinvestigate several closely related threads from a new angle. For instance, we obtain newresults concerning the computation of spectra of certain Cayley and G-graphs, and theconstruction of several new infinite classes of integral and Hamiltonian Cayley graphs
Renata, Vaderna. "Algoritmi i jezik za podršku automatskom raspoređivanju elemenata dijagrama". Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2018. https://www.cris.uns.ac.rs/record.jsf?recordId=107524&source=NDLTD&language=en.
Texto completoThis thesis presents a research aimed towards the problem of automaticallylaying out elements of a diagram. The analysis of existing solutions showed that thereis some room for improvement, especially regarding variety of available algorithms.Also, none of the solutions offer possibility of automatically choosing an appropriategraph layout algorithm. Within the research, a large number of different algorithms forgraph drawing and analysis were studied, implemented, and, in some cases,enhanced. A method for automatically choosing the best available layout algorithmbased on properties of a graph was defined. Additionally, a domain-specific languagefor specifying a graph’s layout was designed.
Gronemann, Martin [Verfasser], Michael [Akademischer Betreuer] Jünger, Markus [Akademischer Betreuer] Chimani y Bettina [Akademischer Betreuer] Speckmann. "Algorithms for Incremental Planar Graph Drawing and Two-page Book Embeddings / Martin Gronemann. Gutachter: Michael Jünger ; Markus Chimani ; Bettina Speckmann". Köln : Universitäts- und Stadtbibliothek Köln, 2015. http://d-nb.info/1076864759/34.
Texto completoKöstinger, Harald. "ViNCent – Visualization of NetworkCentralities". Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-10793.
Texto completo