Literatura académica sobre el tema "Gravity waves"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Gravity waves".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Gravity waves"
Naciri, Mamoun y Chiang C. Mei. "Evolution of short gravity waves on long gravity waves". Physics of Fluids A: Fluid Dynamics 5, n.º 8 (agosto de 1993): 1869–78. http://dx.doi.org/10.1063/1.858812.
Texto completoDias, Frédéric y Christian Kharif. "NONLINEAR GRAVITY AND CAPILLARY-GRAVITY WAVES". Annual Review of Fluid Mechanics 31, n.º 1 (enero de 1999): 301–46. http://dx.doi.org/10.1146/annurev.fluid.31.1.301.
Texto completoAkers, Benjamin F., David M. Ambrose y J. Douglas Wright. "Gravity perturbed Crapper waves". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, n.º 2161 (8 de enero de 2014): 20130526. http://dx.doi.org/10.1098/rspa.2013.0526.
Texto completoBeya, Jose, William Peirson y Michael Banner. "ATTENUATION OF GRAVITY WAVES BY TURBULENCE". Coastal Engineering Proceedings 1, n.º 32 (2 de febrero de 2011): 3. http://dx.doi.org/10.9753/icce.v32.waves.3.
Texto completoKenyon, Kern E. "Frictionless Surface Gravity Waves". Natural Science 12, n.º 04 (2020): 199–201. http://dx.doi.org/10.4236/ns.2020.124017.
Texto completoSUN, TIEN-YU y KAI-HUI CHEN. "ON INTERNAL GRAVITY WAVES". Tamkang Journal of Mathematics 29, n.º 4 (1 de diciembre de 1998): 249–69. http://dx.doi.org/10.5556/j.tkjm.29.1998.4254.
Texto completoVikulin, A. V., A. A. Dolgaya y S. A. Vikulina. "Geodynamic waves and gravity". Geodynamics & Tectonophysics 5, n.º 1 (2014): 291–303. http://dx.doi.org/10.5800/gt-2014-5-1-0128.
Texto completoLonguet-Higgins, M. S. "Bifurcation in gravity waves". Journal of Fluid Mechanics 151, n.º -1 (febrero de 1985): 457. http://dx.doi.org/10.1017/s0022112085001057.
Texto completoPizzo, Nick E. "Surfing surface gravity waves". Journal of Fluid Mechanics 823 (16 de junio de 2017): 316–28. http://dx.doi.org/10.1017/jfm.2017.314.
Texto completoSTENFLO, L. y P. K. SHUKLA. "Nonlinear acoustic–gravity waves". Journal of Plasma Physics 75, n.º 6 (11 de marzo de 2009): 841–47. http://dx.doi.org/10.1017/s0022377809007892.
Texto completoTesis sobre el tema "Gravity waves"
Popat, Nilesh R. "Steep capillary waves on gravity waves". Thesis, University of Bristol, 1989. http://hdl.handle.net/1983/78695ee9-b923-4374-b70c-6589b4215241.
Texto completoLeaman, Nye Abigail. "Scattering of internal gravity waves". Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/238679.
Texto completoHalliday, Oliver John. "Atmospheric convection and gravity waves". Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22414/.
Texto completoDoherty, Mary Jane. "Focal lengths and gravity waves". Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/73280.
Texto completoMICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH.
Transferred to 1/2 in VHS videotape from 8 mm film.
Includes bibliographical references (leaves 56-57).
Film is composed of tiny photographs which, when projected, sometimes look very much like people and things in the real world. Film, too, cannot be separated from its tools. Aesthetic criticism was, and still is, weighted towards consideration of the life-like tiny photographs. This thesis traces the evolution of film technology in order to establish the point where non- fiction ideology (aesthetics) lost pace with technical innovation - a derailment, so to speak, with nefarious implications for the present-day filmmaker. The emphasis is on lenses - the provocative "camera eye" - and sound recording equipment - which proved to be the rate-limiter of technical advance. This thesis considers two filmmaking solutions to the present malaise; the Standard TV Documentary, and the single-person shooting methodology of former MIT filmmakers, Jeff Kreines and Joel DeMott - both of which, in turn , will be compared to my own response - in the form of a movie, Gravity, which is about the members of an MIT experimental astrophysics laboratory trying to discover gravity waves. A videotape copy of the movie. is included with the thesis paper.
by Mary Jane Doherty.
M.S.V.S.
Mantke, Wolfgang. "Spin and gravity". Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/27605.
Texto completoGibson-Wilde, Dorothy E. "Atmospheric gravity waves in constituent distributions /". Title page, abstract and contents only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phg4516.pdf.
Texto completoMeza, Valle Claudio Alejandro. "Early detection of extreme waves by acoustic gravity-waves". Tesis, Universidad de Chile, 2019. http://repositorio.uchile.cl/handle/2250/171084.
Texto completoExtreme waves generated in the ocean are of high importance because various maritime structures in the world, including ships, are confronted to this type of wave events, both in deep waters and in coastal areas. Some extreme waves correspond to wave phenomena generated in an atypical way in the ocean, also called monster waves, freak waves, rogue waves, extreme waves, solitons etc., since their generation differs from the common waves generated by wind. Assuming a slightly compressible ocean, the generation and analysis of acoustic-gravity waves (AGW or acoustic waves) in the ocean have been the subject of study for some time, because from them it is possible to obtain some information from the gravity wave, in this case a extreme wave that have generated them, and also to know other kind of phenomena induced by these AGW, as is the case of the bottom pressure. In the present work, a mathematical model has been developed which represents the generation and propagation of an extreme wave represented by a pressure change in the surface of the ocean considering compressible fluid, from which the generation and propagation of acoustic waves is induced. Since sound travels at a speed of 1500 m/s in the ocean, these waves arrive first at any observation point, allowing early detection of the extreme wave from the pressure in the oceanic bottom due to propagation of the acoustic wave. The theoretical development and two-dimensional numerical simulations are presented in the document. The implementation of this methodology and its results is relevant in the field of civil and maritime engineering in Chile since its high potential in coastal zones, due to the fact that for some years, the frequency of extreme wave events has been seen increased, and having an alternative detection system for extreme wave events can become a relevant factor in coastal management and natural disasters services. It is important to mention that this type of work has not been developed previously in Chile.
proyectos Centros de Excelencia Basal Conicyt PIA AFB 170001 CMM & UMI-CNRS 2807 y Fondecyt Regular 1171854
Horne, Iribarne Ernesto. "Transport properties of internal gravity waves". Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1027/document.
Texto completoInternal waves are produced as a consequence of the dynamic balance between buoyancy and gravity forces when a particle of fluid is vertically displaced in a stably stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves propagation. Furthermore, these two environments stock a vast amount of particles at their boundaries and in their bulk. Therefore, internal waves and particles will inexorably interact in these systems. In this work, exploratory experiments are performed to study wave generated erosive transport of particles. In order to determine a transport threshold, the peculiar properties of internal waves (“critical reflection”) are employed to increase the intensity of the wave field at the boundaries. A method was developed in collaboration with a signal processing team to improve the determination of the wave components involved in near-critical reflection. This method enabled us to compare our experimental results with a theory of critical reflection, showing good agreement and allowing to extrapolate these results to experiments beyond ours and to oceanic conditions. In addition, we study the interaction of internal waves with a column of particles in sedimentation. Two main effects are observed: the column oscillates around an equilibrium position, and it is displaced as a whole. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift of the waves. This effect could also explain the frequency dependence of the displacement
Eckermann, Stephen D. "Atmospheric gravity waves : obsevations and theory /". Title page, table of contents and abstract only, 1990. http://web4.library.adelaide.edu.au/theses/09PH/09phe1862.pdf.
Texto completoCopies of author's previously published articles inserted. Includes bibliographical references (leaves 261-288).
Yan, Xiuping. "Satellite observations of atmospheric gravity waves". Thesis, University of Leicester, 2010. http://hdl.handle.net/2381/7979.
Texto completoLibros sobre el tema "Gravity waves"
Dastidar, Pranab R. Magneto-gravity. Mumbai: P.R. Dastidar, 2006.
Buscar texto completoA, Datta, Sharman R. D y Dryden Flight Research Facility, eds. Lee waves: Benign and malignant. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Facility, 1993.
Buscar texto completoAgnon, Yehuda. Nonlinear diffraction of ocean gravity waves. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1986.
Buscar texto completoWilliams, JohnM. Tables of progressive gravity waves. Boston (Mass.): Pitman Advanced Publishing Program, 1985.
Buscar texto completoVanden-Broeck, J. M. Gravity-capillary free-surface flows. New York: Cambridge University Press, 2010.
Buscar texto completoN, Hunt J., ed. Gravity waves in water of finite depth. Southampton: Computational Mechanics Publications, 1997.
Buscar texto completoVanden-Broeck, J. M. Gravity-capillary free-surface flows. New York: Cambridge University Press, 2010.
Buscar texto completoKeeley, J. R. SAR sensitivities to surface gravity waves. Ottawa: Department of Fisheries and Oceans, 1992.
Buscar texto completoK, Dutt P. y Langley Research Center, eds. Acoustic gravity waves: A computational approach. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Buscar texto completoRabinovich, A. B. Dlinnye gravitat͡s︡ionnye volny v okeane: Zakhvat, resonans, izluchenie. Sankt-Peterburg: Gidrometeoizdat, 1993.
Buscar texto completoCapítulos de libros sobre el tema "Gravity waves"
Olbers, Dirk, Jürgen Willebrand y Carsten Eden. "Gravity Waves". En Ocean Dynamics, 179–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23450-7_7.
Texto completoHooke, William H. "Gravity Waves". En Mesoscale Meteorology and Forecasting, 272–88. Boston, MA: American Meteorological Society, 1986. http://dx.doi.org/10.1007/978-1-935704-20-1_12.
Texto completoManasseh, Richard. "Internal gravity waves". En Fluid Waves, 119–32. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429295263-5.
Texto completoPărău, Emilian I. y Jean-Marc Vanden-Broeck. "Gravity-Capillary and Flexural-Gravity Solitary Waves". En Nonlinear Water Waves, 183–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33536-6_11.
Texto completoHogan, Peter A. y Dirk Puetzfeld. "‘Spherical’ Gravity Waves". En SpringerBriefs in Physics, 23–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16826-0_4.
Texto completoPedlosky, Joseph. "Internal Gravity Waves". En Waves in the Ocean and Atmosphere, 59–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_7.
Texto completoSakellariadou, Mairi. "Gravitational Waves". En Modified Gravity and Cosmology, 375–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83715-0_25.
Texto completoMaeder, André. "Transport by Gravity Waves". En Physics, Formation and Evolution of Rotating Stars, 449–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-76949-1_17.
Texto completoMiles, Alan J. y B. Roberts. "Magnetoacoustic-Gravity Surface Waves". En Mechanisms of Chromospheric and Coronal Heating, 508–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87455-0_84.
Texto completoHogan, Peter A. y Dirk Puetzfeld. "Plane Fronted Gravity Waves". En SpringerBriefs in Physics, 9–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16826-0_2.
Texto completoActas de conferencias sobre el tema "Gravity waves"
AYON-BEATO, ELOY, GASTON GIRIBET y MOKHTAR HASSAINE. "CRITICAL GRAVITY WAVES". En Proceedings of the MG13 Meeting on General Relativity. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814623995_0085.
Texto completoMochimaru, Yoshihiro. "Gravity-capillary, solitary waves". En RENEWABLE ENERGY SOURCES AND TECHNOLOGIES. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5127488.
Texto completoRusso, Pedro, Pedro Oliveira, Catarina Sá-Dantas, Filipe Correia y Vasco Almeida. "Faraday Waves Zero Gravity Experiment". En 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.iac-05-a2.p.04.
Texto completoShafi, Qaisar. "Will Planck Observe Gravity Waves?" En The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.180.0483.
Texto completoLehn, Waldemar H., Wayne K. Silvester y David M. Fraser. "Mirages with Atmospheric Gravity Waves". En Light and Color in the Open Air. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/lcoa.1993.thb.3.
Texto completoLin, Chunshan y Misao Sasaki. "Resonant Amplification of Primordial Gravitational Waves". En Second LeCosPA International Symposium: Everything about Gravity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813203952_0035.
Texto completoOnorato, Miguel. "Numerical Simulation Of Surface Gravity Waves". En 28th Conference on Modelling and Simulation. ECMS, 2014. http://dx.doi.org/10.7148/2014-0007.
Texto completoTrofimov, Evgenii A. "EXPERIMENTAL STUDY OF INTERNAL GRAVITY WAVES". En Science Present and Future: Research Landscape in the 21st century. Иркутск: Федеральное государственное бюджетное учреждение науки "Иркутский научный центр Сибирского отделения Российской академии наук", 2022. http://dx.doi.org/10.54696/isc_49741454.
Texto completoKim, Eun-jin. "Angular momentum transport by internal gravity waves". En Waves in dusty, solar and space plasmas. AIP, 2000. http://dx.doi.org/10.1063/1.1324948.
Texto completoLin, Jung-Tai. "Empirical Prediction of Wave Spectrum for Wind-Generated Gravity Waves". En 20th International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1987. http://dx.doi.org/10.1061/9780872626003.036.
Texto completoInformes sobre el tema "Gravity waves"
Guza, R. T. Surface Gravity Waves And Ambient Microseismic Noise. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1992. http://dx.doi.org/10.21236/ada256498.
Texto completoMuller, Peter. ARI: Internal Gravity Waves at Abrupt Topography. Fort Belvoir, VA: Defense Technical Information Center, enero de 1991. http://dx.doi.org/10.21236/ada266383.
Texto completoFritts, David C. Nonlinear Spectral Evolution of Atmospheric Gravity Waves. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2000. http://dx.doi.org/10.21236/ada387509.
Texto completoKo, Dong S. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2015. http://dx.doi.org/10.21236/ad1013704.
Texto completoMuller, Peter. Scattering of Internal Gravity Waves at Finite Topography. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1997. http://dx.doi.org/10.21236/ada628215.
Texto completoBottone, Steven. Acoustic-Gravity Waves From Low-Altitude Localized Disturbances. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1993. http://dx.doi.org/10.21236/ada264804.
Texto completoMuller, Peter. Scattering of Internal Gravity Waves at Finite Topography. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2001. http://dx.doi.org/10.21236/ada624678.
Texto completoSullivan, Peter P., James C. McWilliams y Chin-Hoh Moeng. Surface Gravity Waves and Coupled Marine Boundary Layers. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2001. http://dx.doi.org/10.21236/ada625363.
Texto completoSilverstein, Eva y Alexander Westphal. Monodromy in the CMB: Gravity Waves and String Inflation. Office of Scientific and Technical Information (OSTI), marzo de 2008. http://dx.doi.org/10.2172/926191.
Texto completoDunkerton, Timothy J. Gravity Waves in the Atmosphere: Instability, Saturation, and Transport. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1995. http://dx.doi.org/10.21236/ada303638.
Texto completo