Literatura académica sobre el tema "HALL-sensor"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "HALL-sensor".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "HALL-sensor"
Tymochko, M. D. y Ya M. Olikh. "ACOUSTOSENSITIVITY SENSOR BASED ON SEMICONDUCTOR HALL SENSOR". Sensor Electronics and Microsystem Technologies 4, n.º 1 (30 de enero de 2007): 44–49. http://dx.doi.org/10.18524/1815-7459.2007.1.113150.
Texto completoSchott, Ch, P. A. Besse y R. S. Popovic. "Planar Hall effect in the vertical Hall sensor". Sensors and Actuators A: Physical 85, n.º 1-3 (agosto de 2000): 111–15. http://dx.doi.org/10.1016/s0924-4247(00)00328-9.
Texto completoYu, Hui-yang, Ming Qin y Meng Nie. "MEMS Hall effect pressure sensor". Electronics Letters 48, n.º 7 (2012): 393. http://dx.doi.org/10.1049/el.2011.4052.
Texto completoin 't Hout, S. R. y S. Middelhoek. "High temperature silicon Hall sensor". Sensors and Actuators A: Physical 37-38 (junio de 1993): 26–32. http://dx.doi.org/10.1016/0924-4247(93)80007-4.
Texto completoKvitkovič, J. y M. Majoroš. "Three-axis cryogenic Hall sensor". Journal of Magnetism and Magnetic Materials 157-158 (mayo de 1996): 440–41. http://dx.doi.org/10.1016/0304-8853(95)01221-4.
Texto completoZhang, Yong Jie, Zhi Yi Fang y Jian Jin. "Design and Analysis of Dual Hall Position Sensor with Automatic Direction Recognizing and Pre-Positioning Function". Applied Mechanics and Materials 599-601 (agosto de 2014): 860–63. http://dx.doi.org/10.4028/www.scientific.net/amm.599-601.860.
Texto completoZhang, Xi, Yiyun Zhao, Hui Lin, Saleem Riaz y Hassan Elahi. "Real-Time Fault Diagnosis and Fault-Tolerant Control Strategy for Hall Sensors in Permanent Magnet Brushless DC Motor Drives". Electronics 10, n.º 11 (25 de mayo de 2021): 1268. http://dx.doi.org/10.3390/electronics10111268.
Texto completoKuang, Xing Hong, Zhe Yi Yao, Zhe Yi Yao y Shi Ming Wang. "Design of Rotational Speed Measurement System Based on the Hall Sensor". Applied Mechanics and Materials 427-429 (septiembre de 2013): 596–99. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.596.
Texto completoTang, Wei, Fei Lyu, Dunhui Wang y Hongbing Pan. "A New Design of a Single-Device 3D Hall Sensor: Cross-Shaped 3D Hall Sensor". Sensors 18, n.º 4 (2 de abril de 2018): 1065. http://dx.doi.org/10.3390/s18041065.
Texto completoHamiel, Steven R., Martin R. Tubach, Joel N. Bleicher y James C. Cronan. "Determination of Palpebral Closure Using a Hall Sensor Magnet Pair". Otolaryngology–Head and Neck Surgery 110, n.º 2 (febrero de 1994): 174–76. http://dx.doi.org/10.1177/019459989411000206.
Texto completoTesis sobre el tema "HALL-sensor"
Maricato, Efeso Francisco de Melo. "Sensor Hall de GaAs por implantação de ions". [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259222.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-07-28T13:25:30Z (GMT). No. of bitstreams: 1 Maricato_EfesoFranciscodeMelo_M.pdf: 5710050 bytes, checksum: 922d33a93b7944d93f66aff4dde18594 (MD5) Previous issue date: 2000
Resumo: Neste trabalho projetamos, fabricamos e caracterizamos sensores magnéticos de efeito Hall. Realizamos um estudo sobre os princípios físicos envolvidos e figuras de mérito dos sensores (Tensão Hall, Sensibilidade, Tensão offset, Linearidade, Ruído e Coeficiente de temperatura) e, então, projetamos sensores Hall de várias geometrias, obtendo dispositivos com diferentes sensibilidades. Fabricamos estes dispositivos em camadas ativas de diferentes espessuras e dopagens com o objetivo de estudar o efeito destas variáveis na sensibilidades e linearidade dos dispositivos. O processo de fabricação desenvolvido é compatível com o processo de fabricação de transistores MESFET. Após o projeto dos sensores e processo de fabricação, fabricamos 5 níveis de máscaras através de um equipamento de feixe de elétrons. As camadas ativas foram obtidas por duas diferentes técnicas: implantação de íons e crescimento epitaxial. As regiões ativas implantadas foram dopadas com íons de 'SI POT. + SOB. 29¿ e a camada epitaxial dopada com silício, de modo que a concentração de portadores na camada ficasse na ordem de 1,0 x ¿10 POT. 17¿ 'CM POT. 3¿ e a espessura entre 0,2 - 0,5 'MU¿m. Após o encapsulamento dos dispositivos, caracterizamos os sensores com polarização de 1 - 7 mA e indução magnética entre O - 1,2 T (tesla). Os sensores fabricados apresentaram alta sensibilidade (88 - 820 V/A.T), tensão offset esperada e alta linearidade. Propomos alguns estudos sobre melhorias do processo de fabricação e sobre circuitos de condicionamento de sinais. ...Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital
Abstract: In this work we designed, fabricated and characterized Hall-effect magnetic sensors. We studied the involved physical principies and figures of merit of sensors (Hali voltage, Sensitivity, Offset voltage, Linearity, Noise and Temperature coefficient) and, then, we designed Hall sensors of different shapes, obtaining devices with different sensitivities. We fabricated these devices in active layers of different thicknesses and doping levels with the objective to study the effect of these variables on the sensitivity and linearity of the devices. The developed process is compatible with the fabrication process of MESFET transistors. After the design of the sensorsand the process,we fabricateda set of 5 levels of masks through an electron-beam equipment. The active layers have been obtained by two different techniques: ion implantation and epitaxial growth. The implanted active regions have been doped with ions of 'SI POT. + SOB. 29¿ and the doped epitaxial layer with silicon, so that the concentration of carriers in the layer was of the order of 1,0 x ¿10 POT. 17¿¿CM POT. 3¿ and the thickness between 0.2 - 0.5 'MU¿m.After the packaging of the devices, we characterized the sensors with current bias of 1 - 7 mA and magnetic induction between O - 1.2 T (tesla).The fabricated Hall sensors presented high sensitivity (88 - 820 V/A.T), low offset voltage and high linearity. Based on the results, some additional studies on improvements on the fabrication process and the signal conditioning circuits are suggested. ...Note: The complete abstract is available with the full electronic digital thesis or dissertations
Mestrado
Mestre em Engenharia Elétrica
Gonzales, Vizcarra Isaac Guillermo y Aranda Walter Santiago Campos. "Sistema de levitación magnética usando sensor de efecto hall". Bachelor's thesis, Universidad Ricardo Palma, 2014. http://cybertesis.urp.edu.pe/handle/urp/1179.
Texto completoAli, Raza. "Defect detection using eddy-currents and Hall effect sensor arrays". [Ames, Iowa : Iowa State University], 2007.
Buscar texto completoKawato, Yusuke. "Multi-DOF precision positioning methodology using two-axis Hall-effect sensors". Texas A&M University, 2003. http://hdl.handle.net/1969.1/3845.
Texto completoTian, Peng. "Graphene-based high spatial resolution hall sensors with potential application for data storage media characterisation". Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/graphenebased-high-spatial-resolution-hall-sensors-with-potential-application-for-data-storage-media-characterisation(0bb9f59f-a9e2-42e8-ac1f-0adc93e9ae01).html.
Texto completoLocke, Joshua R. "CMOS Compatible 3-Axis Magnetic Field Sensor using Hall Effect Sensing". Thesis, Rochester Institute of Technology, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10003075.
Texto completoThe purpose of this study is to design, fabricate and test a CMOS compatible 3-axis Hall effect sensor capable of detecting the earth’s magnetic field, with strength’s of ∼50 μT. Preliminary testing of N-well Van Der Pauw structures using strong neodymium magnets showed proof of concept for hall voltage sensing, however, poor geometry of the structures led to a high offset voltage. A 1-axis Hall effect sensor was designed, fabricated and tested with a sensitivity of 1.12x10-3 mV/Gauss using the RIT metal gate PMOS process. Poor geometry and insufficient design produced an offset voltage of 0.1238 volts in the 1-axis design; prevented sensing of the earth’s magnetic field. The new design features improved geometry for sensing application, improved sensitivity and use the RIT sub-CMOS process. The completed 2-axis device showed an average sensitivity to large magnetic fields of 0.0258 μV/Gauss at 10 mA supply current.
Mellet, Dieter Sydney-Charles. "An integrated continuous output linear power sensor using Hall effect vector multiplication". Diss., Pretoria : [s.n.], 2002. http://upetd.up.ac.za/thesis/available/etd-09012005-120807.
Texto completoAntunes, Pedro Ivo Teixeira de Carvalho. "Medição de posição de rotor em mancal magnético através de sensor Hall". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-10062013-152331/.
Texto completoThe Escola Politécnica of the University of São Paulo (EPUSP, Brazil) and the Institute Dante Pazzanese of Cardiology (IDPC, Brazil) are jointly developing a Ventricular Assist Device (VAD) based on a mixed flow pump with magnetic bearings. The VAD rotor has a conical shape with spiral impellers that impels and pressurizes the blood. The magnetic bearing eliminates mechanical contact between the pump rotor and the VAD body, minimizing hemolysis and improving the lifetime of the VAD. The magnetic bearing studied is the hybrid type that combines permanent magnets with electromagnets to execute active control in the axial direction of the rotor. In the original configuration, the bearing uses inductive sensor to detect the axial position of the rotor. The sensor readings are sent to a PID type controller, processed, amplified and sent to the electromagnets. The current supplied to the electromagnets are controlled in a manner to keep the rotor in a fixed axial position. However, this configuration requires the use of a hollowed core in the electromagnetic actuator, imposing limitations in its efficiency. Moreover, the use of an inductive sensor imposes limitations to pump downsizing. In order to minimize the limitations, this work conducts firstly a study about alternative techniques for measuring the rotor position in a magnetic bearing. As result, the Hall sensor is identified as the most promising alternative. The Hall sensor is a small semiconductor element available in the market that gives an electric signal with amplitude corresponding to the magnet field intensity applied to it. By fixing a permanent magnet to the rotor, the Hall sensor gives a signal according to the rotor displacement. However, the Hall sensor output is also affected by the magnetic field generated by the electromagnetic actuator of the bearing. This is not desirable for controlling the bearing. In order to minimize the mentioned influence, this work presents some methods to eliminate the influence of the actuator from the Hall sensor readings. The methods are tests in a magnetic bearing and the efficiency of these methods is demonstrated.
Sadeghi, Mohammadreza. "Highly sensitive nano Tesla quantum well Hall Effect integrated circuits using GaAs-InGaAs-AlGaAs 2DEG". Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/highly-sensitive-nano-tesla-quantum-well-hall-effect-integrated-circuits-using-gaasingaasalgaas-2deg(cec2fce1-7cf5-4d36-918d-873e0d38cac0).html.
Texto completoAlaeinovin, Pooya. "Analysis and improvement of low precision Hall-sensor-controlled brushless dc motors". Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/24224.
Texto completoLibros sobre el tema "HALL-sensor"
(Editor), S. Sitharama Iyengar y Richard R. Brooks (Editor), eds. Distributed Sensor Networks (Chapman & Hall/Crc Computer and Information Science). Chapman & Hall/CRC, 2004.
Buscar texto completoCapítulos de libros sobre el tema "HALL-sensor"
Funk, Tobias y Bernhard Wicht. "Hall Current Sensor". En Integrated Wide-Bandwidth Current Sensing, 101–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53250-5_5.
Texto completoBarua, Anomadarshi y Mohammad Abdullah Al Faruque. "The Hall Sensor Security". En Encyclopedia of Cryptography, Security and Privacy, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27739-9_1652-1.
Texto completoFunk, Tobias y Bernhard Wicht. "Hall Current Sensor Front-End". En Integrated Wide-Bandwidth Current Sensing, 117–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53250-5_6.
Texto completoUrbański, Michał, Michał Nowicki, Roman Szewczyk y Wojciech Winiarski. "Flowmeter Converter Based on Hall Effect Sensor". En Advances in Intelligent Systems and Computing, 265–76. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15835-8_29.
Texto completoPetruk, Oleg, Roman Szewczyk, Jacek Salach y Michał Nowicki. "Digitally Controlled Current Transformer with Hall Sensor". En Recent Advances in Automation, Robotics and Measuring Techniques, 641–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05353-0_61.
Texto completoRaković, Mirko, Miroslav Beronja, Aleksandar Batinica, Milutin Nikolić y Branislav Borovac. "3-Axis Contact Force Fingertip Sensor Based on Hall Effect Sensor". En Advances in Intelligent Systems and Computing, 88–95. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49058-8_10.
Texto completoWang, Wen-cheng. "A Motor Speed Measurement System Based on Hall Sensor". En Communications in Computer and Information Science, 440–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18129-0_69.
Texto completoReischl, S. y U. Ausserlechner. "Programmable Linear Magnetic Hall-Effect Sensor with Excellent Accuracy". En Advanced Microsystems for Automotive Applications Yearbook 2002, 227–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-18213-6_27.
Texto completoLarrucea, Xabier, Silvana Mergen y Alastair Walker. "A GSN Approach to SEooC for an Automotive Hall Sensor". En Communications in Computer and Information Science, 269–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44817-6_23.
Texto completoPetruk, Oleg, Maciej Kachniarz, Roman Szewczyk y Adam Bieńkowski. "Investigation on Functional Properties of Hall-Effect Sensor Made of Graphene". En Recent Advances in Systems, Control and Information Technology, 682–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48923-0_73.
Texto completoActas de conferencias sobre el tema "HALL-sensor"
Sander, Christian, Carsten Leube, Taimur Aftab, Patrick Ruther y Oliver Paul. "Isotropic 3D silicon hall sensor". En 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2015. http://dx.doi.org/10.1109/memsys.2015.7051103.
Texto completoAvizzano, Carlo A., Diego Ferrazzin, Giuseppe M. Prisco y Massimo Bergamasco. "Hall-effect sensor positional transducer". En Photonics East '99, editado por Gerard T. McKee y Paul S. Schenker. SPIE, 1999. http://dx.doi.org/10.1117/12.360354.
Texto completoBicking, Robert, George Wu, Joe Murdock, Don Hoy y Rusty Johnson. "A Hall Effect Rotary Position Sensor". En International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/910270.
Texto completoReymond, S., P. Kejik y R. S. Popovic. "True 2D CMOS integrated Hall sensor". En 2007 IEEE Sensors. IEEE, 2007. http://dx.doi.org/10.1109/icsens.2007.4388537.
Texto completoCai, Wei, Jeremy Chan y David Garmire. "3-axes MEMS Hall-effect sensor". En 2011 IEEE Sensors Applications Symposium (SAS). IEEE, 2011. http://dx.doi.org/10.1109/sas.2011.5739801.
Texto completoXie, Linguo, Zhiyou Zhang y Jinglei Du. "The photonic spin Hall effect sensor". En Applied Optical Metrology II, editado por Erik Novak y James D. Trolinger. SPIE, 2017. http://dx.doi.org/10.1117/12.2272162.
Texto completoLozanova, Siya, Avgust Ivanov y Chavdar Roumenin. "Hall Sensor with Geometry-enhanced Sensitivity". En 2020 XXX International Scientific Symposium 'Metrology and Metrology Assurance (MMA). IEEE, 2020. http://dx.doi.org/10.1109/mma49863.2020.9254253.
Texto completoGhosalkar, Ruta, Sarita Joshi y Shashi A. Gangal. "Development of Si-based hall sensor: effect of electrode geometry on hall voltage". En Indo-Russian Workshop on Micromechanical Systems, editado por Vladimir I. Pustovoy y Vinoy K. Jain. SPIE, 1999. http://dx.doi.org/10.1117/12.369458.
Texto completoChen, Weigang, Feng Du, Yue Zhuo y Michael Anheuser. "A new type of hall current sensor". En 2011 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2011. http://dx.doi.org/10.1109/imtc.2011.5944094.
Texto completoFan, Hua, Sujie Li, Yuanjun Cen, Quanyuan Feng y Hadi Heidari. "A Horizontal Hall Sensor 3D Comsol Model". En 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2020. http://dx.doi.org/10.1109/mwscas48704.2020.9184586.
Texto completoInformes sobre el tema "HALL-sensor"
Taguchi, Kenichi, Kazuhiro Kamiya, Tatsuji Nakai y Hitoshi Yabusaki. Development of Hall Ic for the Rotation Sensor. Warrendale, PA: SAE International, mayo de 2005. http://dx.doi.org/10.4271/2005-08-0083.
Texto completoLozanova, Siya. Relevant Phenomena to the Hall Effect in Sensor Devices. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, marzo de 2021. http://dx.doi.org/10.7546/crabs.2021.03.14.
Texto completo