Literatura académica sobre el tema "Hamiltonian PDE's"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hamiltonian PDE's".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hamiltonian PDE's"
Rousset, Frederic y Nikolay Tzvetkov. "Transverse nonlinear instability of solitary waves for some Hamiltonian PDE's". Journal de Mathématiques Pures et Appliquées 90, n.º 6 (diciembre de 2008): 550–90. http://dx.doi.org/10.1016/j.matpur.2008.07.004.
Texto completoKuksin, Sergej B. "Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE's". Communications in Mathematical Physics 167, n.º 3 (febrero de 1995): 531–52. http://dx.doi.org/10.1007/bf02101534.
Texto completoDubrovin, B. "Hamiltonian PDEs: deformations, integrability, solutions". Journal of Physics A: Mathematical and Theoretical 43, n.º 43 (12 de octubre de 2010): 434002. http://dx.doi.org/10.1088/1751-8113/43/43/434002.
Texto completoDubrovin, Boris A. "Hamiltonian PDEs and Frobenius manifolds". Russian Mathematical Surveys 63, n.º 6 (31 de diciembre de 2008): 999–1010. http://dx.doi.org/10.1070/rm2008v063n06abeh004575.
Texto completoBridges, Thomas J. y Sebastian Reich. "Numerical methods for Hamiltonian PDEs". Journal of Physics A: Mathematical and General 39, n.º 19 (24 de abril de 2006): 5287–320. http://dx.doi.org/10.1088/0305-4470/39/19/s02.
Texto completoBrugnano, Luigi, Gianluca Frasca-Caccia y Felice Iavernaro. "Line Integral Solution of Hamiltonian PDEs". Mathematics 7, n.º 3 (18 de marzo de 2019): 275. http://dx.doi.org/10.3390/math7030275.
Texto completoOh, Tadahiro y Jeremy Quastel. "On the Cameron–Martin theorem and almost-sure global existence". Proceedings of the Edinburgh Mathematical Society 59, n.º 2 (17 de diciembre de 2015): 483–501. http://dx.doi.org/10.1017/s0013091515000218.
Texto completoBambusi, D. y C. Bardelle. "Invariant tori for commuting Hamiltonian PDEs". Journal of Differential Equations 246, n.º 6 (marzo de 2009): 2484–505. http://dx.doi.org/10.1016/j.jde.2008.12.002.
Texto completoGong, Yuezheng y Yushun Wang. "An Energy-Preserving Wavelet Collocation Method for General Multi-Symplectic Formulations of Hamiltonian PDEs". Communications in Computational Physics 20, n.º 5 (noviembre de 2016): 1313–39. http://dx.doi.org/10.4208/cicp.231014.110416a.
Texto completoMoore, Brian E. y Sebastian Reich. "Multi-symplectic integration methods for Hamiltonian PDEs". Future Generation Computer Systems 19, n.º 3 (abril de 2003): 395–402. http://dx.doi.org/10.1016/s0167-739x(02)00166-8.
Texto completoTesis sobre el tema "Hamiltonian PDE's"
Khayamian, Chiara. "Periodic and Quasi-Periodic Solutions of some Non-Linear Hamiltonian PDE's". Thesis, Avignon, 2017. http://www.theses.fr/2017AVIG0418/document.
Texto completoThe aim of this thesis is the research of periodic and quasi-periodic solutions for some non-linear hamiltonian PDEs
Martin, Stephan [Verfasser]. "Applied Kinetic PDEs: Collective behavior models and Hamiltonian energy dynamics / Stephan Martin". München : Verlag Dr. Hut, 2012. http://d-nb.info/1025821270/34.
Texto completoStoilov, Nikola. "Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions and their dispersive deformations". Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/10183.
Texto completoBustillo, Jaime. "Rigidité symplectique et EDPs hamiltoniennes". Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE050/document.
Texto completoWe study symplectic rigidity properties in both finite and infinite dimension. In finite dimension, the main tools that we use are generating functions and symplectic capacities. In infinite dimension we study flows of Hamiltonian partial differential equations (PDEs) and, in particular, flows which can be uniformly approximated by finite dimensional Hamiltonian diffeomorphisms.In the first part of this thesis we study the action selectors defined from generating functions and we build Hamiltonian invariants for subsets of $R^{2m}times T^*T^k$. This allows us to prove a coisotropic non-squeezing theorem for compactly supported Hamiltonian diffeomorphisms of $R^{2n}$. We then extend this result to some non-compact settings. Finally we explain how this result can give information about the middle dimensional symplectic rigidity problem. Still in finite dimensions, we show that it is possible to use the symplectic camel theorem to create energy surfaces with compact invariant subsets.In the second part of the thesis we study symplectic rigidity properties of flows of Hamiltonian PDEs. We work in the context introduced by Kuksin and study a particular class of semi-linear Hamiltonian PDEs that can be approximated by finite dimensional Hamiltonian diffeomorphisms. We first give a new construction of an infinite dimensional capacity using Viterbo's capacities. The main result of this part is the proof of the analogue of the middle dimensional rigidity for certain types of Hamiltonian PDEs. These include nonlinear string equations with bounded nonlinearity such as the Sine-Gordon equation. In the final part of this thesis we study an analogue of Arnold's conjecture for the periodic Schrödinger equations with a convolution nonlinearity
Thomann, Laurent. "Dynamiques hamiltoniennes et aléa". Habilitation à diriger des recherches, Université de Nantes, 2013. http://tel.archives-ouvertes.fr/tel-00906186.
Texto completoJézéquel, Tiphaine. "Formes normales de champs de vecteurs : restes exponentiellement petits dans le cas non autonome périodique et orbites homoclines à plusieurs boucles au voisinage de la résonance 0²iw hamiltonienne". Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00649382.
Texto completoGuelmame, Billel. "Sur une régularisation hamiltonienne et la régularité des solutions entropiques de certaines équations hyperboliques non linéaires". Thesis, Université Côte d'Azur, 2020. https://tel.archives-ouvertes.fr/tel-03177654.
Texto completoIn this thesis, we study some non-dispersive conservative regularisations for the scalar conservation laws and also for the barotropic Euler system. Those regularisations are obtained inspired by a regularised Saint-Venant system introduced by Clamond and Dutykh in 2017. We also study the regularity, in generalised BV spaces, of the entropy solutions of some nonlinear hyperbolic equations. In the first part, we obtain and study a suitable regularisation of the inviscid Burgers equation, as well as its generalisation to scalar conservation laws. We prove that this regularisation is locally well-posedness for smooth solutions. We also prove the global existence of solutions that satisfy a one-sided Oleinik inequality for uniformly convex fluxes. When the regularising parameter ``l’’ goes to zero, we prove that the solutions converge, up to a subsequence, to the solutions of the original scalar conservation law, at least for a short time. We also generalise the regularised Saint-Venant equations to obtain a regularisation of the barotropic Euler system, and the Saint-Venant system with uneven bottom. We prove that both systems are locally well-posed in Hs, with s ≥ 2. In the second part, we prove a regularising effect, on the initial data, of scalar conservation laws with Lipschitz strictly convex flux, and of scalar equations with a linear source term. For some cases, we give a limit of the regularising effect.Finally, we prove the global existence of entropy solutions of a class of triangular systems involving a transport equation in BV^s x L^∞ where s > 1/3
Sierra, Nunez Jesus Alfredo. "A Study of Schrödinger–Type Equations Appearing in Bohmian Mechanics and in the Theory of Bose–Einstein Condensates". Diss., 2018. http://hdl.handle.net/10754/627883.
Texto completoUssembayev, Nail. "Nonlinear Wave Motion in Viscoelasticity and Free Surface Flows". Diss., 2020. http://hdl.handle.net/10754/664399.
Texto completoLibros sobre el tema "Hamiltonian PDE's"
Giancarlo, Benettin, Henrard J, Kuksin Sergej B. 1955-, Giorgilli Antonio, Centro internazionale matematico estivo y European Mathematical Society, eds. Hamiltonian dynamics theory and applications: Lectures given at the C.I.M.E.-E.M.S. Summer School, held in Cetraro, Italy, July 1-10, 1999. Berlin: Springer, 2005.
Buscar texto completoBerti, Massimiliano. Nonlinear Oscillations of Hamiltonian PDEs. Boston, MA: Birkhäuser Boston, 2007. http://dx.doi.org/10.1007/978-0-8176-4681-3.
Texto completoDzhamay, Anton, Christopher W. Curtis, Willy A. Hereman y B. Prinari. Nonlinear wave equations: Analytic and computational techniques : AMS Special Session, Nonlinear Waves and Integrable Systems : April 13-14, 2013, University of Colorado, Boulder, CO. Providence, Rhode Island: American Mathematical Society, 2015.
Buscar texto completoBenettin, Giancarlo, Jacques Henrard, Sergej B. Kuksin y Antonio Giorgilli. Hamiltonian Dynamics - Theory and Applications: Lectures Given at the C. I. M. E. Summer School Held in Cetraro, Italy, July 1-10 1999. Springer London, Limited, 2010.
Buscar texto completoHenrard, Jacques, Giancarlo Benettin y Sergei Kuksin. Hamiltonian Dynamics - Theory and Applications: Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 1-10, 1999 (Lecture Notes in Mathematics / Fondazione C.I.M.E., Firenze). Springer, 2005.
Buscar texto completoBerti, Massimiliano. Nonlinear Oscillations of Hamiltonian PDEs. Springer, 2008.
Buscar texto completoLin, Zhiwu y Chongchun Zeng. Instability, Index Theorem, and Exponential Trichotomy for Linear Hamiltonian PDEs. American Mathematical Society, 2022.
Buscar texto completoNonlinear Oscillations of Hamiltonian PDEs (Progress in Nonlinear Differential Equations and Their Applications Book 74). Birkhäuser, 2007.
Buscar texto completoCapítulos de libros sobre el tema "Hamiltonian PDE's"
Bourgain, J. "Problems in Hamiltonian PDE’S". En Visions in Mathematics, 32–56. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0422-2_2.
Texto completoKersten, P., I. S. Krasil′shchik, A. M. Verbovetsky y R. Vitolo. "Hamiltonian Structures for General PDEs". En Differential Equations - Geometry, Symmetries and Integrability, 187–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00873-3_9.
Texto completoBerti, Massimiliano. "A Tutorial in Nash–Moser Theory". En Nonlinear Oscillations of Hamiltonian PDEs, 59–71. Boston, MA: Birkhäuser Boston, 2007. http://dx.doi.org/10.1007/978-0-8176-4681-3_3.
Texto completoBerti, Massimiliano. "Forced Vibrations". En Nonlinear Oscillations of Hamiltonian PDEs, 111–37. Boston, MA: Birkhäuser Boston, 2007. http://dx.doi.org/10.1007/978-0-8176-4681-3_5.
Texto completoKuksin, Sergei. "Lectures on Hamiltonian Methods in Nonlinear PDEs". En Lecture Notes in Mathematics, 143–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-31541-4_3.
Texto completoMelikyan, Arik. "Smooth Solutions of a PDE with Nonsmooth Hamiltonian". En Generalized Characteristics of First Order PDEs, 199–225. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-1758-9_7.
Texto completoWu, Xinyuan, Kai Liu y Wei Shi. "General Local Energy-Preserving Integrators for Multi-symplectic Hamiltonian PDEs". En Structure-Preserving Algorithms for Oscillatory Differential Equations II, 255–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_12.
Texto completoBirindelli, Isabeau, Françoise Demengel y Fabiana Leoni. "Dirichlet Problems for Fully Nonlinear Equations with “Subquadratic” Hamiltonians". En Contemporary Research in Elliptic PDEs and Related Topics, 107–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18921-1_2.
Texto completoDubrovin, Boris. "Hamiltonian Perturbations of Hyperbolic PDEs: from Classification Results to the Properties of Solutions". En New Trends in Mathematical Physics, 231–76. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2810-5_18.
Texto completo"Hamiltonian PDEs". En Simulating Hamiltonian Dynamics, 316–56. Cambridge University Press, 2005. http://dx.doi.org/10.1017/cbo9780511614118.013.
Texto completoActas de conferencias sobre el tema "Hamiltonian PDE's"
Borja, Pablo, Rafael Cisneros y Romeo Ortega. "Shaping the energy of port-Hamiltonian systems without solving PDE's". En 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7403116.
Texto completoBAMBUSI, DARIO. "Birkhoff normal form for some quasilinear Hamiltonian PDEs". En XIVth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812704016_0024.
Texto completoBrugnano, L., F. Iavernaro, J. I. Montijano y L. Rández. "Space-time spectrally accurate HBVMs for Hamiltonian PDEs". En CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114129.
Texto completoBrugnano, Luigi, Gianluca Frasca Caccia y Felice Iavernaro. "Recent advances in the numerical solution of Hamiltonian PDEs". En PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912438.
Texto completoBrugnano, Luigi, Gianluca Frasca Caccia y Felice Iavernaro. "Energy conservation issues in the numerical solution of Hamiltonian PDEs". En PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912306.
Texto completoRamakrishnan, Narayanan y N. Sri Namachchivaya. "Dynamics of Spinning Disc Parametrically Excited by Noise". En ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8099.
Texto completoMcEneaney, William M. "Curse-of-Dimensionality Free Method for Bellman PDEs with Semiconvex Hamiltonians". En Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.377399.
Texto completo