Siga este enlace para ver otros tipos de publicaciones sobre el tema: Hamiltonian PDE's.

Artículos de revistas sobre el tema "Hamiltonian PDE's"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Hamiltonian PDE's".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Rousset, Frederic y Nikolay Tzvetkov. "Transverse nonlinear instability of solitary waves for some Hamiltonian PDE's". Journal de Mathématiques Pures et Appliquées 90, n.º 6 (diciembre de 2008): 550–90. http://dx.doi.org/10.1016/j.matpur.2008.07.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kuksin, Sergej B. "Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE's". Communications in Mathematical Physics 167, n.º 3 (febrero de 1995): 531–52. http://dx.doi.org/10.1007/bf02101534.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Dubrovin, B. "Hamiltonian PDEs: deformations, integrability, solutions". Journal of Physics A: Mathematical and Theoretical 43, n.º 43 (12 de octubre de 2010): 434002. http://dx.doi.org/10.1088/1751-8113/43/43/434002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Dubrovin, Boris A. "Hamiltonian PDEs and Frobenius manifolds". Russian Mathematical Surveys 63, n.º 6 (31 de diciembre de 2008): 999–1010. http://dx.doi.org/10.1070/rm2008v063n06abeh004575.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bridges, Thomas J. y Sebastian Reich. "Numerical methods for Hamiltonian PDEs". Journal of Physics A: Mathematical and General 39, n.º 19 (24 de abril de 2006): 5287–320. http://dx.doi.org/10.1088/0305-4470/39/19/s02.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Brugnano, Luigi, Gianluca Frasca-Caccia y Felice Iavernaro. "Line Integral Solution of Hamiltonian PDEs". Mathematics 7, n.º 3 (18 de marzo de 2019): 275. http://dx.doi.org/10.3390/math7030275.

Texto completo
Resumen
In this paper, we report on recent findings in the numerical solution of Hamiltonian Partial Differential Equations (PDEs) by using energy-conserving line integral methods in the Hamiltonian Boundary Value Methods (HBVMs) class. In particular, we consider the semilinear wave equation, the nonlinear Schrödinger equation, and the Korteweg–de Vries equation, to illustrate the main features of this novel approach.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Oh, Tadahiro y Jeremy Quastel. "On the Cameron–Martin theorem and almost-sure global existence". Proceedings of the Edinburgh Mathematical Society 59, n.º 2 (17 de diciembre de 2015): 483–501. http://dx.doi.org/10.1017/s0013091515000218.

Texto completo
Resumen
AbstractIn this paper we discuss various aspects of invariant measures for nonlinear Hamiltonian partial differential equations (PDEs). In particular, we show almost-sure global existence for some Hamiltonian PDEs with initial data of the form ‘a smooth deterministic function + a rough random perturbation’ as a corollary to the Cameron–Martin theorem and known almost-sure global existence results with respect to Gaussian measures on spaces of functions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bambusi, D. y C. Bardelle. "Invariant tori for commuting Hamiltonian PDEs". Journal of Differential Equations 246, n.º 6 (marzo de 2009): 2484–505. http://dx.doi.org/10.1016/j.jde.2008.12.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Gong, Yuezheng y Yushun Wang. "An Energy-Preserving Wavelet Collocation Method for General Multi-Symplectic Formulations of Hamiltonian PDEs". Communications in Computational Physics 20, n.º 5 (noviembre de 2016): 1313–39. http://dx.doi.org/10.4208/cicp.231014.110416a.

Texto completo
Resumen
AbstractIn this paper, we develop a novel energy-preserving wavelet collocation method for solving general multi-symplectic formulations of Hamiltonian PDEs. Based on the autocorrelation functions of Daubechies compactly supported scaling functions, the wavelet collocation method is conducted for spatial discretization. The obtained semi-discrete system is shown to be a finite-dimensional Hamiltonian system, which has an energy conservation law. Then, the average vector field method is used for time integration, which leads to an energy-preserving method for multi-symplectic Hamiltonian PDEs. The proposed method is illustrated by the nonlinear Schrödinger equation and the Camassa-Holm equation. Since differentiation matrix obtained by the wavelet collocation method is a cyclic matrix, we can apply Fast Fourier transform to solve equations in numerical calculation. Numerical experiments show the high accuracy, effectiveness and conservation properties of the proposed method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Moore, Brian E. y Sebastian Reich. "Multi-symplectic integration methods for Hamiltonian PDEs". Future Generation Computer Systems 19, n.º 3 (abril de 2003): 395–402. http://dx.doi.org/10.1016/s0167-739x(02)00166-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Lorenzoni, Paolo. "Flat bidifferential ideals and semi-Hamiltonian PDEs". Journal of Physics A: Mathematical and General 39, n.º 44 (17 de octubre de 2006): 13701–15. http://dx.doi.org/10.1088/0305-4470/39/44/006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Schöberl, M. y K. Schlacher. "Port-Hamiltonian formulation for Higher-order PDEs". IFAC-PapersOnLine 48, n.º 13 (2015): 244–49. http://dx.doi.org/10.1016/j.ifacol.2015.10.247.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Bambusi, Dario. "An Averaging Theorem for Quasilinear Hamiltonian PDEs". Annales Henri Poincaré 4, n.º 4 (agosto de 2003): 685–712. http://dx.doi.org/10.1007/s00023-003-0144-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Song, Mingzhan, Xu Qian, Hong Zhang y Songhe Song. "Hamiltonian Boundary Value Method for the Nonlinear Schrödinger Equation and the Korteweg-de Vries Equation". Advances in Applied Mathematics and Mechanics 9, n.º 4 (18 de enero de 2017): 868–86. http://dx.doi.org/10.4208/aamm.2015.m1356.

Texto completo
Resumen
AbstractIn this paper, we introduce the Hamiltonian boundary value method (HBVM) to solve nonlinear Hamiltonian PDEs. We use the idea of Fourier pseudospectral method in spatial direction, which leads to the finite-dimensional Hamiltonian system. The HBVM, which can preserve the Hamiltonian effectively, is applied in time direction. Then the nonlinear Schrödinger (NLS) equation and the Korteweg-de Vries (KdV) equation are taken as examples to show the validity of the proposed method. Numerical results confirm that the proposed method can simulate the propagation and collision of different solitons well. Meanwhile the corresponding errors in Hamiltonian and other intrinsic invariants are presented to show the good preservation property of the proposed method during long-time numerical calculation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Cai, Wenjun, Huai Zhang y Yushun Wang. "Novel Symplectic Discrete Singular Convolution Method for Hamiltonian PDEs". Communications in Computational Physics 19, n.º 5 (mayo de 2016): 1375–96. http://dx.doi.org/10.4208/cicp.scpde14.32s.

Texto completo
Resumen
AbstractThis paper explores the discrete singular convolution method for Hamiltonian PDEs. The differential matrices corresponding to two delta type kernels of the discrete singular convolution are presented analytically, which have the properties of high-order accuracy, bandlimited structure and thus can be excellent candidates for the spatial discretizations for Hamiltonian PDEs. Taking the nonlinear Schrödinger equation and the coupled Schrödinger equations for example, we construct two symplectic integrators combining this kind of differential matrices and appropriate symplectic time integrations, which both have been proved to satisfy the square conservation laws. Comprehensive numerical experiments including comparisons with the central finite difference method, the Fourier pseudospectral method, the wavelet collocation method are given to show the advantages of the new type of symplectic integrators.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Giuliani, Filippo, Marcel Guardia, Pau Martin y Stefano Pasquali. "Chaotic-Like Transfers of Energy in Hamiltonian PDEs". Communications in Mathematical Physics 384, n.º 2 (8 de febrero de 2021): 1227–90. http://dx.doi.org/10.1007/s00220-021-03956-9.

Texto completo
Resumen
AbstractWe consider the nonlinear cubic Wave, the Hartree and the nonlinear cubic Beam equations on $${\mathbb {T}}^2$$ T 2 and we prove the existence of different types of solutions which exchange energy between Fourier modes in certain time scales. This exchange can be considered “chaotic-like” since either the choice of activated modes or the time spent in each transfer can be chosen randomly. The key point of the construction of those orbits is the existence of heteroclinic connections between invariant objects and the construction of symbolic dynamics (a Smale horseshoe) for the Birkhoff Normal Form truncation of those equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Benzoni-Gavage, Sylvie, Colin Mietka y L. Miguel Rodrigues. "Modulated equations of Hamiltonian PDEs and dispersive shocks". Nonlinearity 34, n.º 1 (1 de enero de 2021): 578–641. http://dx.doi.org/10.1088/1361-6544/abcb0a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Arioli, Gianni y Hans Koch. "Families of Periodic Solutions for Some Hamiltonian PDEs". SIAM Journal on Applied Dynamical Systems 16, n.º 1 (enero de 2017): 1–15. http://dx.doi.org/10.1137/16m1070177.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Eliasson, L. Hakan, Benoît Grébert y Sergeï B. Kuksin. "A KAM theorem for space-multidimensional Hamiltonian PDEs". Proceedings of the Steklov Institute of Mathematics 295, n.º 1 (noviembre de 2016): 129–47. http://dx.doi.org/10.1134/s0081543816080071.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Sun, Zhengjie y Zongmin Wu. "Meshless Conservative Scheme for Multivariate Nonlinear Hamiltonian PDEs". Journal of Scientific Computing 76, n.º 2 (1 de marzo de 2018): 1168–87. http://dx.doi.org/10.1007/s10915-018-0658-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Faou, Erwan y Benoît Grébert. "Hamiltonian Interpolation of Splitting Approximations for Nonlinear PDEs". Foundations of Computational Mathematics 11, n.º 4 (11 de mayo de 2011): 381–415. http://dx.doi.org/10.1007/s10208-011-9094-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Tang, Wensheng, Yajuan Sun y Wenjun Cai. "Discontinuous Galerkin methods for Hamiltonian ODEs and PDEs". Journal of Computational Physics 330 (febrero de 2017): 340–64. http://dx.doi.org/10.1016/j.jcp.2016.11.023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Brugnano, Luigi, Felice Iavernaro, Juan I. Montijano y Luis Rández. "Spectrally accurate space-time solution of Hamiltonian PDEs". Numerical Algorithms 81, n.º 4 (16 de agosto de 2018): 1183–202. http://dx.doi.org/10.1007/s11075-018-0586-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Ghoussoub, Nassif y Abbas Moameni. "Hamiltonian systems of PDEs with selfdual boundary conditions". Calculus of Variations and Partial Differential Equations 36, n.º 1 (31 de enero de 2009): 85–118. http://dx.doi.org/10.1007/s00526-009-0224-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Bogoyavlenskij, Oleg. "Differential-Geometric Invariants of the Hamiltonian Systems of pde’s". Communications in Mathematical Physics 265, n.º 3 (25 de abril de 2006): 805–17. http://dx.doi.org/10.1007/s00220-006-0016-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Kosmas, Odysseas, Pieter Boom y Andrey P. Jivkov. "On the Derivation of Multisymplectic Variational Integrators for Hyperbolic PDEs Using Exponential Functions". Applied Sciences 11, n.º 17 (25 de agosto de 2021): 7837. http://dx.doi.org/10.3390/app11177837.

Texto completo
Resumen
We investigated the derivation of numerical methods for solving partial differential equations, focusing on those that preserve physical properties of Hamiltonian systems. The formulation of these properties via symplectic forms gives rise to multisymplectic variational schemes. By using analogy with the smooth case, we defined a discrete Lagrangian density through the use of exponential functions, and derived its Hamiltonian by Legendre transform. This led to a discrete Hamiltonian system, the symplectic forms of which obey the conservation laws. The integration schemes derived in this work were tested on hyperbolic-type PDEs, such as the linear wave equations and the non-linear seismic wave equations, and were assessed for their accuracy and the effectiveness by comparing them with those of standard multisymplectic ones. Our error analysis and the convergence plots show significant improvements over the standard schemes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Cang, Shijian, Aiguo Wu, Zenghui Wang y Zengqiang Chen. "Distinguishing Lorenz and Chen Systems Based Upon Hamiltonian Energy Theory". International Journal of Bifurcation and Chaos 27, n.º 02 (febrero de 2017): 1750024. http://dx.doi.org/10.1142/s0218127417500249.

Texto completo
Resumen
Solving the linear first-order Partial Differential Equations (PDEs) derived from the unified Lorenz system, it is found that there is a unified Hamiltonian (energy function) for the Lorenz and Chen systems, and the unified energy function shows a hyperboloid of one sheet for the Lorenz system and an ellipsoidal surface for the Chen system in three-dimensional phase space, which can be used to explain that the Lorenz system is not equivalent to the Chen system. Using the unified energy function, we obtain two generalized Hamiltonian realizations of these two chaotic systems, respectively. Moreover, the energy function and generalized Hamiltonian realization of the Lü system and a four-dimensional hyperchaotic Lorenz-type system are also discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Bambusi, Dario y Massimiliano Berti. "A Birkhoff--Lewis-Type Theorem for Some Hamiltonian PDEs". SIAM Journal on Mathematical Analysis 37, n.º 1 (enero de 2005): 83–102. http://dx.doi.org/10.1137/s0036141003436107.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Islas, A. L. y C. M. Schober. "Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs". Mathematics and Computers in Simulation 69, n.º 3-4 (junio de 2005): 290–303. http://dx.doi.org/10.1016/j.matcom.2005.01.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Zhang, Shengliang. "Symplectic Radial Basis Approximation of Multi-variate Hamiltonian PDEs". Iranian Journal of Science and Technology, Transactions A: Science 43, n.º 4 (28 de agosto de 2018): 1789–97. http://dx.doi.org/10.1007/s40995-018-0626-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Zheng, Yu y Yong Chen. "Ordered analytic representation of pdes by hamiltonian canonical system". Applied Mathematics-A Journal of Chinese Universities 17, n.º 2 (junio de 2002): 177–82. http://dx.doi.org/10.1007/s11766-002-0042-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

UDRIŞTE, CONSTANTIN, MARCELA POPESCU y PAUL POPESCU. "EXTENDED AFFINE CLASSES OF LAGRANGIANS AND HAMILTONIANS RELATED TO CLASSICAL FIELD THEORIES". International Journal of Geometric Methods in Modern Physics 06, n.º 07 (noviembre de 2009): 1161–80. http://dx.doi.org/10.1142/s0219887809004156.

Texto completo
Resumen
The aim of the paper is to establish a natural affine frame for affine Lagrangians and Hamiltonians, generalizing the well-known classical field theory. Scalar and volume-valued Lagrangians and Hamiltonians can be lifted to the new classes. Using the Hamilton–Jacobi principle, we analyze variational problems corresponding to actions defined by the affine Lagrangians and Hamiltonians. The extremals verify generalizations of the Euler–Lagrange and De Donder–Weyl PDEs. They improve the information about the dynamical solutions of the classical variational problems and refresh the Lagrange–Hamilton theories.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Giuliani, Filippo. "Transfers of energy through fast diffusion channels in some resonant PDEs on the circle". Discrete & Continuous Dynamical Systems 41, n.º 11 (2021): 5057. http://dx.doi.org/10.3934/dcds.2021068.

Texto completo
Resumen
<p style='text-indent:20px;'>In this paper we consider two classes of resonant Hamiltonian PDEs on the circle with non-convex (respect to actions) first order resonant Hamiltonian. We show that, for appropriate choices of the nonlinearities we can find time-independent linear potentials that enable the construction of solutions that undergo a prescribed growth in the Sobolev norms. The solutions that we provide follow closely the orbits of a nonlinear resonant model, which is a good approximation of the full equation. The non-convexity of the resonant Hamiltonian allows the existence of <i>fast diffusion channels</i> along which the orbits of the resonant model experience a large drift in the actions in the optimal time. This phenomenon induces a transfer of energy among the Fourier modes of the solutions, which in turn is responsible for the growth of higher order Sobolev norms.</p>
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

SOLE, ALBERTO DE, MAMUKA JIBLADZE, VICTOR G. KAC y DANIELE VALERI. "INTEGRABILITY OF CLASSICAL AFFINE W-ALGEBRAS". Transformation Groups 26, n.º 2 (15 de abril de 2021): 479–500. http://dx.doi.org/10.1007/s00031-021-09645-0.

Texto completo
Resumen
AbstractWe prove that all classical affine W-algebras 𝒲(𝔤; f), where g is a simple Lie algebra and f is its non-zero nilpotent element, admit an integrable hierarchy of bi-Hamiltonian PDEs, except possibly for one nilpotent conjugacy class in G2, one in F4, and five in E8.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Udriste, Constantin y Ionel Tevy. "Geometric Dynamics on Riemannian Manifolds". Mathematics 8, n.º 1 (3 de enero de 2020): 79. http://dx.doi.org/10.3390/math8010079.

Texto completo
Resumen
The purpose of this paper is threefold: (i) to highlight the second order ordinary differential equations (ODEs) as generated by flows and Riemannian metrics (decomposable single-time dynamics); (ii) to analyze the second order partial differential equations (PDEs) as generated by multi-time flows and pairs of Riemannian metrics (decomposable multi-time dynamics); (iii) to emphasise second order PDEs as generated by m-distributions and pairs of Riemannian metrics (decomposable multi-time dynamics). We detail five significant decomposed dynamics: (i) the motion of the four outer planets relative to the sun fixed by a Hamiltonian, (ii) the motion in a closed Newmann economical system fixed by a Hamiltonian, (iii) electromagnetic geometric dynamics, (iv) Bessel motion generated by a flow together with an Euclidean metric (created motion), (v) sinh-Gordon bi-time motion generated by a bi-flow and two Euclidean metrics (created motion). Our analysis is based on some least squares Lagrangians and shows that there are dynamics that can be split into flows and motions transversal to the flows.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Bustillo, Jaime. "Middle dimensional symplectic rigidity and its effect on Hamiltonian PDEs". Commentarii Mathematici Helvetici 94, n.º 4 (18 de diciembre de 2019): 803–32. http://dx.doi.org/10.4171/cmh/474.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Bernard, Deconinck y Olga Trichtchenko. "High-frequency instabilities of small-amplitude solutions of Hamiltonian PDEs". Discrete & Continuous Dynamical Systems - A 37, n.º 3 (2017): 1323–58. http://dx.doi.org/10.3934/dcds.2017055.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Giuliani, Filippo, Marcel Guardia, Pau Martin y Stefano Pasquali. "Chaotic resonant dynamics and exchanges of energy in Hamiltonian PDEs". Rendiconti Lincei - Matematica e Applicazioni 32, n.º 1 (22 de abril de 2021): 149–66. http://dx.doi.org/10.4171/rlm/931.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Bernier, Joackim y Benoît Grébert. "Birkhoff normal forms for Hamiltonian PDEs in their energy space". Journal de l’École polytechnique — Mathématiques 9 (4 de abril de 2022): 681–745. http://dx.doi.org/10.5802/jep.193.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Benzoni-Gavage, S., C. Mietka y L. M. Rodrigues. "Co-periodic stability of periodic waves in some Hamiltonian PDEs". Nonlinearity 29, n.º 11 (9 de septiembre de 2016): 3241–308. http://dx.doi.org/10.1088/0951-7715/29/11/3241.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Zhang, Liying y Lihai Ji. "Stochastic multi-symplectic Runge–Kutta methods for stochastic Hamiltonian PDEs". Applied Numerical Mathematics 135 (enero de 2019): 396–406. http://dx.doi.org/10.1016/j.apnum.2018.09.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Cai, Jiaxiang, Yushun Wang y Chaolong Jiang. "Local structure-preserving algorithms for general multi-symplectic Hamiltonian PDEs". Computer Physics Communications 235 (febrero de 2019): 210–20. http://dx.doi.org/10.1016/j.cpc.2018.08.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Moore, Brian E., Laura Noreña y Constance M. Schober. "Conformal conservation laws and geometric integration for damped Hamiltonian PDEs". Journal of Computational Physics 232, n.º 1 (enero de 2013): 214–33. http://dx.doi.org/10.1016/j.jcp.2012.08.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Montecchiari, Piero y Paul H. Rabinowitz. "A Variant of the Mountain Pass Theorem and Variational Gluing". Milan Journal of Mathematics 88, n.º 2 (1 de septiembre de 2020): 347–72. http://dx.doi.org/10.1007/s00032-020-00318-3.

Texto completo
Resumen
AbstractThis paper surveys some recent work on a variant of the Mountain Pass Theorem that is applicable to some classes of differential equations involving unbounded spatial or temporal domains. In particular its application to a system of semilinear elliptic PDEs on $$R^n$$ R n and to a family of Hamiltonian systems involving double well potentials will also be discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Parker, Ross y Björn Sandstede. "Periodic multi-pulses and spectral stability in Hamiltonian PDEs with symmetry". Journal of Differential Equations 334 (octubre de 2022): 368–450. http://dx.doi.org/10.1016/j.jde.2022.06.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Fu, Yayun, Dongdong Hu y Zhuangzhi Xu. "High-order explicit conservative exponential integrator schemes for fractional Hamiltonian PDEs". Applied Numerical Mathematics 172 (febrero de 2022): 315–31. http://dx.doi.org/10.1016/j.apnum.2021.10.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Hong, Jialin, Hongyu Liu y Geng Sun. "The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs". Mathematics of Computation 75, n.º 253 (29 de septiembre de 2005): 167–82. http://dx.doi.org/10.1090/s0025-5718-05-01793-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Bridges, Thomas J. y Sebastian Reich. "Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity". Physics Letters A 284, n.º 4-5 (junio de 2001): 184–93. http://dx.doi.org/10.1016/s0375-9601(01)00294-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Maeda, Masaya. "Stability of bound states of Hamiltonian PDEs in the degenerate cases". Journal of Functional Analysis 263, n.º 2 (julio de 2012): 511–28. http://dx.doi.org/10.1016/j.jfa.2012.04.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Li, Yu-Wen y Xinyuan Wu. "General local energy-preserving integrators for solving multi-symplectic Hamiltonian PDEs". Journal of Computational Physics 301 (noviembre de 2015): 141–66. http://dx.doi.org/10.1016/j.jcp.2015.08.023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía