Literatura académica sobre el tema "Heat – Transmission – Computer simulation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Heat – Transmission – Computer simulation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Heat – Transmission – Computer simulation"
Chang, Liang, Zhiwei Li, Sheng Li, Wenang Jia y Jian Ruan. "Heat Loss Analysis of a 2D Pump’s Transmission". Machines 10, n.º 10 (26 de septiembre de 2022): 860. http://dx.doi.org/10.3390/machines10100860.
Texto completoKalua, Amos y James Jones. "Epistemological Framework for Computer Simulations in Building Science Research: Insights from Theory and Practice". Philosophies 5, n.º 4 (22 de octubre de 2020): 30. http://dx.doi.org/10.3390/philosophies5040030.
Texto completoKuokkala, V. T. "Computer simulation of transmission electron micrographs by microscope for windows". Proceedings, annual meeting, Electron Microscopy Society of America 54 (11 de agosto de 1996): 126–27. http://dx.doi.org/10.1017/s0424820100163095.
Texto completoLiang, Qing, Jing Liu, Wen Zhong Xu y Gang Xu. "Optimization of the Optical Performance of TiO2/Ag/TiO2 Multilayers for Warm Climates". Advanced Materials Research 168-170 (diciembre de 2010): 936–39. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.936.
Texto completoHuo, Wen. "Thermal Simulation Analysis of Internal Control Circuit Board of Steering Gear Box Based on COMSOL Three-Dimensional Simulation Software". Computational Intelligence and Neuroscience 2022 (24 de marzo de 2022): 1–20. http://dx.doi.org/10.1155/2022/3006349.
Texto completoHopmann, Christian y Suveni Kreimeier. "Modelling the Heating Process in Simultaneous Laser Transmission Welding of Semicrystalline Polymers". Journal of Polymers 2016 (27 de octubre de 2016): 1–10. http://dx.doi.org/10.1155/2016/3824065.
Texto completoNoémi Zetz, Dóra y István Kistelegdi. "Comfort simulation supported sketch plan optimization of the University of Pécs, Medical School extension". Pollack Periodica 15, n.º 2 (agosto de 2020): 166–77. http://dx.doi.org/10.1556/606.2020.15.2.15.
Texto completoLim, Huey Sia, Nayan Nafarizal, Mohd Zainizan Sahdan, Samsul Haimi Dahlan, Zuhairiah Zainal Abidin, Muhammad Yusof Ismail, Fauziahanim Che Seman et al. "Optimization of Transmission Lost for Energy Saving Glass with Different Sheet Resistance Values". Advanced Materials Research 832 (noviembre de 2013): 233–36. http://dx.doi.org/10.4028/www.scientific.net/amr.832.233.
Texto completoDella Torre, Augusto, Gianluca Montenegro, Angelo Onorati, Sumit Khadilkar y Roberto Icarelli. "Multi-Scale CFD Modeling of Plate Heat Exchangers Including Offset-Strip Fins and Dimple-Type Turbulators for Automotive Applications". Energies 12, n.º 15 (1 de agosto de 2019): 2965. http://dx.doi.org/10.3390/en12152965.
Texto completoAlzu’bi, Oruba Ahmad Saleh, Firas A. Alwawi, Mohammed Z. Swalmeh, Ibrahim Mohammed Sulaiman, Abdulkareem Saleh Hamarsheh y Mohd Asrul Hery Ibrahim. "Energy Transfer through a Magnetized Williamson Hybrid Nanofluid Flowing around a Spherical Surface: Numerical Simulation". Mathematics 10, n.º 20 (16 de octubre de 2022): 3823. http://dx.doi.org/10.3390/math10203823.
Texto completoTesis sobre el tema "Heat – Transmission – Computer simulation"
Srinivasan, Raghavan. "CFD Heat Transfer Simulation of the Human Upper Respiratory Tract for Oronasal Breathing Condition". Thesis, North Dakota State University, 2011. https://hdl.handle.net/10365/29310.
Texto completoShao, Ming. "Modelling simultaneous heat and mass transfer in wood". Thesis, Virginia Tech, 1994. http://hdl.handle.net/10919/42073.
Texto completoMaster of Science
Baumgratz, Filipe Dias. "Estudo da distribuição da temperatura em encapsulamentos de dispositivos MOSFET utilizando simulação por métodos de elementos finitos". [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259569.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-19T12:32:23Z (GMT). No. of bitstreams: 1 Baumgratz_FilipeDias_M.pdf: 32610409 bytes, checksum: e8a789aa353258a54ae8a692c6fd224b (MD5) Previous issue date: 2011
Resumo: O transistor MOSFET teve uma evolução muito grande desde sua invenção até os dias de hoje. As dimensões foram reduzidas, a capacidade de integração de componentes e frequência de operação aumentaram, como consequência desta evolução houve um aumento da potência dissipada pelos circuitos integrados. Neste trabalho foi utilizada simulação por elementos finitos para estudar o comportamento térmico de um encapsulamento ao variar-se sua montagem interna, utilizando um MOSFET de potência como fonte de calor. A partir destas simulações foi possível identificar os pontos de maior e menor temperatura, bem como as regiões de melhor condução de calor. Ainda utilizando simulação por elementos finitos estudou-se o efeito da variação do tempo de chaveamento nas temperaturas observadas no interior do encapsulamento
Abstract: The transistor had a great evolution since its invention until today. The dimensions were reduced, the components integration and operating frequency increased, a result of these developments is higher power dissipation in integrated circuits. This work use finite element method simulation to study the thermal behavior of a package with different internal assembly, using a power MOSFET as heat source. From these simulations it is possible to identify the points of high and low temperature, and best thermal paths. Still using finite element method simulation was studied the effect of switching time in the thermal behavior of the package
Mestrado
Eletrônica, Microeletrônica e Optoeletrônica
Mestre em Engenharia Elétrica
Gempesaw, Daniel. "A multi-resolution discontinuous Galerkin method for rapid simulation of thermal systems". Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42775.
Texto completoLi, Shuo. "A Numerical Study of Micro Synthetic Jet and Its Applications in Thermal Management". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7539.
Texto completoMulcahey, Thomas Ian. "Convective instability of oscillatory flow in pulse tube cryocoolers due to asymmetric gravitational body force". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51808.
Texto completoMioralli, Paulo Cesar. "Analise termica de um regenerador rotativo". [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263462.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-05T19:55:49Z (GMT). No. of bitstreams: 1 Mioralli_PauloCesar_M.pdf: 2264914 bytes, checksum: fd6e486b3b1e372c70c340521a3de11d (MD5) Previous issue date: 2005
Resumo: Este estudo concentra-se na análise térmica de um regenerador rotativo, no qual o processo de transferência de calor é investigado numericamente. As equações de transporte foram discretizadas utilizando o método de volumes finitos e um programa computacional em linguagem FORTRAN foi confeccionado para as simulações numéricas. Uma correlação para estimar o coeficiente médio de transferência de calor em um canal da matriz do regenerador foi obtida para o regime laminar de escoamento a partir da utilização do pacote numérico comercial PHOENICS 3.5. O valor de temperatura média de mistura na saída de cada escoamento foi obtido e comparado com o valor calculado por método existente em literatura. Os resultados foram analisados e também comparados com dados de campo e uma concordância relativamente boa foi observada. Através das simulações numéricas, foi possível obter a distribuição de temperatura ao longo de um canal do regenerador em diferentes posições angulares. Conhecendo essa distribuição de temperatura, é possível obter um dimensionamento adequado para o sistema de selagem acoplado na matriz do regenerador. Foi visto neste trabalho que o perfil de temperatura na direção axial é determinante no dimensionamento do sistema de selagem do regenerador
Abstract: This study focalizes on the thermal analysis of a rotary regenerator, in which the process of heat transfer is numerically investigated. The governing equations are solved using finite volume code. A computational code in FORTRAN programming language was made for the numerical simulations. A correlation for valuation the medium heat transfer coefficient in the duct, for flow in laminar regime, was obtained using a commercial code (PHOENICS 3.5). The value of mean temperature at the exit of each flow was obtained and compared with the value calculated by existent method in the literature. The results were analyzed and also compared with field data and a relatively good agreement was observed. Through the numerical simulations, it was possible to obtain the temperature distribution along a duct of the regenerator in different angular positions
Mestrado
Termica e Fluidos
Mestre em Engenharia Mecânica
Tomazeti, Cristina Autuori. "Analise numerica do desempenho termico de trocadores de calor de correntes cruzadas". [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264127.
Texto completoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-07T14:45:34Z (GMT). No. of bitstreams: 1 Tomazeti_CristinaAutuori_D.pdf: 4089449 bytes, checksum: 65558b112b34461f8da3f544b8666a0d (MD5) Previous issue date: 2006
Resumo: Uma análise foi desenvolvida para avaliar o desempenho de trocadores de calor compactos de correntes cruzadas de placas aletadas com canais de seção transversal arbitrária. Os coeficientes convectivo e de atrito foram obtidos através de simulação numérica, tanto no regime de escoamento laminar quanto no turbulento, utilizando o pacote computacional PHOENICS. Estes resultados foram então usados junto com o método da efetividade para avaliar as características térmicas e de escoamento do trocador de calor. As simulações foram efetuadas inicialmente para o escoamento e a transferência de calor entre duas placas placa paralelas isotérmicas e bastante próximas, porque os resultados podiam ser comparados com aqueles disponíveis na literatura. Resultados numéricos adicionais foram obtidos, em seguida, para seis dutos de paredes isotérmicas com seções transversais distintas. Um deles era um duto retangular, e os outros cinco eram passagens típicas de placas aletadas utilizadas em trocadores de calor compactos. O fluido de trabalho era o ar e as simulações foram tridimensionais devido à presença das paredes das aletas. Perfis uniformes de velocidade e de temperatura sempre foram utilizados na entrada dos dutos, de forma que os resultados refletem os efeitos combinados de entrada hidrodinâmica e térmica. Os resultados para o duto retangular e o método da efetividade foram utilizados para prever o desempenho térmico de um trocador de calor de correntes cruzadas composto por um empilhamento de dutos retangulares idênticos. O desempenho deste trocador de calor foi avaliado também por uma simulação direta do escoamento cruzado e da transferência de calor através da parede de separação de dois dutos retangulares adjacentes do empilhamento. Os resultados obtidos foram bastante semelhantes, fornecendo confiança para a análise anterior. As simulações efetuadas para os cinco dutos típicos de placas aletadas de dimensões pequenas apresentaram resultados similares aos valores experimentais obtidos da literatura. Eles foram utilizados para avaliar o desempenho de trocadores de calor compactos de correntes cruzadas compostos por empilhamentos destas placas aletadas. Vários parâmetros como o volume total, o peso, a potência de bombeamento, a efetividade, a taxa de geração adimensional de entropia, e a eficiência exergética também foram avaliados para comparar os trocadores compactos de calor considerados
Abstract: An analysis was developed to evaluate the performance of cross flow compact heat exchangers with plate-fin passages of arbitrary cross section. The convective and the friction coefficients were obtained by numerical simulation, either in the laminar or the turbulent flow regimes, using the software PHOENICS. These results were then employed together with the effectiveness method to evaluate the heat exchanger thermal and flow characteristics. The simulations were performed initially for the flow and heat transfer between two closely spaced parallel isothermal plates, because the results could be compared with those available in the literature. Additional numerical results were obtained, next, for six isothermal wall ducts with distinct cross sections. One was a rectangular duct, and the other five were typical plate-fin passages employed in compact heat exchangers. The working fluid was air and the simulations were three dimensional due to the fins walls. Uniform velocity and temperature profiles were always assumed at the duct inlet, so that the results reflected the combined effects of hydrodynamic and thermal entrance. The results for the rectangular duct and the effectiveness method were employed to predict the thermal performance of a cross flow heat exchanger made from a stack of identical rectangular ducts. The performance of this heat exchanger was also evaluated by a direct simulation of the cross flow and the heat transfer through the separating wall of two adjacent rectangular ducts of the stack. The results compared favorably, lending confidence to the previous analysis. The simulations performed for the five typical plate-fin passages of small cross section presented results similar to the experimental values obtained from the literature. They were used to evaluate the performance of cross flow compact heat exchangers composed of stacks of these plate-fins. Several parameters like total volume, weight, pumping power, effectiveness, rate of dimensionless entropy generation, and exergetic efficiency were also evaluated to compare the distinct compact heat exchangers
Doutorado
Termica e Fluidos
Mestre em Engenharia Mecânica
Lavarda, Jairo Vinícius. "Convecção natural de fluidos de lei de potência e de Bingham em cavidade fechada preenchida com meio heterogêneo". Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1306.
Texto completoVários estudos numéricos investigaram cavidades fechadas sob o efeito da convecção natural preenchidas com fluidos newtonianos generalizados (FNG) nos últimos anos pelas aplicações diretas em trocadores de calor compactos, no resfriamento de sistemas eletrônicos e na engenharia de polímeros. Neste trabalho é realizada a investigação numérica do processo de convecção natural de fluidos de lei de Potência e de Bingham em cavidades fechadas, aquecidas lateralmente e preenchidas com meios heterogêneos e bloco centrado. O meio heterogêneo é constituído de blocos sólidos, quadrados, desconectados e condutores de calor. Como parâmetros são utilizados a faixa de Rayleigh de 104 à 107, índice de potência n de 0, 6 à 1, 6, número de Bingham de 0, 5 até Bimax , sendo investigado da influência do número de Prandtl para cada modelo de fluido. Nas cavidades com meio heterogêneo são utilizadas as quantidades de blocos de 9, 16, 36 e 64, mantendo-se a razão entre a condutividade térmica do sólido e do fluido κ = 1. Para as cavidades com bloco centrado, são utilizados os tamanhos adimensionais de 0, 1 à 0, 9 com κ = 0, 1; 1 e 10. A modelagem matemática é realizada pelas equações de balanço de massa, de quantidade de movimento e de energia. As simulações são conduzidas no programa comercial ANSYS FLUENT R . Inicialmente são resolvidos problemas com fluidos newtonianos em cavidade limpa, seguida de cavidade preenchida com meio heterogêneo e posteriormente bloco centrado para validação da metodologia de solução. Na segunda etapa é realizada o estudo com os modelos de fluidos de lei de Potência e de Bingham seguindo a mesma sequência. Os resultados são apresentados na forma de linhas de corrente, isotermas e pelo número de Nusselt médio na parede quente. De maneira geral, a transferência de calor na cavidade é regida pelo número de Rayleigh, tamanho e condutividade térmica dos blocos, pelo índice de potência para o modelo de lei de Potência e do número de Bingham para o modelo de Bingham. O número de Prandtl tem grande influência nos dois modelos de fluidos. O meio heterogêneo reduz a transferência de calor na cavidade quando interfere na camada limite térmica para ambos os fluidos, sendo feita uma previsão analítica para o fluido de lei de Potência. Para bloco centrado, a interferência na camada limite com fluido de lei de Potência também foi prevista analiticamente. A transferência de calor aumentou com bloco de baixa condutividade térmica e pouca interferência e com bloco de alta condutividade térmica e grande interferência, para ambos os fluidos.
Many studies have been carried out in square enclosures with generalized Newtonian fluids with natural convection in past few years for directly applications in compact heat exchangers, cooling of electronics systems and polymeric engineering. The natural convection in square enclosures with differently heated sidewalls, filled with power-law and Bingham fluids in addition with heterogeneous medium and centered block are analyzed in this study. The heterogeneous medium are solid, square, disconnected and conducting blocks. The parameters used are the Rayleigh number in the range 104 - 107 , power index n range of 0, 6 - 1, 6, Bingham number range of 0, 5 - Bimax , being the influence of Prandtl number investigated for each fluid model. The number of blocks for heterogeneous medium are 9, 16, 36 and 64, keeping constant solid to fluid conductive ratio, κ = 1. For enclosures with centered block are used the nondimensional block size from 0, 1 to 0, 9, with solid to fluid conductive ratio in range κ = 0, 1; 1 and 10. Mathematical modeling is done by mass, momentum and energy balance equations. The solution of equations have been numerically solved in ANSYS FLUENT R software. Firstly, numerical solutions for validation with Newtonian fluids in clean enclosures are conducted, followed by enclosures with heterogeneous medium and centered block. Subsequently, numerical solutions of power-law and Bingham fluids with same enclosures configurations are conducted. The results are reported in the form of streamlines, isotherms and average Nusselt number at hot wall. In general, the heat transfer process in enclosure is governed by Rayleigh number, size and thermal conductivity of the blocks, power index n for power-law fluid and Bingham number for Bingham fluid. Both fluid models are very sensitive with Prandtl number changes. Heterogeneous medium decrease heat transfer in enclosure when affects thermal boundary layer for both fluid models. One analytical prediction was made for power-law fluid. An increase in heat transfer occurs with low thermal conductivity block and few interference and with high thermal conductivity block and great interference, for both fluids.
Spinelli, Jose Eduardo. "Simulação do lingotamento continuo de tiras finas de aços". [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264701.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-07-27T19:18:36Z (GMT). No. of bitstreams: 1 Spinelli_JoseEduardo_M.pdf: 6965190 bytes, checksum: 39afbc7a3acd510a9c00a458e1f8ba9a (MD5) Previous issue date: 2000
Resumo: Entende-se por modelagem de processo, o desenvolvimento de uma representação quantitativa ou qualitativa dos fenômenos físicos associados ao processo. Neste trabalho são realizadas simulações do processo twin roll de lingotamento contínuo de tiras de aços, utilizando como referência tecnológica o equipamento piloto instalado nas dependências do Instituto de Pesquisas Tecnológicas do Estado de São Paulo. São construídos dois simuladores para o processo: um simulador da solidificação unidirecional, com molde refrigerado de aço e paredes laterais de material refratário, utilizando-se o aço inoxidável 304 como material de simulação; e variando-se as temperaturas de vazamento; e outro simulador a frio, com componentes feitos de acrílico, água como fluido de simulação e permanganato de potássio como corante. Um modelo matemático previamente desenvolvido é utilizado para confrontar perfis térmicos teóricos com perfis experimentais, para a determinação do coeficiente de transferência de calor metal/molde. O levantamento de valores de espaçamento dendrítico secundário é realizado nas amostras, além da observação simultânea das estruturas de solidificação, o que comprovou a eficiência do simulador em caracterizar o processo de solidificação do equipamento piloto. O uso do modelo frio permitiu a caracterização do posicionamento de barreira a 15 cm ou a 20 cm da lateral esquerda do distribuidor como a melhor configuração
Abstract: It can be understood by process modeling the development of a quantitative or qualitative representation of the physical phenomena associated to the process. In this work, simulations concerning the twin roll continuous caster of steels process at IPT (Instituto de Pesquisas Tecnológicas do Estado de São Paulo) are performed. Two simulators were developed: (i) a simulator of unidirectional solidification with cooled steel mold and refractory lateral walls, by using a stainless steel as the reference metal (AISI 304), and varying superheat temperatures; (ii) a physical model, with components made of acrylic, water as the simulation fluid and potassium permanganate as a pigment. A previously developed mathematical model has been used to determine the metal/mold heat transfer coefficient by a method that compares experimenta1ltheoretical temperature curves. Measurement of secondary dendrite arm spacings is performed by microestructural examination of the samples, confirming the simulator efficiency in characterizing the solidification process in the pilot equipment. The use of the physical model has permitted to attain the best configuration for the tundish, by positioning the dam 15 cm or 20 cm from the left side of tundish
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia Mecânica
Libros sobre el tema "Heat – Transmission – Computer simulation"
Numerical simulations of heat transfer and fluid flow on a personal computer: Incorporating simulation programs on diskette. Amsterdam: Elsevier, 1993.
Buscar texto completoseminar, Eurotherm. Advanced concepts and techniques in thermal modelling: Proceedings of the Eurotherm seminar 36, September 21-23, 1994, Poitiers, France. Editado por Fiebig Martin, Lemonnier Denis, Saulnier Jean-Bernard y Ecole nationale supérieure de mécanique et d'aérotechnique (Poitiers, France). Laboratoire d'études thermiques. Amsterdam: Elsevier, 1996.
Buscar texto completoWright, J. L. Measurement and computer simulation of heat transfer in glazing systems. Ottawa, Ont: Efficiency and Alternative Energy Technology Branch, Energy, Mines and Resources Canada, 1991.
Buscar texto completoAnalytis, G. Th. Assessment of interfacial shear and wall heat transfer of RELAP5/MOD2/36.02 during reflooding. Washington, DC: Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1989.
Buscar texto completoPakanen, Jouko. An ARMAX-model approach for estimating static heat flows in buildings: A methods for computerised energy allocation systems. Espoo [Finland]: Technical Research Centre of Finland, 2002.
Buscar texto completoTuomaala, Pekka. Implementation and evaluation of air flow and heat transfer routines for building simulation tools. Espoo [Finland]: VTT, 2002.
Buscar texto completoKisilewicz, Tomasz. Wpływ izolacyjnych, dynamicznych i spektralnych właściwości przegród na bilans cieplny budynków energooszcze̜dnych. Kraków: Wydawn. Politechniki Krakowskiej, 2008.
Buscar texto completoChristoph, Clauser, ed. Numerical simulation of reactive flow in hot aquifers: SHEMAT and processing SHEMAT. Berlin: Springer, 2003.
Buscar texto completoXu, Kun. Rayleigh-Beńard simulation using gas-kinetic BGK scheme in the incompressible limit. Hampton, Va: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Buscar texto completoRoland, Fortunier, ed. Finite element simulation of heat transfer. London: ISTE Ltd., 2008.
Buscar texto completoCapítulos de libros sobre el tema "Heat – Transmission – Computer simulation"
O’Kelly, Peter. "Heat Transfer". En Computer Simulation of Thermal Plant Operations, 181–206. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4256-1_8.
Texto completoO’Kelly, Peter. "Heat Exchangers". En Computer Simulation of Thermal Plant Operations, 207–33. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4256-1_9.
Texto completoO’Kelly, Peter. "Furnaces, Fuels and Heat Release". En Computer Simulation of Thermal Plant Operations, 259–300. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4256-1_11.
Texto completoBaerdemaeker, J. y B. Nicolai. "Simulation of Heat Transfer Processes Using Stochastic Parameters". En Food Properties and Computer-Aided Engineering of Food Processing Systems, 557–63. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2370-6_43.
Texto completoGadeikytė, Aušra y Rimantas Barauskas. "Computer Simulation of Heat Exchange Through 3D Fabric Layer". En Numerical Methods and Applications, 392–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10692-8_44.
Texto completoSorin, Adrian y Filip Ciolacu. "Modelling of Reverse Problem in Heat Transfer". En Microstructures, Mechanical Properties and Processes - Computer Simulation and Modelling, 356–61. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606157.ch56.
Texto completoChen, Qiong. "Molecular Dynamic Simulation for Heat Capacity of MgSiO 3 Perovskite". En Communications in Computer and Information Science, 24–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45049-9_4.
Texto completoMeng, Xiangci. "Numerical Simulation Study on Heat Exchange Effect of Open Computer". En Communications in Computer and Information Science, 83–90. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5919-4_8.
Texto completoMiroshnichenko, Igor y Mikhail Sheremet. "Numerical Simulation of Heat Transfer in an Enclosure with Time-Periodic Heat Generation Using Finite-Difference Method". En Lecture Notes in Computer Science, 149–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50436-6_11.
Texto completoStepanov, Sergei P., Ivan K. Sirditov, Petr N. Vabishchevich, Maria V. Vasilyeva, Vasiliy I. Vasilyev y Anastasiya N. Tceeva. "Numerical Simulation of Heat Transfer of the Pile Foundations with Permafrost". En Lecture Notes in Computer Science, 625–32. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57099-0_71.
Texto completoActas de conferencias sobre el tema "Heat – Transmission – Computer simulation"
Zhou, Jianxu, Chengmin Bi y Ming Hu. "Computer Simulation of the Hydropower Stations With Long Pressurized Pipelines and Far Transmission Line". En ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55288.
Texto completoFeng, Yaonan y Xiaorui Dong. "Notice of Retraction: Simulation of engine heat transmission on the grounds of module". En 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccasm.2010.5622786.
Texto completoCheney, Drew A. y Jennifer R. Lukes. "Comparison of Atomistic and Continuum Methods for Calculating Ballistic Phonon Transmission in Nanoscale Waveguides". En ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75264.
Texto completoLiu, Jian-Qin. "A robust controller of dynamic networks and its verification by the simulation of the heat shock response network with reliable signal transmission". En IEEE INFOCOM 2011 - IEEE Conference on Computer Communications Workshops. IEEE, 2011. http://dx.doi.org/10.1109/infcomw.2011.5928864.
Texto completoEstejab, Bahareh y John Tobin. "Mineral Oil As an Alternative Cooling Method". En ASME 2021 30th Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/isps2021-65201.
Texto completoTejwani, Gopal D. "Transmittance and Radiance Computations for Rocket Engine Plume Environments". En ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47406.
Texto completoZhang, Yunjia y Dengfang Ruan. "Investigation on the Lubrication Performances and Thermal Characteristics of the Tapered Roller Bearing". En ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67052.
Texto completoJaworski, Maciej, Ryszard Wnuk, Małgorzata Cieślak y Bogna Goetzendorf-Grabowska. "Experimental Investigation and Mathematical Modelling of Thermal Performance Characteristics of Textiles Incorporating Phase Change Materials (PCMs)". En Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.260.
Texto completoChung, Chih-Ang, Ci-Siang Lin y Ci-Jyun Ho. "Computational Study of Hydrogen Storage Performance in Metal Hydride Reactors". En ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24059.
Texto completoLiang, Jianyu y Zhenhai Xia. "Synthesis and Properties of Cobalt Nanowires". En 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21298.
Texto completoInformes sobre el tema "Heat – Transmission – Computer simulation"
Kilaas, R. Computer simulation of high resolution transmission electron micrographs: theory and analysis. Office of Scientific and Technical Information (OSTI), marzo de 1985. http://dx.doi.org/10.2172/5649044.
Texto completoGeorgiev, G. Evt, V. Manolov, Ya Lukarski y At Baikushev. Computer Simulation of the Heat Transfer in a Tool for Reinforcement Steel Production. Prof. Marin Drinov Publishing House of Bulgarian Academy of Sciences, marzo de 2018. http://dx.doi.org/10.7546/engsci.lv.18.01.03.
Texto completoAlly, M. R. Computer simulation of absorption heat pump using aqueous lithium bromide and ternary nitrate mixtures. Office of Scientific and Technical Information (OSTI), junio de 1988. http://dx.doi.org/10.2172/6955013.
Texto completoRusso, David y William A. Jury. Characterization of Preferential Flow in Spatially Variable Unsaturated Field Soils. United States Department of Agriculture, octubre de 2001. http://dx.doi.org/10.32747/2001.7580681.bard.
Texto completoFloyd, Jason y Daniel Madrzykowski. Analysis of a Near Miss in a Garden Apartment Fire – Georgia 2022. UL's Fire Safety Research Institute, octubre de 2022. http://dx.doi.org/10.54206/102376/rsfd6862.
Texto completoHST3D; a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems. US Geological Survey, 1987. http://dx.doi.org/10.3133/wri864095.
Texto completo