Siga este enlace para ver otros tipos de publicaciones sobre el tema: Hedging of contingent claims.

Artículos de revistas sobre el tema "Hedging of contingent claims"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Hedging of contingent claims".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Brandt, Michael W. "Hedging Demands in Hedging Contingent Claims". Review of Economics and Statistics 85, n.º 1 (febrero de 2003): 119–40. http://dx.doi.org/10.1162/003465303762687758.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Jarrow, Robert y Dilip B. Madan. "Hedging contingent claims on semimartingales". Finance and Stochastics 3, n.º 1 (1 de enero de 1999): 111–34. http://dx.doi.org/10.1007/s007800050054.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Cvitanic, Jaksa y Ioannis Karatzas. "Hedging Contingent Claims with Constrained Portfolios". Annals of Applied Probability 3, n.º 3 (agosto de 1993): 652–81. http://dx.doi.org/10.1214/aoap/1177005357.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

OHSAKI, SHUICHI y AKIRA YAMAZAKI. "STATIC HEDGING OF DEFAULTABLE CONTINGENT CLAIMS: A SIMPLE HEDGING SCHEME ACROSS EQUITY AND CREDIT MARKETS". International Journal of Theoretical and Applied Finance 14, n.º 02 (marzo de 2011): 239–64. http://dx.doi.org/10.1142/s0219024911006383.

Texto completo
Resumen
This paper proposes a simple scheme for static hedging of defaultable contingent claims. It generalizes the techniques developed by Carr and Chou (1997), Carr and Madan (1998), and Takahashi and Yamazaki (2009a) to credit-equity models. Our scheme provides a hedging strategy across credit and equity markets, where suitable defaultable contingent claims are accurately replicated by a feasible number of plain vanilla equity options. Another point is that shorter maturity options are available to hedge longer maturity defaultable contingent claims. Through numerical examples, it is shown that the scheme is applicable to both structural and intensity-based models.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Xiao, Lei Wang and Yan. "Hedging Game Contingent Claims with Constrained Portfolios". Advances in Applied Mathematics and Mechanics 1, n.º 4 (junio de 2009): 529–45. http://dx.doi.org/10.4208/aamm.09-m08h8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Bo, Wang y Meng Qingxin. "Hedging American contingent claims with arbitrage costs". Chaos, Solitons & Fractals 32, n.º 2 (abril de 2007): 598–603. http://dx.doi.org/10.1016/j.chaos.2005.11.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Karatzas, Ioannis y S. G. Kou. "Hedging American contingent claims with constrained portfolios". Finance and Stochastics 2, n.º 3 (1 de mayo de 1998): 215–58. http://dx.doi.org/10.1007/s007800050039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Zhao, Jun, Emmanuel Lépinette y Peibiao Zhao. "Pricing under dynamic risk measures". Open Mathematics 17, n.º 1 (8 de agosto de 2019): 894–905. http://dx.doi.org/10.1515/math-2019-0070.

Texto completo
Resumen
Abstract In this paper, we study the discrete-time super-replication problem of contingent claims with respect to an acceptable terminal discounted cash flow. Based on the concept of Immediate Profit, i.e., a negative price which super-replicates the zero contingent claim, we establish a weak version of the fundamental theorem of asset pricing. Moreover, time consistency is discussed and we obtain a representation formula for the minimal super-hedging prices of bounded contingent claims.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Khasanov, R. V. "On the Upper Hedging Price of Contingent Claims". Theory of Probability & Its Applications 57, n.º 4 (enero de 2013): 607–18. http://dx.doi.org/10.1137/s0040585x97986199.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Song, Ruili y Bo Wang. "Backward Stochastic Differential Equation on Hedging American Contingent Claims". Mathematical and Computational Applications 15, n.º 5 (31 de diciembre de 2010): 895–900. http://dx.doi.org/10.3390/mca15050895.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Chen, Dianfa y Jianfen Feng. "LOWER HEDGING OF CONTINGENT CLAIMS IN RANDOMLY CONSTRAINED MARKETS". Acta Mathematica Scientia 26, n.º 4 (octubre de 2006): 629–38. http://dx.doi.org/10.1016/s0252-9602(06)60089-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Elliott, Robert J. y Tak Kuen Siu. "Pricing and hedging contingent claims with regime switching risk". Communications in Mathematical Sciences 9, n.º 2 (2011): 477–98. http://dx.doi.org/10.4310/cms.2011.v9.n2.a6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

TEVZADZE, R. y T. UZUNASHVILI. "ROBUST MEAN-VARIANCE HEDGING AND PRICING OF CONTINGENT CLAIMS IN A ONE PERIOD MODEL". International Journal of Theoretical and Applied Finance 15, n.º 03 (mayo de 2012): 1250024. http://dx.doi.org/10.1142/s0219024912500240.

Texto completo
Resumen
In this paper, we consider the mean-variance hedging problem of contingent claims in a financial market model composed of assets with uncertain price parameters. We consider the worst case of model parameters required to solve the minimax problem. In general, such minimax problems cannot be changed to maximin problems. The main approach we develop is the randomization of the parameters, which allows us to change minimax to maximin problems, which are easier to solve. We provide an explicit solution for the robust mean-variance hedging problem in the single-period model for some types of contingent claims.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

CHRISTODOULOU, PANAGIOTIS, NILS DETERING y THILO MEYER-BRANDIS. "LOCAL RISK-MINIMIZATION WITH MULTIPLE ASSETS UNDER ILLIQUIDITY WITH APPLICATIONS IN ENERGY MARKETS". International Journal of Theoretical and Applied Finance 21, n.º 04 (junio de 2018): 1850028. http://dx.doi.org/10.1142/s0219024918500280.

Texto completo
Resumen
We propose a hedging approach for general contingent claims when liquidity is a concern and trading is subject to transaction cost. Multiple assets with different liquidity levels are available for hedging. Our risk criterion targets a tradeoff between minimizing the risk against fluctuations in the stock price and incurring low liquidity costs. We work in an arbitrage-free setting assuming a supply curve for each asset. In discrete time, we prove the existence of a locally risk-minimizing strategy under mild conditions on the price process. Under stochastic and time-dependent liquidity risk we give a closed-form solution for an optimal strategy in the case of a linear supply curve model. Finally we show how our hedging method can be applied in energy markets where futures with different maturities are available for trading. The futures closest to their delivery period are usually the most liquid but depending on the contingent claim not necessarily optimal in terms of hedging. In a simulation study, we investigate this tradeoff and compare the resulting hedge strategies with the classical ones.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Kentia, Klebert y Christoph Kühn. "Nash Equilibria for Game Contingent Claims with Utility-Based Hedging". SIAM Journal on Control and Optimization 56, n.º 6 (enero de 2018): 3948–72. http://dx.doi.org/10.1137/17m1141059.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Carmona, Rene y Michael Tehranchi. "A characterization of hedging portfolios for interest rate contingent claims". Annals of Applied Probability 14, n.º 3 (agosto de 2004): 1267–94. http://dx.doi.org/10.1214/105051604000000297.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Blanchet-Scalliet, Christophette y Monique Jeanblanc. "Hazard rate for credit risk and hedging defaultable contingent claims". Finance and Stochastics 8, n.º 1 (1 de enero de 2004): 145–59. http://dx.doi.org/10.1007/s00780-003-0108-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Guilan, Wang. "Pricing and hedging of American contingent claims in incomplete markets". Acta Mathematicae Applicatae Sinica 15, n.º 2 (abril de 1999): 144–52. http://dx.doi.org/10.1007/bf02720489.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

MANCINO, MARIA ELVIRA. "A TAYLOR FORMULA TO PRICE AND HEDGE EUROPEAN CONTINGENT CLAIMS". International Journal of Theoretical and Applied Finance 04, n.º 04 (agosto de 2001): 603–20. http://dx.doi.org/10.1142/s021902490100119x.

Texto completo
Resumen
We present the no-arbitrage price and the hedging strategy of an European contingent claim through a representation formula which is an extension of the Clark-Ocone formula. Our formula can be interpreted as a second order Taylor formula of the no arbitrage price of a contingent claim. The zero order term is given by the mean of the contingent claim payoff, the first order term by the stochastic integral of the mean of its Malliavin derivative and the second order term by the stochastic integral of the conditional expectation of the second Malliavin derivative. A Taylor series expansion is also provided together with a bound to the approximation error obtained by neglecting the second order term in the Taylor formula.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Buckdahn, Rainer y Ying Hu. "Hedging contingent claims for a large investor in an incomplete market". Advances in Applied Probability 30, n.º 01 (marzo de 1998): 239–55. http://dx.doi.org/10.1017/s0001867800008181.

Texto completo
Resumen
In this paper we study the problem of pricing contingent claims for a large investor (i.e. the coefficients of the price equation can also depend on the wealth process of the hedger) in an incomplete market where the portfolios are constrained. We formulate this problem so as to find the minimal solution of forward-backward stochastic differential equations (FBSDEs) with constraints. We use the penalization method to construct a sequence of FBSDEs without constraints, and we show that the solutions of these equations converge to the minimal solution we are interested in.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Abergel, Frédéric y Nicolas Millot. "Nonquadratic Local Risk-Minimization for Hedging Contingent Claims in Incomplete Markets". SIAM Journal on Financial Mathematics 2, n.º 1 (enero de 2011): 342–56. http://dx.doi.org/10.1137/100803079.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Alcock, Jamie y Philip Gray. "Dynamic, nonparametric hedging of European style contingent claims using canonical valuation". Finance Research Letters 2, n.º 1 (marzo de 2005): 41–50. http://dx.doi.org/10.1016/j.frl.2004.09.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Buckdahn, Rainer y Ying Hu. "Hedging contingent claims for a large investor in an incomplete market". Advances in Applied Probability 30, n.º 1 (marzo de 1998): 239–55. http://dx.doi.org/10.1239/aap/1035228002.

Texto completo
Resumen
In this paper we study the problem of pricing contingent claims for a large investor (i.e. the coefficients of the price equation can also depend on the wealth process of the hedger) in an incomplete market where the portfolios are constrained. We formulate this problem so as to find the minimal solution of forward-backward stochastic differential equations (FBSDEs) with constraints. We use the penalization method to construct a sequence of FBSDEs without constraints, and we show that the solutions of these equations converge to the minimal solution we are interested in.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Bo, Wang y Meng Qingxin. "Hedging American contingent claims with constrained portfolios under proportional transaction costs". Chaos, Solitons & Fractals 23, n.º 4 (febrero de 2005): 1153–62. http://dx.doi.org/10.1016/j.chaos.2004.05.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Mahayni, Antje. "Effectiveness of Hedging Strategies under Model Misspecification and Trading Restrictions". International Journal of Theoretical and Applied Finance 06, n.º 05 (agosto de 2003): 521–52. http://dx.doi.org/10.1142/s0219024903001967.

Texto completo
Resumen
The following paper focuses on the incompleteness arising from model misspecification combined with trading restrictions. While asset price dynamics are assumed to be continuous time processes, the hedging of contingent claims occurs in discrete time. The trading strategies under consideration are understood to be self-financing with respect to an assumed model which may deviate from the "true" model, thus associating duplication costs with respect to a contingent claim to be hedged. Based on the robustness result of Gaussian hedging strategies, which states that a superhedge is achieved for convex payoff-functions if the "true" asset price volatility is dominated by the assumed one, the error of time discretising these strategies is analysed. It turns out that the time discretisation of Gaussian hedges gives rise to a duplication bias caused by asset price trends, which can be avoided by discretising the hedging model instead of discretising the hedging strategies. Additionally it is shown, that on the one hand binomial strategies incorporate similar robustness features as Gaussian hedges. On the other hand, the distribution of the cost process associated with the binomial hedge coincides, in the limit, with the distribution of the cost process associated with the Gaussian hedge. Together, the last results yield a strong argument in favour of discretising the hedge model instead of time-discretising the strategies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Guo, Jianhua. "The Optimal Hedging Ratio for Contingent Claims Based on Different Risk Aversions". Open Journal of Business and Management 07, n.º 02 (2019): 447–54. http://dx.doi.org/10.4236/ojbm.2019.72030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Guo, Jian-Hua. "Hedging strategies for European contingent claims with the minimum shortfall risk criterion". Journal of Interdisciplinary Mathematics 20, n.º 3 (3 de abril de 2017): 637–47. http://dx.doi.org/10.1080/09720502.2017.1355510.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Rompolis, Leonidas S. y Elias Tzavalis. "Pricing and hedging contingent claims using variance and higher order moment swaps". Quantitative Finance 17, n.º 4 (14 de septiembre de 2016): 531–50. http://dx.doi.org/10.1080/14697688.2016.1224373.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Denis, Emmanuel. "Approximate Hedging of Contingent Claims under Transaction Costs for General Pay-offs". Applied Mathematical Finance 17, n.º 6 (12 de agosto de 2010): 491–518. http://dx.doi.org/10.1080/13504861003590170.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Kociński, Marek Andrzej. "Partial hedging of American contingent claims in a finite discrete time model". Applicationes Mathematicae 45, n.º 2 (2018): 161–80. http://dx.doi.org/10.4064/am2379-11-2018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Kramkov, D. O. "Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets". Probability Theory and Related Fields 105, n.º 4 (diciembre de 1996): 459–79. http://dx.doi.org/10.1007/bf01191909.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Liu, Dao Bai. "Mean-variance Hedging for Pricing European-type Contingent Claims with Transaction Costs". Acta Mathematica Sinica, English Series 19, n.º 4 (octubre de 2003): 655–70. http://dx.doi.org/10.1007/s10114-003-0259-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Kramkov, D. O. "Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets". Probability Theory and Related Fields 105, n.º 4 (1 de agosto de 1996): 459–79. http://dx.doi.org/10.1007/s004400050051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Thierbach, F. "Mean-Variance Hedging Under Additional Market Information". International Journal of Theoretical and Applied Finance 06, n.º 06 (septiembre de 2003): 613–36. http://dx.doi.org/10.1142/s0219024903002092.

Texto completo
Resumen
In this paper we analyze the mean-variance hedging approach in an incomplete market under the assumption of additional market information, which is represented by a given, finite set of observed prices of non-attainable contingent claims. Due to no-arbitrage arguments, our set of investment opportunities increases and the set of possible equivalent martingale measures shrinks. Therefore, we obtain a modified mean-variance hedging problem, which takes into account the observed additional market information. Solving this we obtain an explicit description of the optimal hedging strategy and an admissible, constrained variance-optimal signed martingale measure, that generates both the approximation price and the observed option prices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Bueno-Guerrero, Alberto. "Interest rate option hedging portfolios without bank account". Studies in Economics and Finance 37, n.º 1 (20 de septiembre de 2019): 134–42. http://dx.doi.org/10.1108/sef-02-2019-0058.

Texto completo
Resumen
Purpose This paper aims to study the conditions for the hedging portfolio of any contingent claim on bonds to have no bank account part. Design/methodology/approach Hedging and Malliavin calculus techniques recently developed under a stochastic string framework are applied. Findings A necessary and sufficient condition for the hedging portfolio to have no bank account part is found. This condition is applied to a barrier option, and an example of a contingent claim whose hedging portfolio has a bank account part different from zero is provided. Originality/value To the best of the authors’ knowledge, this is the first time that this issue has been addressed in the literature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Ceci, Claudia, Alessandra Cretarola y Francesco Russo. "GKW representation theorem under restricted information: An application to risk-minimization". Stochastics and Dynamics 14, n.º 02 (24 de marzo de 2014): 1350019. http://dx.doi.org/10.1142/s0219493713500196.

Texto completo
Resumen
We provide Galtchouk–Kunita–Watanabe representation results in the case where there are restrictions on the available information. This allows one to prove the existence and uniqueness of solution for special equations driven by a general square integrable càdlàg martingale under partial information. Furthermore, we discuss an application to risk-minimization where we extend the results of Föllmer and Sondermann, Hedging of non-redundant contingent claims, to the partial information framework and we show how our result fits in the approach of Schweizer, Risk-minimizing hedging strategies under restricted information.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Rotenstein, Eduard. "A multi-dimensional FBSDE with quadratic generator and its applications". Analele Universitatii "Ovidius" Constanta - Seria Matematica 23, n.º 2 (1 de junio de 2015): 213–22. http://dx.doi.org/10.1515/auom-2015-0038.

Texto completo
Resumen
Abstract We consider, in the Markovian framework, a multi-dimensional forward - back - ward stochastic differential equation with quadratic growth for the generator function of the backward system. We prove an existence result of the solution and we use this result for pricing and hedging of contingent claims that depend on non-tradeable indexes by portfolios consisting in correlated risky assets.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Kramkov, D. y M. Sǐrbu. "Asymptotic analysis of utility-based hedging strategies for small number of contingent claims". Stochastic Processes and their Applications 117, n.º 11 (noviembre de 2007): 1606–20. http://dx.doi.org/10.1016/j.spa.2007.04.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Rutkowski, M. "Valuation and hedging of contingent claims in the HJM model with deterministic volatilities". Applied Mathematical Finance 3, n.º 3 (septiembre de 1996): 237–67. http://dx.doi.org/10.1080/13504869600000012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Wang, Wei, Linyi Qian y Wensheng Wang. "Hedging of contingent claims written on non traded assets under Markov-modulated models". Communications in Statistics - Theory and Methods 45, n.º 12 (14 de agosto de 2015): 3577–95. http://dx.doi.org/10.1080/03610926.2014.904355.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Matsuda, Takeru y Akimichi Takemura. "Game-theoretic derivation of upper hedging prices of multivariate contingent claims and submodularity". Japan Journal of Industrial and Applied Mathematics 37, n.º 1 (1 de noviembre de 2019): 213–48. http://dx.doi.org/10.1007/s13160-019-00394-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Geman, Hélyette, Nicole El Karoui y Jean-Charles Rochet. "Changes of numéraire, changes of probability measure and option pricing". Journal of Applied Probability 32, n.º 2 (junio de 1995): 443–58. http://dx.doi.org/10.2307/3215299.

Texto completo
Resumen
The use of the risk-neutral probability measure has proved to be very powerful for computing the prices of contingent claims in the context of complete markets, or the prices of redundant securities when the assumption of complete markets is relaxed. We show here that many other probability measures can be defined in the same way to solve different asset-pricing problems, in particular option pricing. Moreover, these probability measure changes are in fact associated with numéraire changes, this feature, besides providing a financial interpretation, permits efficient selection of the numéraire appropriate for the pricing of a given contingent claim and also permits exhibition of the hedging portfolio, which is in many respects more important than the valuation itself.The key theorem of general numéraire change is illustrated by many examples, among which the extension to a stochastic interest rates framework of the Margrabe formula, Geske formula, etc.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Geman, Hélyette, Nicole El Karoui y Jean-Charles Rochet. "Changes of numéraire, changes of probability measure and option pricing". Journal of Applied Probability 32, n.º 02 (junio de 1995): 443–58. http://dx.doi.org/10.1017/s002190020010289x.

Texto completo
Resumen
The use of the risk-neutral probability measure has proved to be very powerful for computing the prices of contingent claims in the context of complete markets, or the prices of redundant securities when the assumption of complete markets is relaxed. We show here that many other probability measures can be defined in the same way to solve different asset-pricing problems, in particular option pricing. Moreover, these probability measure changes are in fact associated with numéraire changes, this feature, besides providing a financial interpretation, permits efficient selection of the numéraire appropriate for the pricing of a given contingent claim and also permits exhibition of the hedging portfolio, which is in many respects more important than the valuation itself. The key theorem of general numéraire change is illustrated by many examples, among which the extension to a stochastic interest rates framework of the Margrabe formula, Geske formula, etc.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Pınar, Mustafa Ç. "Sharpe-ratio pricing and hedging of contingent claims in incomplete markets by convex programming". Automatica 44, n.º 8 (agosto de 2008): 2063–73. http://dx.doi.org/10.1016/j.automatica.2007.11.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Meng, Qingxin y Bo Wang. "Hedging American contingent claims with constrained portfolios under a higher interest rate for borrowing". Chaos, Solitons & Fractals 24, n.º 2 (abril de 2005): 617–25. http://dx.doi.org/10.1016/j.chaos.2004.09.020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Di Tella, Paolo, Martin Haubold y Martin Keller-Ressel. "Semi-static variance-optimal hedging in stochastic volatility models with Fourier representation". Journal of Applied Probability 56, n.º 3 (septiembre de 2019): 787–809. http://dx.doi.org/10.1017/jpr.2019.41.

Texto completo
Resumen
AbstractWe introduce variance-optimal semi-static hedging strategies for a given contingent claim. To obtain a tractable formula for the expected squared hedging error and the optimal hedging strategy we use a Fourier approach in a multidimensional factor model. We apply the theory to set up a variance-optimal semi-static hedging strategy for a variance swap in the Heston model, which is affine, in the 3/2 model, which is not, and in a market model including jumps.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

BARSKI, MICHAŁ y JERZY ZABCZYK. "COMPLETENESS OF BOND MARKET DRIVEN BY LÉVY PROCESS". International Journal of Theoretical and Applied Finance 13, n.º 05 (agosto de 2010): 635–56. http://dx.doi.org/10.1142/s0219024910005942.

Texto completo
Resumen
The completeness problem of the bond market model with the random factors determined by a Wiener process and Poisson random measure is studied. Hedging portfolios use bonds with maturities in a countable, dense subset of a finite time interval. It is shown that under natural assumptions the market is not complete unless the support of the Lévy measure consists of a finite number of points. Explicit constructions of contingent claims which cannot be replicated are provided.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Kholodnyi, Valery A. "Valuation and hedging of European contingent claims on power with spikes: a non-Markovian approach". Journal of Engineering Mathematics 49, n.º 3 (julio de 2004): 233–52. http://dx.doi.org/10.1023/b:engi.0000031203.43548.b6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Pınar, Mustafa Ç., Aslıhan Salih y Ahmet Camcı. "Expected gain–loss pricing and hedging of contingent claims in incomplete markets by linear programming". European Journal of Operational Research 201, n.º 3 (marzo de 2010): 770–85. http://dx.doi.org/10.1016/j.ejor.2009.02.031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Wang, Bo y Ruili Song. "The Application of backward stochastic differential equation with stopping time in hedging American contingent claims". Chaos, Solitons & Fractals 42, n.º 5 (diciembre de 2009): 2629–34. http://dx.doi.org/10.1016/j.chaos.2009.03.170.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía