Literatura académica sobre el tema "Heme-binding protein 2"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Heme-binding protein 2".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Heme-binding protein 2"

1

Liu, Liu, Arti B. Dumbrepatil, Angela S. Fleischhacker, E. Neil G. Marsh, and Stephen W. Ragsdale. "Heme oxygenase-2 is post-translationally regulated by heme occupancy in the catalytic site." Journal of Biological Chemistry 295, no. 50 (2020): 17227–40. http://dx.doi.org/10.1074/jbc.ra120.014919.

Texto completo
Resumen
Heme oxygenase-2 (HO2) and -1 (HO1) catalyze heme degradation to biliverdin, CO, and iron, forming an essential link in the heme metabolism network. Tight regulation of the cellular levels and catalytic activities of HO1 and HO2 is important for maintaining heme homeostasis. HO1 expression is transcriptionally regulated; however, HO2 expression is constitutive. How the cellular levels and activity of HO2 are regulated remains unclear. Here, we elucidate the mechanism of post-translational regulation of cellular HO2 levels by heme. We find that, under heme-deficient conditions, HO2 is destabili
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Nakamura, Nozomi, Yoichi Naoe, Akihiro Doi, Yoshitsugu Shiro, and Hiroshi Sugimoto. "Conformational change of periplasmic heme-binding protein in ABC transporter." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C1496. http://dx.doi.org/10.1107/s2053273314085039.

Texto completo
Resumen
Iron is one of the essential elements for all living organisms. Pathogenic bacteria acquire heme from the host proteins as an iron source. Gram-negative opportunistic pathogen, Burkholderia cenocepacia have ATP-binding cassette (ABC) transporter BhuUV-T complex to permeate heme through inner membrane. BhuT, periplasmic binding protein (PBP), bind and deliver heme(s) to inner membrane transporter BhuUV complex. BhuUV is 2:2 complex of the transmembrane permease subunit and cytoplasmic ATP-binding subunit which couple ATP hydrolysis to solute translocation. The molecular level mechanism of heme
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Nath, Karl A., Joseph P. Grande, John D. Belcher, et al. "Antithrombotic effects of heme-degrading and heme-binding proteins." American Journal of Physiology-Heart and Circulatory Physiology 318, no. 3 (2020): H671—H681. http://dx.doi.org/10.1152/ajpheart.00280.2019.

Texto completo
Resumen
In the murine venous thrombosis model induced by ligation of the inferior vena cava (IVCL), genetic deficiency of heme oxygenase-1 (HO-1) increases clot size. This study examined whether induction of HO-1 or administration of its products reduces thrombosis. Venous HO-1 upregulation by gene delivery reduced clot size, as did products of HO activity, biliverdin, and carbon monoxide. Induction of HO-1 by hemin reduced clot formation, clot size, and upregulation of plasminogen activator inhibitor-1 (PAI-1) that occurs in the IVCL model, while leaving urokinase plasminogen activator (uPA) and tiss
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

El-Mashtoly, Samir F., and Teizo Kitagawa. "Structural chemistry involved in information detection and transmission by gas sensor heme proteins: Resonance Raman investigation." Pure and Applied Chemistry 80, no. 12 (2008): 2667–78. http://dx.doi.org/10.1351/pac200880122667.

Texto completo
Resumen
A variety of heme-containing gas sensor proteins have been discovered by gene analysis from bacteria to mammals. In general, these proteins are composed of an N-terminal heme-containing sensor domain and a C-terminal catalytic domain. Binding of O2, CO, or NO to the heme causes a change in the structure of heme, which alters the protein conformation in the vicinity of the heme, and the conformational change is propagated to the catalytic domain, leading to regulation of the protein activity. This mini-review summarizes the recent resonance Raman studies obtained with both visible and UV excita
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Tiedemann, Michael T., Naomi Muryoi, David E. Heinrichs, and Martin J. Stillman. "Characterization of IsdH (NEAT domain 3) and IsdB (NEAT domain 2) in Staphylococcus aureus by magnetic circular dichroism spectroscopy and electrospray ionization mass spectrometry." Journal of Porphyrins and Phthalocyanines 13, no. 10 (2009): 1006–16. http://dx.doi.org/10.1142/s1088424609001352.

Texto completo
Resumen
Absorption and magnetic circular dichroism (MCD) spectra, together with electrospray ionization mass spectral (ESI-MS) data are reported for the first two proteins in the Isd sequence of proteins in Staphylococcus aureus. IsdH-NEAT domain 3 (IsdH-N3) and IsdB-NEAT domain 2 (IsdB-N2) are considered to be involved in heme transport following heme scavenging from the hemoglobin of the host. The ESI-MS data show that a single heme binds to each of these NEAT domains. The charge states of the native proteins indicate that there is minimal change in conformation when heme binds to the heme-free nati
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Freeman, Samuel L., Hanna Kwon, Nicola Portolano, et al. "Heme binding to human CLOCK affects interactions with the E-box." Proceedings of the National Academy of Sciences 116, no. 40 (2019): 19911–16. http://dx.doi.org/10.1073/pnas.1905216116.

Texto completo
Resumen
The circadian clock is an endogenous time-keeping system that is ubiquitous in animals and plants as well as some bacteria. In mammals, the clock regulates the sleep–wake cycle via 2 basic helix–loop–helix PER-ARNT-SIM (bHLH-PAS) domain proteins—CLOCK and BMAL1. There is emerging evidence to suggest that heme affects circadian control, through binding of heme to various circadian proteins, but the mechanisms of regulation are largely unknown. In this work we examine the interaction of heme with human CLOCK (hCLOCK). We present a crystal structure for the PAS-A domain of hCLOCK, and we examine
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Fleischhacker, Angela S., Amanda L. Gunawan, Brent A. Kochert, et al. "The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation." Journal of Biological Chemistry 295, no. 16 (2020): 5177–91. http://dx.doi.org/10.1074/jbc.ra120.012803.

Texto completo
Resumen
Heme-regulatory motifs (HRMs) are present in many proteins that are involved in diverse biological functions. The C-terminal tail region of human heme oxygenase-2 (HO2) contains two HRMs whose cysteine residues form a disulfide bond; when reduced, these cysteines are available to bind Fe3+-heme. Heme binding to the HRMs occurs independently of the HO2 catalytic active site in the core of the protein, where heme binds with high affinity and is degraded to biliverdin. Here, we describe the reversible, protein-mediated transfer of heme between the HRMs and the HO2 core. Using hydrogen-deuterium e
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lechuga, Guilherme C., Franklin Souza-Silva, Carolina Q. Sacramento, et al. "SARS-CoV-2 Proteins Bind to Hemoglobin and Its Metabolites." International Journal of Molecular Sciences 22, no. 16 (2021): 9035. http://dx.doi.org/10.3390/ijms22169035.

Texto completo
Resumen
(1) Background: coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been linked to hematological dysfunctions, but there are little experimental data that explain this. Spike (S) and Nucleoprotein (N) proteins have been putatively associated with these dysfunctions. In this work, we analyzed the recruitment of hemoglobin (Hb) and other metabolites (hemin and protoporphyrin IX-PpIX) by SARS-Cov2 proteins using different approaches. (2) Methods: shotgun proteomics (LC–MS/MS) after affinity column adsorption identified hemin-binding SAR
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Jeong, Jinsook, Tracey A. Rouault, and Rodney L. Levine. "Identification of a Heme-sensing Domain in Iron Regulatory Protein 2." Journal of Biological Chemistry 279, no. 44 (2004): 45450–54. http://dx.doi.org/10.1074/jbc.m407562200.

Texto completo
Resumen
Iron regulatory protein 2 coordinates the cellular regulation of iron metabolism by binding to iron-responsive elements in mRNA. The protein is synthesized constitutively but is rapidly degraded when iron stores are replete. The mechanisms that prevent degradation during iron deficiency or promote degradation during iron sufficiency are not delineated. Iron regulatory protein 2 contains a domain not present in the closely related iron regulatory protein 1, and we found that this domain binds heme with high affinity. A cysteine within the domain is axially liganded to the heme, as occurs in cyt
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Yang, Jianhua, Kevin D. Kim, Andrew Lucas, et al. "A Novel Heme-Regulatory Motif Mediates Heme-Dependent Degradation of the Circadian Factor Period 2." Molecular and Cellular Biology 28, no. 15 (2008): 4697–711. http://dx.doi.org/10.1128/mcb.00236-08.

Texto completo
Resumen
ABSTRACT Although efforts have been made to identify circadian-controlled genes regulating cell cycle progression and cell death, little is known about the metabolic signals modulating circadian regulation of gene expression. We identify heme, an iron-containing prosthetic group, as a regulatory ligand controlling human Period-2 (hPer2) stability. Furthermore, we define a novel heme-regulatory motif within the C terminus of hPer2 (SC841PA) as necessary for heme binding and protein destabilization. Spectroscopy reveals that whereas the PAS domain binds to both the ferric and ferrous forms of he
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!