Siga este enlace para ver otros tipos de publicaciones sobre el tema: Host Cell Proteins (HCP).

Tesis sobre el tema "Host Cell Proteins (HCP)"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores tesis para su investigación sobre el tema "Host Cell Proteins (HCP)".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

De, Lama Valderrama Noelia Milagros. "Development of new mass spectrometry methods for the characterization of protein impurities in therapeutic antibodies". Electronic Thesis or Diss., Strasbourg, 2025. http://www.theses.fr/2025STRAF008.

Texto completo
Resumen
Les protéines de cellule hôte (HCPs) sont des impuretés indésirables dans la production d’anticorps monoclonaux (mAbs), pouvant compromettre la sécurité, l’efficacité et la stabilité des traitements. Bien que l’ELISA soit couramment utilisée, elle présente des limites de couverture. Cette thèse explore des méthodes complémentaires basées sur la spectrométrie de masse. Une approche d’immuno-capture permet de détecter les HCPs non immune-réactifs, tandis que des workflows LC-MS/MS avancés avec des peptide standards offrent une quantification plus précise. Ces stratégies visent à améliorer le contrôle qualité dans la fabrication des mAbs
Host cell proteins (HCPs) are unwanted by-products in the production of monoclonal antibodies (mAbs), and even at low levels, they can affect the safety, efficacy, and stability of biopharmaceuticals. While ELISA is widely used for HCP detection, it lacks full impurity coverage. This work explores complementary mass spectrometry-based methods to address these limitations. An immune-capture MS approach targets non-immunoreactive HCPs missed by ELISA, while advanced LC-MS/MS workflows using peptide standards enable more accurate and flexible quantification. These tools aim to improve impurity profiling and strengthen quality control in mAb manufacturing
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Carr, Sharon. "Adenovirus and its interaction with host cell proteins /". St Andrews, 2007. http://hdl.handle.net/10023/219.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Qashqari, Fadi Saleh I. "Regulation of host cell proteins by adenovirus oncoproteins". Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/8020/.

Texto completo
Resumen
Adenovirus early region proteins, ElA, E1B-55K, E4orf3 and E4orf6 regulate host cell processes to facilitate viral replication. E4orf3 suppress host cell anti-viral activities through association with host cell proteins in E4orf3 nuclear-track structures, whilst E1B-55K, E4orf3 and E4orf6 are all recruited to viral replication centres during infection to promote viral DNA replication and inhibit host cell antiviral activities. Immunoprecipitation coupled to mass spectrometry identified Toplla as an Ad12 E4orf3-binding protein that localized with E4orf3 in adenovirus-infected cells. It was determined that Toplla expression was induced during infection, and that Toplla was required for the adenovirusdependent stabilization of p53. It was also established that, despite their ability to cooperate functionally, Toplla and p53 do not associate physically during infection. Immunoprecipitation coupled to mass spectrometry was also used to identify host cell proteins recruited to viral replication centres during adenovirus infection. The RP A-1 binding protein, Smarcall, and the FACT complex histone chaperone protein, SSRPl were identified as host cell proteins recruited to viral replication centres during infection. Following recruitment to viral replication centres Smarcall was found to be degraded in an E1B-55K and E4orf6 dependent manner, whilst SSRPl was found to be stable during infection and was not targeted for degradation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bjertsjö, Rennermalm Anna. "Staphylococcal cell wall associated proteins : characteristics and host interactions /". Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-542-9/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Mohamed, Ahmed Attia Ali. "Interaction of hepatitis C virus polymerase with host cell proteins". Thesis, Durham University, 2009. http://etheses.dur.ac.uk/2107/.

Texto completo
Resumen
Hepatitis C virus (HCV) interacts with host cell proteins to modify cellular pathways creating a favourable environment that facilitates its replication and persistence. The purpose of the work presented in this thesis was to identify cellular proteins that can interact with NS5B, the virus's RNA-dependent RNA polymerase, that may contribute to the virus's biology. A number of cellular proteins were found to interact with NS5B using the yeast two-hybrid system. These proteins were involved in cellular pathways such as interferon signalling, lipid transport and metabolism, protein trafficking, cell proliferation and apoptosis. Of these, phospholipid scramblase 1 (PLSCR1) and zinc finger protein 143 (ZNF143) were selected for further investigation. The interactions were confirmed in vitro, and, for PLSCR1, the region that interacted with NS5B was determined to be within the amino-terminal region of the protein (61-137 a.a.). NS5B interacted with PLSCR1 and ZNF143 via a single interacting region localized in its N-terminus (1-153 a.a.).Expression of PLSCR1 or ZNF143 enhanced the ability of interferon to stimulate transcription from an interferon-stimulated response element (ISRE) reporter construct. Co-expression with NS5B was found to down-regulate this activity. Expression of a number of interferon-stimulated genes was investigated in the presence of NS5B, PLSCR1 or ZNF143 but no significant effect was observed. Overexpression of PLSCR1 had no effect on HCV sub-genomic replicon replication, while reduction of its expression by short hairpin RNA (shRNA) enhanced replication. Overexpression of ZNF143 was found to have a suppressive effect on replication but downregulating its expression did not enhance replication. In addition to using the yeast two-hybrid system to identify NS5B- interacting proteins, an in vitro pulldown assay coupled with mass spectrometry identified α- and β -tubulin associated with NS5B in vitro and in vivo. Subsequently this association was demonstrated to be an indirect interaction but the intermediatory partner was not identified. The domain that mediated the association with α- and β-tubulin was determined to be within the N-terminus of NS5B (1-153 a.a.). Nocodazole, an inhibitor of tubulin polymerization, had a marked effect on the association of α -tubulin with NS5B displacing it from the complex but had no effect on β -tubulin's association. Utilizing an HCV sub- genomic replicon, nocodazole was shown to have a significant inhibitory effect on replication. Taken together the data presented in this thesis showed that NS5B had a multitude of potential interactions with a variety of cellular proteins. The biological significance of some of these interactions on the cellular response to IFN and replicon replication was investigated. This work has generated a number of novel observations on the interaction between the virus and the cell that warrant future investigation
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Malinkevich, Anna. "MIRAGE DNA Transposon Silencing by C. elegans Condensin II Subunit HCP-6: A Masters Thesis". eScholarship@UMMS, 2014. http://escholarship.umassmed.edu/gsbs_diss/754.

Texto completo
Resumen
Mobile genetic elements represent a large portion of the genome in many species. Posing a danger to the integrity of genetic information, silencing and structural machinery has evolved to suppress the mobility of foreign and transposable elements within the genome. Condensin proteins – which regulate chromosome structure to promote chromosome segregation – have been demonstrated to function in repetitive gene regulation and transposon silencing in several species. In model system Caenorhabditis elegans, microarray analysis studies have implicated Condensin II subunit HCP-6 in the silencing of multiple loci, including DNA transposon MIRAGE. To address the hypothesis that HCP-6 has a direct function in transcriptional gene silencing of the MIRAGE transposon, we queried MIRAGE expression and chromatin profiles in wild-type and hcp-6 mutant animals. Our evidence confirms that HCP-6 does indeed function during silencing of MIRAGE. However, we found no significant indication that HCP-6 binds to MIRAGE, nor that HCP-6 mediates MIRAGE enrichment of H3K9me3, the repressive heterochromatin mark observed at regions undergoing transcriptional silencing. We suggest that the silencing of MIRAGE, a newly evolved transposon and the only tested mobile element considerably derepressed upon loss of HCP-6, is managed by HCP-6 indirectly.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Patel, Amit. "Interaction of enteropathogenic 'Escherichia coli' (EPEC) tir with host cell proteins". Thesis, University of Nottingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431869.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Cowlishaw, Deborah Anne. "Identification of host proteins required for bacteriophage infection of Streptomyces sp". Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367589.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Rytkönen, Anne. "Molecular studies of Neisseria - host cell interactions /". Stockholm, 2004. http://diss.kib.ki.se/2004/91-7140-018-4/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Dickey, Laura Leigh. "Respiratory synctial virus interactions with host-cell RNA-processing structures and proteins". Thesis, Boston University, 2013. https://hdl.handle.net/2144/10980.

Texto completo
Resumen
Thesis (Ph.D.)--Boston University
Respiratory syncytial virus (RSV) is a negative-strand RNA virus that causes significant pneumonia-related morbidity and mortality worldwide. There are currently neither vaccines nor effective therapies for RSV. As with other viruses, RSV mRNAs are translated using host-cell machinery, rendering the virus subject to cellular factors that regulate mRNA homeostasis. Stress granules (SGs) and processing bodies (p-bodies) are inter-dependent, stress-response cytoplasmic structures involved in mRNA triage and degradation, respectively. We hypothesized that RSV has evolved to manipulate cellular stress responses in order to facilitate optimal virus propagation. While wild-type (wt) RSV induced SGs in approximately 1% of infected cells, a mutant version of RSV whose Tr region was replaced with an inverted LeC sequence (LeC virus) induced SG formation in approximately 50% to 70% of infected cells. A 12U to A substitution relative to the 5' end of the LeC virus abrogated SG induction. Mixed-infection studies showed that wt RSV was able to prevent LeC-mediated SG induction. Unlike Sendai virus, RSV-mediated prevention of SG formation was independent of SG-associated t-cell intracellular antigen related (TIAR) protein. RSV infection altered neither the number nor distribution of p-bodies; however, p-body-associated decapping protein 1 (dcp1) was phosphorylated throughout RSV infection via the extracellular signal-regulated kinase (ERK) 1/2 pathway. RSV-mediated dcp1 phosphorylation was limited to serine 315, serine 319, and threonine 321. Dcp1 phosphorylation occurred in response to some, but not all, environmental stresses, and dcp1 was not phosphorylated during infection with HIV-1, measles, mumps, or canine distemper virus. Overexpression of dcp1 significantly attenuated RSV cytopathic effects, and preliminary data suggested that dcp1 phosphorylation regulated RSV-induced interleukin-8 production. Finally, an antibody toward cellular SG- and p-body-associated, RNA-binding protein p54 was able to recognize a subset of RSV nucleoprotein (N). p54 and RSV N contain a similar amino acid sequence motif, suggesting that they may have similar or competing activities that are important during RSV replication. Taken together, our results demonstrate that RSV can manipulate cellular RNA-processing structures and proteins to facilitate viral propagation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Riaz, Muhammad Suleman. "Investigating the effects of host factors (proteins and non-proteins) on mycobacteria". Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/16060.

Texto completo
Resumen
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis, is one of the leading causes of death due to a single infectious agent and results in more than 1 million human deaths every year. M.tb infection of the host initiates a local inflammatory response, resulting in the migration of a number of host plasma protein and non-protein factors to the site of infection. In addition, some of these factors are also produced locally at the site of infection. It is envisaged that these host factors are likely to come in direct contact with M.tb and immune cells and may modulate the outcome of the infection. In this study, a number of host factors including transferrin, lactoferrin, fibrinogen, C-reactive protein, alpha-2-macroglobulin (α2M), vitronectin, plasminogen, low-density lipoprotein (LDL), high-density lipoprotein (HDL), serotonin, L-alpha dipalmitoyl phosphatidylcholine (DPPC) and platelet activating factor C-16 (PAF C-16) were screened in vitro for their direct effect on the growth of mycobacteria using M.smegmatis as a model. As a result of this screening, PAF C-16, a phospholipid compound was identified that directly inhibited the growth of M.smegmatis and M.bovis BCG in a dose and time-dependent manner. Use of a range of PAF C-16 structural analogues, including Lyso-PAF, PAF C-18, Hexanolamino PAF, 2-O-methyl PAF & Pyrrolidino PAF, revealed that small modifications in structure did not alter the direct growth inhibition property of PAF C-16 and similar levels of M.smegmatis and M.bovis BCG growth inhibition were observed as compared to PAF C-16. Structural dissection of PAF C-16 suggested that the attachment of carbon tail to the glycerol backbone via ether bond at sn-1 position was important for its direct growth inhibition activity against mycobacteria. Microscopy and flow cytometry with PAF C-16 treated M.smegmatis and M.bovis BCG showed damage to the bacterial cell membrane. The addition of membrane-stabilizing agents, α-tocopherol, tween-80 and tween-20, partially mitigated the growth inhibitory effect of PAF C-16. These results suggested that the growth inhibition activity of PAF C-16 against mycobacteria is most likely due to its detergent-like effect, resulting in damage to the bacterial cell membrane. PAF C-16 and its structural analogues were also investigated for their effect on the growth of intracellular M.smegmatis inside THP1 cells. In vitro, PAF C-16, PAF C-18 and Hexanolamino PAF inhibited the growth of intracellular M.smegmatis, whereas, analogues such as Lyso-PAF and 2-O-methyl PAF failed to show any growth inhibitory effect, suggesting that the presence of acetyl group at sn-2 position was important for growth inhibition of intracellular M.smegmatis. Use of PAF receptor antagonists partially mitigated the inhibitory effect of PAF C-16 on the growth of intracellular M.smegmatis, suggesting this inhibition was through receptor-mediated signalling pathways. Blocking of PAF C-16 signalling pathway components such as phospholipase C and phospholipase A2, resulted in the increased survival of intracellular M.smegmatis. Arachidonic acid, a product of PAF C-16 signalling pathway directly inhibited the growth of M.smegmatis. Furthermore, inhibition of iNOS enzyme and antibody-mediated neutralization of TNF-α partially mitigated the inhibitory effect of PAF C-16 on intracellular M.smegmatis growth, suggesting that the production of NO and TNF-α were also involved in PAF C-16 induced intracellular growth inhibition. Overall, this study has identified PAF C-16, its structural analogues such as Lyso-PAF, PAF C-18, Hexanolamino PAF and other compounds including 1-O-hexadecyl-sn-glycerol, miltefosine and hexadecyl lactate with novel anti-mycobacterial activity. Further investigations are needed to demonstrate their effectiveness against M.tb both in vitro and in animal models to assess their therapeutic potential as anti-TB drugs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Ratanji, Kirsty. "Investigating the immunogenicity of therapeutic proteins : protein aggregation and host cell protein impurities". Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/investigating-the-immunogenicity-of-therapeutic-proteins-protein-aggregation-and-host-cell-protein-impurities(fda43dd8-2c1e-492b-abd9-e010774d2219).html.

Texto completo
Resumen
The development of anti-drug antibodies (ADA) against therapeutic proteins can impact upon drug safety and efficacy. This is a major challenge in the development of biotherapeutics. Various factors have the potential to contribute to protein immunogenicity and the production of ADA. Protein aggregation is one of these factors, though the mechanisms underlying aggregate immunogenicity are poorly understood. In this thesis the effect of protein aggregation on immunogenicity has been investigated. The thermal and/or mechanical stresses required in order to achieve subvisible aggregates of three test proteins were determined. Stressed preparations of proteins were characterised using a suite of biophysical techniques, including dynamic light scattering and circular dichroism. The immunogenic potential of subvisible aggregates of a humanised single chain variable fragment (scFv) and ovalbumin (OVA) was studied following intraperitoneal exposure in BALB/c strain mice. Monomeric proteins induced a T helper (Th) 2 dominant immune response, but when aggregated, the responses gained a Th1 phenotype, with a significant increase in the antigen-specific IgG2a antibody response. Cytokine profiles in supernatants taken from splenocyte-dendritic cell co-cultures were also consistent with aggregated preparations of OVA inducing a Th1-type response. Host cell protein (HCP) impurities can also contribute to immunogenicity. Mass spectrometry analysis of an scFv preparation identified the presence of the Escherichia coli (E.coli) heat shock protein DnaK, amongst other HCP, as an impurity. Protein preparations free from DnaK were spiked with recombinant E.coli DnaK to mimic the HCP impurity. The effect of DnaK on the immunogenicity of aggregated and monomeric scFv preparations was then investigated. BALB/c mice were immunised with monomeric and aggregated preparations, with and without E.coli DnaK at 0.1% by mass. Aggregation alone resulted in an enhanced IgG2a antibody response, and the presence of DnaK increased this further. Comparable investigations were also conducted using mouse albumin; here an increase in immunogenicity was observed with protein aggregation, and the presence of DnaK was found to increase the IgG2a response. Collectively, the evidence presented in this thesis shows that aggregation can impact upon the magnitude and character of induced immune responses, and that subvisible aggregation promotes a Th1 immune skewing. Additionally, E.coli HCP DnaK enhances protein aggregate immunogenicity, which indicates that heat shock proteins, as a class of HCP, could have an adjuvant-like effect on biotherapeutic aggregates.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Ohmer, Michaela [Verfasser] y Georg [Akademischer Betreuer] Häcker. "Regulation of cell survival by host and viral anti-apoptotic Bcl-2 proteins". Freiburg : Universität, 2016. http://d-nb.info/1152210300/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Schoggins, John Wesley. "Adenovirus host-cell interactions : the role of capsid proteins in transduction, immune activation, and gene targeting /". Access full-text from WCMC:, 2007. http://proquest.umi.com/pqdweb?did=1432771281&sid=1&Fmt=2&clientId=8424&RQT=309&VName=PQD.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Khairalla, Ahmed Samir Mohammed. "Identification of host immune cell receptors mediating the binding of meningococcal App/MspA proteins". Thesis, University of Nottingham, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.575478.

Texto completo
Resumen
Neisseria meningitidis, a major cause of bacterial meningitis and septicemia, secretes multiple virulence factors to the extracellular environment, including the adhesion and penetration protein (App) and the meningococcal serine protease A (MspA). Both proteins belong to the serine protease auto transporter family and have the capacity to adhere to host epithelial and endothelial cells. Besides, both proteins have been previously shown to be internalized and translocated to the nuclei of human brain microvascular endothelial cells and dendritic cells (DCs), where they modulate gene expression. However, host cell receptors, endocytic pathways, nuclear translocation mechanisms, and gene expression modulation associated with App or MspA are poorly defined. In an effort to address this knowledge gap, recombinant forms of the passenger domains of both proteins were purified under native conditions using cold shock expression technology. The purified proteins, designated rpdApp and rpdMspA, were used to raise polyclonal, affinity-purified guinea pig antisera. These antibodies facilitated the investigation of interactions between both bacterial proteins and host cell molecules. One of these interactions highlighted in the present study is the entry of rpdApp and rpdMspA into human monocyte-derived immature DCs via receptor-mediated endocytosis. In vitro internalization and blocking assays showed that mannose receptor (MR) and transferrin receptor 1 are involved in the uptake of both proteins into DCs. Besides, two different approaches revealed that the binding of rpdApp and rpdMspA to MR is mediated specifically by the C-type lectin-like carbohydrate recognition domains 4':'7 (CTLD4-7). Additionally, the recognition of both bacterial proteins by these domains was shown to be calcium dependent, in addition to being inhibitable by D-mannose or L- fucose, but not D-galactose. Using gel overlay (Far-Western) analysis, rpdApp and rpdMspA were shown to interact with two nucleocytoplasmic shuttling proteins, namely heat shock protein 70 (Hsp70) and galectin-3 (Gal-3), with some data suggesting that interactions with Gal-3 may be mediated by its carbohydrate-recognition domain. Hsp70, which also interacts with the bacterial proteins, is characterized by possessing lectinic activity towards O-linked ~-N-acetylglucosamine (O-G1cNAc). Given the binding of App and MspA to different lectins, this study sought to examine the glycosylation status of both proteins, with a focus on O-GlcNAc modifications and their possible interplay with phosphorylation. Using in silico prediction methods, multiple sites within each protein were identified as potential sites for phosphorylation, O-GlcNAc modification, and alternative phosphorylation/O-GlcNAc modification. These predictions were supported by a series of Western blot analyses, which reproducibly showed that several meningococcal secreted proteins, including those of the expected size of App or MspA (115-120 kDa), are modified by both O-GlcNAc and tyrosine phosphorylation. The identity of the 115- to 120-kDa proteins was confirmed by stripping and reprobing the blots with antibodies against rpdApp and rpdMspA. However, attempts to detect these post-translational modifications in a sample of meningococcal secreted proteins tagged with TAMRA-alkyne by tandem mass spectrometry were unsuccessful. This may be attributed to the suppressive effect of the attached tag on trypsin cleavage and/or ionization efficiency. Finally, the results of Far-Western and ELISA assays clearly demonstrated the interactions of rpdApp or rpdMspA with various histone subunits. Additionally, both proteins were shown to have trypsin-like serine protease activity and to be capable of cleaving recombinant histone H3.1 in vitro. The proteolytic activity of both proteins on H3.l was shown to be specifically abolished by pre-incubation with serine protease inhibitors. Collectively, these results extend our understanding of the virulence potential of App and MspA beyond the adhesive or invasive functions, and reveal their capacity to participate in multiple interactions with host molecules. Besides, the current findings provide the basis for future studies to explore the epigenetic alterations induced by both proteins. Hopefully, the information gained will provide new insights into meningococcal pathogenesis and will help in the development of improved therapeutic approaches against the disease.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Sokolova, Nadiia Verfasser] y Theresia [Akademischer Betreuer] [Stradal. "Identification and characterization of interactions between bacterial WxxxE-virulence proteins and host cell proteins / Nadiia Sokolova ; Betreuer: Theresia Stradal". Braunschweig : Technische Universität Braunschweig, 2017. http://d-nb.info/1175817961/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

He, Yupeng. "Modulation of the host cell signaling pathways and protein synthesis by hepatitis C virus nonstructural 5A protein /". Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/11491.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Curra, Chiara. "Protein trafficking and host cell remodeling in malaria parasite infection". Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20219.

Texto completo
Resumen
Pour assurer ses besoins de croissance, multiplication, et survie, Plasmodium modifie sa cellule hôte, l'érythrocyte, après l'invasion. Le parasite met en place ainsi un système d'échanges (import/export) avec sa cellule hôte et le milieu extérieur. Nous avons identifié dans la base de données de Plasmodium berghei, le parasite de rongeurs, une famille de gènes, sep, correspondant à la famille etramp chez Plasmodium falciparum. Cette famille de gènes code pour des petites protéines exportées, et conservées dans tout le genre Plasmodium. Les protéines SEP (13?16 kDa) contiennent en N-terminal un peptide signal prédit, un domaine hydrophobe interne, et elles diffèrent au niveau des régions C-terminal et 3' UTR. Toutefois, les protéines SEP sont exprimées à différents moments du cycle de Plasmodium. Durant le cycle érythrocytaire, PbSEP1 et PbSEP3 sont exprimées à partir du stade trophozoïte, et la même quantité de protéine est détectée au stade schizonte et gamétocyte, pendant que PbSEP3 est hautement détectée dans les trophozoïtes mûrs et les gamétocytes. Chez le moustique, PbSEP1 et PbSEP3 sont détectées seulement chez les ookinètes, alors que PbSEP2 est très abondante dans les ookinètes, oocystes, et sporozoïtes des glandes salivaires. Les protéines SEP ont également des localisations différentes. Dans l'érythrocyte, PbSEP1 est localisée dans la membrane de la vacuole parasitophore, alors que PbSEP2 et PbSEP3 sont exportées au-delà de cette vacuole, et sont ainsi localisées dans la cellule hôte, en association avec des structures vésiculaires. Dans cette étude, nous avons identifié les signaux d'adressage des protéines SEP dans la vacuole parasitophore et dans la cellule hôte, chez Plasmodium berghei. L'autre partie du travail, effectuée à l'Université de Montpellier II, a consisté à étudier la localisation de deux protéines du squelette sous- membranaire de l'érythrocyte, la dématine, et l'adducine, durant le développement intra-érythrocytaire de Plasmodium falciparum. Le but de cette étude étant d'identifier un mécanisme potentiel d'internalisation des composants du squelette sous-membranaire de l'érythrocyte dans le parasite. Des études d'immuno-localisation ont montré que la dématine et l'adducine sont internalisées à partir du stade trophozoïte, et sont localisées probablement à la vacuole parasitophore (membrane et/ou lumière). Cette internalisation a été confirmée par des études de fractionnement cellulaire et d'accessibilité à la protéinase K, montrant que la dématine est totalement internalisée, alors l'adducine ne l'est que partiellement, suggérant une localisation de la protéine à la périphérie du parasite
Plasmodium endurance depends on the ability of the parasite to reorganize the cytosol of the erythrocyte, a terminally differentiated cell, and remodel its skeleton membrane immediately after invasion. In this way the parasite can organize the import/export of the molecules necessary to its survival. The comprehension of cellular trafficking mechanisms which occur during Plasmodium infection is a very important step and fundamental contribute to understand the biology of the malaria parasite.We identified in database of the rodent malaria parasite Plasmodium berghei the gene family sep, corresponding to etramp in P. falciparum, encoding small exported proteins conserved in the genus Plasmodium. SEP proteins (13?16 kDa) contain a predicted signal peptide at the NH2-terminus, an internal hydrophobic region while they differ in their C-terminal region; the genes share the upstream regulative region while differ in the 3' UTR. Despite this, we showed that SEPs have a different timing of expression and a different localization: in the erythrocytic cycle PbSEP1 and PbSEP3 start to be expressed at trophozoite and the same amount of protein is detected also in schizonts and gametocytes, while PbSEP2 is highly detected in mature trophozoites and even more in gametocytes. In mosquitoes stages PbSEP1 and PbSEP3 are expressed only in ookinetes, while PbSEP2 is very abundant in ookinetes, oocysts and in sporozoites of the salivary glands. SEPs also have a different localization in the iRBC: PbSEP1 is targeted to the membrane of the parasitophorous vacuole, while PbSEP2 and 3 are exported beyond the parasite membrane and translocated to the host cell compartment in association with vesicle-like structures. In this study we identified the specific signals necessary for the correct timing of expression and to direct SEP proteins to the vacuolar membrane and to the host cell compartments.The second part of the work was carried out in Montpellier II University and aims to identify the localization of two RBC membrane skeleton components, dematin and adducin, during Plasmodium falciparum infection. Our purpose is to recognize a possible mechanism of internalization of host cytoskeleton components to the parasite compartments. In fact, IFA experiments carried on iRBCs showed that dematin and adducin start to be internalized at trophozoite stage and localize at the periphery of the parasite, most probably at the parasitophoruos vacuole (PV) membrane/lumen. Dematin and adducin internalization during Plasmodium infection is also demonstrated by subcellular fractionation and proteinase K assay: while dematin is fully internalized, adducin is partially protected and suggesting a localization of the protein at the periphery of the parasite where it can be exposed to PK degradation
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Courtney, Sean C. "Functional Analysis of Host Cell Proteins and Stress Responses that Inhibit West Nile Virus Infection". Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/biology_diss/101.

Texto completo
Resumen
Resistance to flavivirus-induced disease is conferred by a single gene that encodes oligoadenylate synthetase (Oas) 1b (Oas1b). Oas1b is not a functional synthetase suggesting its anti-flavivirus mechanism is RNase L-independent and that it may be mediated by interactions with other host cell protein(s). A yeast two-hybrid screen was used to identify host cell binding partners of Oas1b. Candidate partners were confirmed by yeast co-transformation and co-immunoprecipitation analyses. Oxysterol binding protein-related 1L (ORP1L) and ATP binding cassette subfamily F 3 (ABCF3) were found to interact with Oas1b. RNAi knockdown studies suggested that ORP1L and ABCF3 form a tripartite complex with Oas1b that is critical for the flavivirus-induced disease resistance mechanism. Stresses including oxidation, nutrient starvation, and viral infections often induce the formation of stress granules (SGs) in eukaryotic cells. In response to stress, eIF2α kinases phosphorylate eIF2α leading to stalled 48S pre-initiation complexes and SG formation. West Nile virus (WNV) Eg101 infections were previously shown not to induce the formation of SGs. Infections with viruses of other natural WNV strains, as well as a WNV lineage 1/2-based infectious clone (W956IC) were analyzed and only W956IC infections were found to induce SGs. eIF2α kinase knockout MEFs were used to show that the W956IC-induced SGs were PKR-dependent. WNV chimeras were made by inserting Eg101 genes into the W956IC backbone. Chimeras replacing NS5 or NS1 and NS5 or NS1 and NS3 and NS4a reduced SG formation as well as early viral RNA synthesis similar to Eg101 infections. W956IC infections but not Eg101 infections were shown to produce exposed viral dsRNA at early times after infection. The data suggest that natural WNV infections evade the cell SG response by suppressing the amplification of viral RNA until cytoplasmic membranes have been remodeled to protect replication complexes from detection. It was previously reported that WNV Eg101 infections inhibited the formation of arsenite-induced SGs. The ability of other natural WNV strain infections to inhibit SG formation by arsenite (HRI), DTT (PERK), W956IC co-infection (PKR), and heat shock treatments was assessed. WNV infections only inhibited arsenite-induced SG formation suggesting that WNV infections specifically suppress the response to oxidative intermediates.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Garcia, Lobato Tavares Raquel. "Host cell responses to Helicobacter pylori secreted factors". Doctoral thesis, Stockholms universitet, Institutionen för molekylär biovetenskap, Wenner-Grens institut, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-148427.

Texto completo
Resumen
The infection of the human gastric mucosa by the bacterium Helicobacter pylori can lead to the development of gastritis, gastroduodenal ulcers, and cancer. The factors that determine disease development in a small percentage of infected individuals are still not fully understood. In this thesis, we aimed to identify and functionally characterize novel virulence factors of H. pylori and to understand their effect on host cell responses. In Paper I, we found that JHP0290, an uncharacterized secreted protein of H. pylori, induced macrophage apoptosis concomitant to the release of pro-inflammatory cytokine TNF via the regulation of the Src family of kinases and ERK MAPK pathways. In paper II, we demonstrated that JHP0290 exhibits both proliferative and anti-apoptotic activity, together with a faster progression of the cell cycle in gastric epithelial cells. During these responses, ERK MAPK and NF-κB pathways were activated. Paper III revealed a pro-apoptotic effect of another H. pylori-secreted protein HP1286 in macrophages via the TNF-independent and ERK-dependent pathways. No apoptosis was observed in HP1286-treated T cells or HL60 neutrophil-like cells, suggesting cell-type specific effect of HP1286. In Paper IV, we observed the pro-inflammatory activity of H. pylori secreted protein HP1173 in macrophages. The protein was found to induce TNF, IL-1β, and IL-8 in macrophages through MAPKs, NF-κB, and AP-1 signaling pathways. Furthermore, differential expression and release of JHP0290, HP1286, and HP1173 homologues was observed among H. pylori strains (papers II, III, IV).  Due to their ability to regulate multiple host cell responses, proteins JHP0290, HP1286, and HP1173 could play an important role in bacterial pathogenesis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Suppiah, Suganthi. "Investigation of Interactions of the Rubella Virus P150 Replicase Protein with Host Cell Proteins in Infected Cells". Digital Archive @ GSU, 2009. http://digitalarchive.gsu.edu/biology_diss/86.

Texto completo
Resumen
Due to their simplicity, viruses require the assistance of host factors for various aspects of their replication cycle. This study investigated the interaction of one of the two non-structural replicase proteins of rubella virus (RUBV), P150, with cell proteins. RUBV forms replication complexes for replicating its RNA in association with membranes of endosomes and lysosomes; the thusly modified endosomes/lysosomes are termed cytopathic vacuoles or CPVs. In the first study, a RUBV expressing a FLAG epitope-tagged P150 was used to co-immunoprecipitate putative interacting cell proteins from an infected cell lysate fraction enriched for CPVs using differential centrifugation. However, the only interacting protein identified was the companion RUBV replicase protein P90. Thus, cell proteins do not bind with either sufficient affinity or in stoichiometric amounts to be detected by this method and may not be a component of the virus holoenzyme. In the second study, a proline-rich region within P150 with three PxxPxR consensus SH3 domain-binding motifs was investigated for its ability to bind cell proteins. Substitution mutations (to alanine) of the two prolines were made in each of these motifs with the finding that mutations in the first two motifs led to lower viral titers and a small plaque phenotype with reversion to the wt sequence within one passage. Mutations in the third motif had a wt phenotype and did not revert. However, these mutations did not affect viral RNA synthesis, suggesting that the importance of these motifs is in a later stage of viral life cycle, e.g. virion assembly and release. To extend these findings, the proline hinge region with either the wt or mutant sequence was expressed as a GST-fusion in human cells. Pulldown experiments revealed specific binding with human p32 protein (gC1qR), which was previously shown to interact with the RUBV capsid protein. Binding of p32 with P150 was confirmed. The function of p32 in the RUBV replication cycle is unclear, but could involve virion assembly and release or induction of apoptosis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Fischer, Joshua Richard. "Mechanisms of Host Cell Attachment by the Lyme Disease Spirochete: A Dissertation". eScholarship@UMMS, 2005. http://escholarship.umassmed.edu/gsbs_diss/194.

Texto completo
Resumen
Host cell binding is an essential step in colonization by many bacterial pathogens, and the Lyme disease agent, Borrelia burgdorferi, which colonizes multiple tissues, is capable of attachment to diverse cell types. Glycosaminoglycans (GAGs) are ubiquitously expressed on mammalian cells and are recognized by multiple B. burgdorferi surface proteins. We previously showed that B. burgdorferi strains differ in the particular spectrum of GAGs that they recognize, leading to differences in the cultured mammalian cell types that they efficiently bind. The molecular basis of these binding specificities remains undefined, due to the difficulty of analyzing multiple, potentially redundant cell attachment pathways and to the paucity of genetic tools for this pathogen. Complementation of a high-passage non-adherent B. burgdorferi strain reveals that the expression of DbpA, DbpB, or BBK32, is sufficient to confer efficient spirochete attachment to 293 epithelial cells. Epithelial cell attachment by DbpA and B was mediated by dermatan sulfate, while BBK32 recognized dermatan and heparan sulfate. The GAG binding properties of bacteria expressing DbpB or DbpA were distinguishable in that DbpB, but not DbpA, promoted spirochetal attachment to C6 glial cells. Furthermore, DbpA alleles from diverse Lyme disease spirochetes exhibit allelic variation with respect to binding decorin, dermatan sulfate, and epithelial cells. Targeted disruption of bbk32 resulted in decreased spirochete binding to fibronectin, GAGs, and mammalian cells. Thus, DbpA, DbpB, and BBK32 may play central but distinct roles in cell type-specific binding by Lyme disease spirochetes. This study illustrates that transformation of high-passage B. burgdorferi strains and targeted gene disruption provide a comprehensive genetic approach to analyze virulence-associated phenotypes conferred by multiple bacterial factors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Vatter, Heather. "Analysis of Simian Hemorragic Fever Virus Proteins and the Host Cell Responses of Disease Resistant and Susceptible Primates". Digital Archive @ GSU, 2013. http://digitalarchive.gsu.edu/biology_diss/128.

Texto completo
Resumen
African monkey species are natural hosts of simian hemorrhagic fever virus (SHFV) and develop persistent, asymptomatic infections. SHFV was previously shown to also cause a rapid onset fatal hemorrhagic fever disease in macaques. Infection of macaques with a new isolate of SHFV from persistently infected baboon sera, that showed high nucleotide identity with the lab strain LVR, resulted in viremia, pro-inflammatory cytokine and tissue factor production, and symptoms of coagulation defects. Primary macrophages and myeloid dendritic cell cultures from disease-susceptible macaques efficiently replicated SHFV and produced pro-inflammatory cytokines, including IL-6 and TNF-α, as well as tissue factor. Cells from disease resistant baboons produced low virus yields and the immunomodulatory cytokine IL-10. IL-10 treatment of macaque cells decreased IL-6 levels but had no effect on TNF-α levels, tissue factor or virus production suggesting that IL-10 plays a role in modulating immunopathology in disease-resistant baboons but not in regulating the efficiency of virus replication. SHFV is a member of the family Arteriviridae. The SHFV genome encodes 8 minor structural proteins. Other arteriviruses encode 4 minor structural proteins. Amino acid sequence comparisons suggest that the four additional SHFV minor structural proteins resulted from gene duplication. A full-length infectious clone of SHFV was constructed and produced virus with replication kinetics comparable to the parental virus. Mutant infectious clones, each with the start codon of one of the minor structural proteins substituted, were analyzed. All eight SHFV proteins were required for infectious virus production. The SHFV nonstructural polyprotein is processed into the mature replicase proteins by several viral proteases including papain-like cysteine proteases (PLPs). Only one or two PLP domains are present in other arteriviruses but SHFV has three PLP domains. Analysis of in vitro proteolytic processing of C- and N-terminally tagged polyproteins indicated that the PLP in each of the three SHFV nsp1 proteins is active. However, the nsp1α protease is more similar to a cysteine protease than a PLP. Analysis of the subcellular localization of the three SHFV nsp1 proteins indicated they have divergent functions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Jassim, Amir. "Involvement of the matrix proteins SPARC and osteopontin in the dynamic interaction between tumour and host cells". Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13399.

Texto completo
Resumen
Osteoblasts are highly active cells that are responsible for secreting bone forming components such as collagen type I and matricellular proteins that mediate collagen deposition and mineralisation. SPARC and osteopontin are matricellular proteins that are involved in bone regulation and cell-matrix interactions and are also upregulated in metastatic disease. Secretion of these proteins results in changes to the stromal environment that includes cell migration, angiogenesis, matrix degradation, matrix deposition, bone mineralisation and bone resorption. Signalling pathways not only lead to the expression of target proteins, but also have immediate early effects, for example, on cell adhesion. We asked if the ERK 1 and 2 module of the MAPK pathway was involved in the intracellular trafficking of SPARC and Osteopontin. Membrane trafficking is an essential process that ensures newly synthesised proteins pass from their site of synthesis to the extracellular environment. Using an inhibitor of ERK 1 and 2 activation (U0126), as well as siRNA directed against ERK 1 or 2 individually, a change in intracellular localisation of SPARC and osteopontin was observed in cells treated with U0126 and siRNA against ERK 2 alone, likely in or around the Golgi apparatus. Consistent with the observation above, analysis of protein secretion showed that there was a reduction of total protein secreted (30% reduction) when ERK 1 and 2 activation was prevented together or knock down of ERK 2 alone. A mechanism is proposed where ERK 2 is likely activating a substrate that is allowing SPARC and osteopontin to continue along the secretory pathway. This directly implicates ERK 2 as an important regulator of matricellular protein secretion in osteoblasts. In cancer, Ras mutations can lead to permanent activation of the MAPK pathway leading to cancer cell proliferation and survival, however, we propose another mechanism important in metastasis whereby ERK 2 activation is manipulated to facilitate secretion of matricellular proteins which can then mediate changes to the stromal environment that allow the tumour to metastasise successfully.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Chang, Po-Hsun. "Characterization of the Outer Membrane of Treponema Pallidum Subsp. Pallidum by Binding Studies Using Antibodies, Complement, and Host Serum Proteins". Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc798468/.

Texto completo
Resumen
The major goal of this study was to achieve sustained cultivation of virulent T. pallidum in vitro. The putatuive binding of host proteins to the outer membrane (OM) of intact, virulent T. pallidum subsp. pallidum has been investigated. A major breakthrough was the development of a filtration assay, usinglow protein-binding membrane filters, for the measurement of substances bound to or incorporated into th eOM of T. pallidum. This avoided the conventional manipulations which can damage the fragile OM of T. pallidum. Using this filtration assay, studies on the binding of host serum proteins demonstrated that intact treponemes did not bind host proteins as previously reported. It also indicated that previous studies were probably performed with damaged by this research. The studies on the binding of polyclonal and monoclonal antibodies to intact and detergent treated treponemes provided evidence of the low level binding of antibody to intact treponemes which was greatly enhanced but the removal of the outer membrane with 0.1% Triton X. This research research corroborated that of others which suggests that the outer membrane of T. pallidum contains very little protein or surface exposed antigen.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Antonova, Aneliya [Verfasser]. "A systematic analysis of nuclear Heat Shock Protein 90 (Hsp90) reveals a novel transcriptional regulatory role mediated by its interaction with Host Cell Factor-1 (HCF-1)". Freiburg : Universität, 2019. http://d-nb.info/1222435861/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Rhein, Bethany Ann. "Ebola virus: entry, pathogenesis and identification of host antiviral activities". Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/6629.

Texto completo
Resumen
Ebola virus (EBOV) is a member of the Filoviridae family of highly pathogenic viruses that cause severe hemorrhagic fever and is the causative agent of the 2014 West Africa outbreak. Currently, there are no approved filovirus vaccines or treatments to combat these sporadic and deadly epidemics. One target for EBOV antiviral therapy is to block viral entry into host cells. Recently, phosphatidylserine (PtdSer) receptors, primarily known for their involvement in the clearance of dying cells, were shown to mediate entry of enveloped viruses including filoviruses. The PtdSer receptors, T-cell immunoglobulin mucin domain-1 (TIM-1) and family member TIM-4, serve as filovirus receptors, significantly enhancing EBOV entry. TIM-dependent virus uptake occurs via apoptotic mimicry by binding to PtdSer on the surface of virions through a conserved PtdSer binding pocket within the amino terminal IgV domain. TIM-4 is expressed on antigen presenting cells (APCs), including macrophages and dendritic cells (DCs), which are critical in early EBOV infection. My studies are the first to define the molecular details of virion/TIM-4 interactions and establish the importance of TIM-4 for EBOV infection of murine resident peritoneal macrophages. In addition, previous work has utilized only in vitro models to establish the importance of the TIM proteins in EBOV entry. My studies are the first to demonstrate the importance of TIM-1 and TIM-4 for in vivo EBOV pathogenesis and to confirm them as relevant targets of future filovirus therapeutics. Macrophage phenotypes can vary greatly depending upon chemokine and cytokine signals from their microenvironment. Historically, macrophages have been classified into two major subgroups: classically activated macrophages (M1) and alternatively activated macrophages (M2). Macrophages are a critical early target of EBOV infection and my work primarily focused on interferon gamma-stimulated (M1) macrophages since this treatment profoundly inhibited EBOV infection of human and murine macrophages. Interferon gamma treatment blocked EBOV replication in macrophages, reducing viral RNA levels in a manner similar to that observed when cultures were treated with the protein synthesis inhibitor, cycloheximide. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited EBOV infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit infection of negative strand RNA viruses including EBOV. In addition and most exciting, using MA-EBOV, we found that murine interferon gamma, when administered either 24 hours before or after infection, protects lethally challenged mice and significantly reduces morbidity. Our findings suggest that interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Arfi, Zulfaquar Ahmad Verfasser], Rainer [Akademischer Betreuer] [Fischer y Stefan [Akademischer Betreuer] Schillberg. "Development of an immunoassay to detect tobacco host cell proteins during biopharmaceutical development / Zulfaquar Ahmad Arfi ; Rainer Fischer, Stefan Schillberg". Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1129176789/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Arfi, Zulfaquar Ahmad [Verfasser], Rainer [Akademischer Betreuer] Fischer y Stefan [Akademischer Betreuer] Schillberg. "Development of an immunoassay to detect tobacco host cell proteins during biopharmaceutical development / Zulfaquar Ahmad Arfi ; Rainer Fischer, Stefan Schillberg". Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1129176789/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Thay, Bernard. "Vesicle-mediated and free soluble delivery of bacterial effector proteins by oral and systemic pathogens". Doctoral thesis, Umeå universitet, Institutionen för odontologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-82782.

Texto completo
Resumen
Periodontitis, the primary cause of tooth-loss worldwide, is a bacterially induced chronic inflammatory disease of the periodontium. It is associated with systemic conditions such as cardiovascular disease (CVD). However, pathogenic mechanisms of periodontitis-associated bacteria that may contribute to the CVD association are unclear. The aim of this doctoral thesis project was to characterize bacterial mechanisms that can originate from the periodontal pocket and expose the host to multiple effector proteins, thereby potentially contributing to periodontal tissue degradation and systemic stimulation. As our main model, we have used Aggregatibacter actinomycetemcomitans, a Gram-negative species associated with aggressive forms of periodontitis, and with non-oral infections, such as endocarditis. Since Gram-positive species might be more common in periodontitis than previously believed, we have also investigated mechanisms of the multipotent bacterium, Staphylococcus aureus. Using an ex vivo insert model we showed that free-soluble surface material, released during growth by A. actinomycetemcomitans independently of outer membrane vesicles (OMVs), enhanced the expression of several proinflammatory cytokines in human whole blood. A clear LPS-independent effect suggested the involvement of effector proteins in this cytokine stimulation. This was supported by MALDI-TOF-MS and immunoblotting, which confirmed the release of GroEL and peptidoglycan-associated lipoprotein (PAL), in free-soluble form. We next demonstrated that A. actinomycetemcomitans OMVs could deliver multiple proteins including biologically active cytolethal distending toxin (CDT), a major virulence factor, into human gingival fibroblasts and HeLa cells. Using confocal microscopy, the active toxin unit, CdtB, was localized inside the nucleus of the intoxicated cells, whereas OmpA and proteins detected using an antibody specific to whole A. actinomycetemcomitans serotype a cells had a perinuclear distribution. By using a fluorescent probe, B-R18, it was shown that the OMVs fused with lipid rafts in the plasma membrane. These findings suggest that OMVs can deliver biologically active virulence factors such as CDT into susceptible cells of the periodontium. Using A. actinomycetemcomitans vesicles labeled with the lipophilic dye, PKH26, it was shown that the OMVs can be internalized into the perinuclear region of human cells in a cholesterol-dependent manner. Co-localization analysis supported that the internalized OMVs carried A. actinomycetemcomitans antigens. Inhibition assays suggested that although OMV internalization appeared to have a major role in effector protein delivery, additional interactions such as vesicle membrane fusion may also contribute. The OMVs strongly induced activation of the cytosolic pathogen recognition receptors NOD1 and NOD2 in HEK293T-cells, consistent with a role in triggering innate immunity by carrying PAMPs such as peptidoglycan into host cells. Membrane vesicles (MVs) from S. aureus were found to carry biologically active alpha-toxin, a key virulence factor, which was delivered to host cells and required for full cytotoxicity of the vesicles. Confocal microscopy analysis revealed that these MVs, similar to A. actinomycetemcomitans OMVs, interacted with HeLa cells via membrane fusion. Thus, as S. aureus is frequently found in individuals with aggressive periodontitis, MV production could have potential to contribute to the severity of tissue destruction.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Forsman, Alma. "The Epstein-Barr virus nuclear antigens 1 & 5 : study of virus-host cellular protein interactions /". Göteborg : Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, 2009. http://hdl.handle.net/2077/21357.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Lövkvist, Lena. "Receptor interactions between pathogenic bacteria and host cells /". Uppsala : Acta Universitatis Upsaliensis : Uppsala universitetsbibliotek [distributör], 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7782.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Kanatani, Sachie. "Host-parasite interactions in the dissemination of Toxoplasma gondii". Doctoral thesis, Stockholms universitet, Institutionen för molekylär biovetenskap, Wenner-Grens institut, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-148573.

Texto completo
Resumen
Toxoplasma gondii is an obligate intracellular parasite that infects virtually all warm-blooded organisms. Systemic dissemination of T. gondii in the organism can cause life-threatening infection that manifests as Toxoplasma encephalitis in immune-compromised patients. In addition, mounting evidence from epidemiological studies indicates a link between chronic Toxoplasma infection and mental disorders. To better understand the pathogenesis of toxoplasmosis, basic knowledge on the host-parasite interactions and the dissemination mechanisms are essential. Previous findings have established that, upon infection with T. gondii, dendritic cells (DCs) and microglia exhibit enhanced migration, which was termed the hypermigratory phenotype. As a result of this enhanced migration, DCs and microglia are used as vehicle cells for dissemination (‘Trojan horse’) which potentiates dissemination of T. gondii in mice. However, the precise mechanisms behind the hypermigratory phenotype remained unknown. In this thesis, we characterized host-parasite interactions upon infection with T. gondii and investigated the basic mechanisms behind the hypermigratory phenotype of T. gondii-infected DCs and microglia. In paper I, we observed that upon infection with T. gondii, DCs underwent rapid morphological changes such as loss of adhesiveness and podosomes, with integrin redistribution. These rapid morphological changes were linked to hypermotility and were induced by active invasion of T. gondii within minutes. T. gondii-infected DCs exhibited up-regulation of the C-C chemokine receptor CCR7 and chemotaxis towards the CCR7 chemotactic cue, CCL19. In paper II, we developed a 3-dimensional migration assay in a collagen matrix, which allowed us to characterize the hypermigratory phenotype in a more in vivo-like environment. The migration of T. gondii-infected DCs exhibited features consistent with integrin-independent amoeboid type of migration. T. gondii-induced hypermigration of DCs was further potentiated in the presence of CCL19 in a 3D migration assay. In paper III, we identified a parasite effector molecule, a Tg14-3-3 protein derived from parasite secretory organelles. Tg14-3-3 was sufficient to induce the hypermigratory phenotype. Transfection with Tg14-3-3-containing fractions or recombinant Tg14-3-3 protein induced the hypermigratory phenotype in primary DCs and in a microglial cell line. In addition, Tg14-3-3 localized in the parasitophorous vacuolar space and host 14-3-3 proteins were rapidly recruited around the parasitophorous vacuole. In paper IV, we found that mouse DCs dominantly express the L-type voltage-dependent calcium channel, Cav1.3. Cav1.3 was linked to the GABAergic signaling-induced hypermigratory phenotype. Pharmacological inhibition of Cav1.3 and knockdown of Cav1.3 abolished the hypermigratory phenotype in T. gondii infected DCs. Blockade of voltage-dependent calcium channels reduced the dissemination of T. gondii in a mouse model. In paper V, we showed that microglia, resident immune cells in the brain, also exhibited rapid morphological changes and hypermotility upon infection with T. gondii. However, an alternative GABA synthesis pathway was shown to be involved in the hypermigratory phenotype in microglia. In summary, this thesis describes novel host-parasite interactions, including host cell migratory responses and key molecular mechanisms that mediate the hypermigratory phenotype. The findings define a novel motility-related signaling axis in DCs. Thus, T. gondii employs GABAergic non-canonical pathways to hijack host cell migration and facilitate dissemination. We believe that these findings represent a significant step forward towards a better understanding of the pathogenesis of T. gondii infection.

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.

Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Miller, Cathy Lea. "Investigation of the role of minute virus of mice (MVM) small non-structural protein NS2 interactions with host cell proteins during MVM infection". free to MU campus, to others for purchase, 2001. http://wwwlib.umi.com/cr/mo/fullcit?p3025638.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Huang, Bernice. "Anaplasma phagocytophilum remodels its host cell-derived vacuole into a protective niche by redecorating the vacuolar membrane with select Rab GTPases and bacterial proteins". VCU Scholars Compass, 2011. http://scholarscompass.vcu.edu/etd/280.

Texto completo
Resumen
Anaplasma phagocytophilum is an obligate intracellular bacterium that infects neutrophils to cause the emerging tick-transmitted disease, human granulocytic anaplasmosis (HGA). Following entry, the pathogen replicates within a host cell-derived vacuole that fails to mature along the endocytic pathway, does not acidify, and does not fuse with lysosomes. Selective fusogenicity is prototypical of many vacuole-adapted pathogens and has been attributed, at least in part, to pathogen modification of the vacuolar inclusion membrane and/or to selective recruitment or exclusion of host trafficking regulators. As a result, the A. phagocytophilum-occupied vacuolar membrane (AVM) provides a unique interface to study the host-pathogen interactions critical to A. phagocytophilum intracellular survival. Diverse vacuole-adapted pathogens; including Chlamydia, Legionella, and Salmonella; selectively recruit host Rab GTPases to their vacuolar membranes to establish replicative permissive niches within their host cells. Rab GTPases coordinate many aspects of endocytic and exocytic cargo delivery. We determined that the A. phagocytophilum-occupied vacuole (ApV) selectively recruits a subset of fluorescently-tagged Rabs that are predominantly associated with recycling endosomes. Another emerging theme among vacuole-adapted pathogens is the ability to hijack ubiquitin machinery to modulate host cellular processes. Mono- and polyubiquitination differentially dictate the subcellular localization, activity, and fate of protein substrates. Monoubiquitination directs membrane traffic from the plasma membrane to the endosome and has been shown to promote autophagy. We show that monoubiquitinated proteins decorate the AVM during infection of promyelocytic HL-60 cells, endothelial RF/6A cells, and to a lesser extent, embryonic tick ISE6 cells. Importantly, tetracycline treatment concomitantly promotes loss of the recycling endosome-associated GFP-Rabs and ubiquitinated proteins and acquisition of the late endosomal marker, Rab7, and lysosomal marker, LAMP-1, implicating bacterial-derived proteins in the ApV's altered fusogenicity. Therefore, we rationalized that A. phagocytophilum-encoded proteins that associate with the AVM may establish interactions with the host cell that are important for intracellular survival. By focusing on A. phagocytophilum proteins that are induced during host infection, we identified the first two bacterial-encoded proteins -- APH_1387 and APH_0032 -- that modify the AVM. Although functional studies are hindered by the lack of a system to genetically manipulate Anaplasma, the pathobiological roles of APH_1387 and APH_0032 are likely unique, as both proteins exhibit very little or no homology with any previously described protein. APH_1387 and APH_0032 are present at the cytoplasmic face of the AVM, therefore they likely interact with host proteins. We demonstrate that ectopic expression of APH_1387 and APH_0032 inhibits the ApV development in A. phagocytophilum infected cells. The results presented in this dissertation contribute to our understanding of how A. phagocytophilum modifies the vacuolar membrane in which it resides to establish a safe haven and evade lysosomal degradation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Eccleston, Ruth Charlotte. "A mechanistic model predicting cell surface presentation of peptides by MHC class I proteins, considering peptide competition, viral intracellular kinetics and host genotype factors". Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10038760/.

Texto completo
Resumen
Major histocompatability complex class I (MHC-I) proteins present short fragments of pathogenic or cancerous proteins (peptides) on the surface of infected cells for recognition by T lymphocytes which are stimulated upon recognition of foreign peptides. Due to the diversity of peptide sequences and the sequence-specificity of MHC-I alleles, being able to determine which peptides will be presented by which MHC-I alleles and in what proportion could be important for the development of vaccines and treatments based on the presented peptiodome. Machine learning tools, trained on experimental data, are widely used to predict immunogenic peptides. However they are unable to account for the impact the intracellular kinetics of the pathogenic or cancerous protein which will greatly influence the resultant peptidome. Here we describe a mechanistic model of peptide presentation, validated against experimental data, which accounts for intracellular peptide concentration, and can predict the relative cell surface presentation of competing peptides with varying affinities for MHC-I proteins. We demonstrate how combining this mechanistic model with the intracellular kinetics of HIV proteins can provide insight in to the experimentally reported immunogenicity of the viral protein Gag, and show how such a model can be used to predict the most abundant viral peptides presented on the cell surface. Similarly, we predict the HeLa cell peptidome and demonstrate how a simple metric can be used to approximate the abundance of a peptide based solely on protein synthesis and degradation, peptide-MHC affinity and proteasomal cleavage.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Husson, Gauthier. "Development of host cell protein impurities quantification methods by mass spectrometry to control the quality of biopharmaceuticals". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF066/document.

Texto completo
Resumen
Les récents progrès instrumentaux en spectrométrie de masse, notamment en terme de- rapidité de balayage et de résolution, ont permis l'émergence de l'approche « data independent acquisition» (DIA). Cette approche promet de combiner les points forts des approches « shotgun » et ciblées,mais aujourd'hui l'analyse des données DIA reste compliquée. L'objectif de cette thèse a été de développer des méthodes innovantes de spectrométrie de masse, et en particulier d'améliorer l'analyse des données DIA. De plus, nous avons développé une approche originale Top 3-ID-DIA, permettant à la fois un profilage complet des protéines de la cellule hôte (HCP) ainsi qu'une quantification absolue d'HCP clés dans les échantillons d'anticorps monoclonaux (mAb), au sein d'une même analyse.Cette méthode est prête à être implémentée en industrie, et pourrait fournir un support en temps réel aux développements du procédé de production de mAb, ainsi que pour évaluer la pureté des biomédicaments
Recent instrumental developments in mass spectrometry, notably in terms of scan speed and resolution, allowed the emergence of “data independent acquisition” (DIA) approach. This approach promises to combine the strengths of both shotgun and targeted proteomics, but today DIA data analysis remains challenging. The objective of my PhD was to develop innovative mass spectrometry approaches, and in particular to improve DIA data analysis. Moreover, we developed an original Top 3-ID-DIA approach, allowing both a global profiling of host cell proteins (HCP) and an absolute quantification of key HCP in monoclonal antibodies samples, within a single analysis. This method is ready to be transferred to industry, and could provide a real time support for mAb manufacturing process development, as well as for product purity assessment
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Ebrahimi, Majid. "Studies of p63 and p63 related proteins in patients diagnosed with oral lichen planus". Doctoral thesis, Umeå : Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1437.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Ahlqvist, Jenny. "Differences in tropism and viral assembly pathways of human herpesvirus 6A and 6B (HHV-6A and 6B) and association of host cell proteins in HHV-6A virions /". Stockholm, 2007. http://diss.kib.ki.se/2007/978-91-7357-214-9/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Thorsén, Jenny. "Purification of His-tagged Proteins Using WorkBeads 40 TREN as a Pre-Treatment Step Prior Loading Sample onto IMAC Resins with the Purpose to Enhance Performance". Thesis, Uppsala universitet, Biokemi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439642.

Texto completo
Resumen
This work is the result of evaluating a novel strategy for the purification of recombinant His-tagged proteins. Proteins purified in this study were the E. coli translational proteins IF-3, RF-1, and RFF. The study aimed to analyse the potential of using Bio-Works WorkBeads™40 TREN, a multimodal anion ion exchange chromatography resin, as a pretreatment step upstream an immobilized metal ion chromatography (IMAC) resin to enhance performance efficiency of His-tagged protein purification. The method demonstrated here shows potential for anyone seeking to increase the purity of His-tagged protein purification or to introduce an effective purification procedure by replacing a polishing step downstream IMAC with WorkBeads 40 TREN upstream IMAC. The latter contributing to guard the IMAC column from heavy bioburden. This study showed that running WorkBeads 40 TREN prior IMAC captures impurities and removes 97-98 % more dsDNA compared to direct IMAC. WorkBeads 40 TREN is therefore highly advantageous to include early in a purification process to remove protein binding DNA fragments. Moreover, WorkBeads 40 TREN increases purity in the final product by capturing more host cell proteins than when running direct IMAC. This concept is general and WorkBeads 40 TREN could be used upstream a variety of resins such as Protein A and RPC.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Bevington, Joyce M. "Cellular Response to Adenovirus and Adeno- Associated Virus Coinfection". Connect to full text in OhioLINK ETD Center, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=mco1242921394.

Texto completo
Resumen
Dissertation (Ph.D.)--University of Toledo, 2009.
"In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences." Title from title page of PDF document. Bibliography: p. 70-80, p. 28-158.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Jonscher, Ernst Georg Wolfgang [Verfasser]. "Identification of proteins involved in host cell cytosol uptake in the human Malaria parasite Plasmodium falciparum : Identifizierung von Proteinen der Wirtszellzytosolaufnahme des humanen Malaria-Erregers Plasmodium falciparum / Ernst Georg Wolfgang Jonscher". Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2018. http://d-nb.info/1223620964/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Danielsson, Niemi Liza. "Host ligands and oral bacterial adhesion studies on phosphorylated polypeptides and gp-340 in saliva and milk /". Doctoral thesis, Umeå : Umeå university, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-32894.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Lassalle, Damien. "Les pore forming toxin chez les Lophotrochozoaires : exemple des organismes Biomphalaria glabrata/ Schistosoma mansoni A New Assessment of Thioester-Containing Proteins Diversity of the Freshwater Snail Biomphalaria glabrata Cholesterol-TEG addition at the 5’end of siRNA allows significant increase of its uptake by hemocytes from Biomphalaria glabrata, the schistosomiasis vector snail. Under review in PeeJ. Schistosoma mansoni lysine specific demethylase (SmLSD1) is a druggable target involved in parasite survival, oviposition and stem cell proliferation". Thesis, Perpignan, 2020. https://theses-public.univ-perp.fr/2020PERP0036.pdf.

Texto completo
Resumen
La bilharziose est une maladie touchant 230 millions de personnes dans le monde (source OMS). Cette parasitose est provoquée par le schistosome, un vers plat parasite nommé Schistosoma mansoni. Avant de pénétrer dans l’organisme humain par la peau, ce parasite se développe chez un escargot d’eau douce, Biomphalaria glabrata, qui lui sert d’hôte intermédiaire. Nous avons dans ce contexte identifié et étudié deux protéines appartenant à la famille des pore formingtoxins (PFTs), que nous avons appelé Biomphalysine et Glabralysine. Les PFTs sont des effecteurs très connus dans le monde procaryote pour favoriser leurs pathogénicités. Ces protéines sont produites de manière soluble par les organismes, pour se fixer et s’agréger sur les membranes cellulaires cible, ce qui a pour conséquence de créer un pore lytique. Cette super famille de protéine se divise en deux sous familles, alpha et beta, classées en fonction de la modalité de formation du pore. Des études antérieures ont permis de caractériser pour la première fois des ß-PFT chez le mollusque Biomphalaria glabrata, ces protéines ont montré un rôle clef dans l’immunité du mollusque, notamment la capacité de lier au parasite et de le tuer. Cette découverte a pu ouvrir le champ à l’investigation de protéines similaire chez le mollusque et chez le parasite avec lequel il interagie. Ce projet de thèse a pour objectif, au travers d’étude génomique, transcriptomique et protéomique de caractériser et de comprendre la fonction des différentes « pore forming toxins » présentes chez le mollusque Biomphalaria glabrata et chez le parasite Schistosoma mansoni. Grace à des données collectées avant et durant le projet de thèse, nous avons pu caractériser 23 variants apparentés à la famille des Biomphalysines. Cette famille multigénique sans intron, semble avoir été acquise au travers de transfert horizontal de gênes. Par homologie avec les biomphalysines, nous avons pu caractériser 5 gènes codants pour un deuxième groupe de ß-PFT chez Biomphalaria glabrata, que nous avons appelé les Glabralysines. Ces protéines constituent une famille à part entière, proche des toxines cry de Bacillus thuringiensis, et qui d’un point de vue structural partage des homologies avec la Biomphalysine. Elles sont en effet, produites par les cellules immunitaires du mollusque et induites lors de l’infection par le parasite Schistosoma mansoni. Finalement, nous avons aussipu découvrir deux gènes codants pour des toxines, nommées Schistolysines, de la famille des ß-PFT chez le parasite Schistosoma mansoni. Ces protéines semblent être répandues chez les parasites et jouer des rôles essentiels dans leur développement, la reproduction et peut être la nutrition. Nous montrons que ces protéines sont exclusivement retrouvées au stade adulte du parasite et devraient donc jouer un rôle dans l’interaction avec l’hôte humain ou dans l’implantation ou l’exploitation de cet hôte. Ces différentes approches, dans le contexte de l’interaction entre l’hôte et son parasite permettront potentiellement d’identifier de nouvelles stratégies de lutte ou de contrôle de la maladie sur le terrain. Les résultats générés dans ce travail pourront permettre également d’étudier le rôle de ces molécules dans l’interaction avec d’autres pathogènes ou leur lien avec d’autres pathologies et plus particulièrement leur utilisation dans le développement de nouveaux traitements contre le cancer par exemple
Bilharzia is a disease affecting 230 million people worldwide (source WHO). This parasitosis is caused by schistosome, a parasitic flatworm, and in particular by Schistosoma mansoni, responsible for intestinal bilharzia in Africa and tropical America. Before entering the human body through the skin, this parasite develops in a freshwater snail, Biomphalaria glabrata, which serves as an intermediate host. In this context, we have identified and studied two proteins belonging to the pore forming toxins (PFTs) family, which we have called Biomphalysin and Glabralysin. Pore forming toxins are effectors well known in the prokaryotic world to promote their pathogenicity. These proteins are produced in a soluble way by organisms, to bind and aggregate on the target cell membranes, resulting in the creation of a lytic pore. This protein superfamily is divided into two families, alpha and beta, classified according to the pore formation modality. Previous studies have characterized for the first time §-PFTs in the mollusc Biomphalaria glabrata, these proteins have shown a key role in the immunity of the mollusc, including the ability to bind and kill the parasite. This discovery may have opened the field to the investigation of similar proteins in the mollusc and in the parasite with which it interacts. This thesis project aims, through genomic, transcriptomic and proteomic studies, to characterize and understand the function of different "pore forming toxins" present in the mollusc Biomphalaria glabrata and in the parasite Schistosoma mansoni. Thanks to data collected before and during the thesis project, we were able to characterize 23 variants related to the Biomphalysin family. This multigenic family, without intron, seems to have been acquired through horizontal gene transfer. By homology with the Biomphalysins, we were able to characterize 5 genes coding for a second group of §-PFT in Biomphalaria glabrata, which we called Glabralysins. These proteins constitute a family in their own right, close to the Cry toxins of Bacillus thuringiensis, and which structurally share homologies with the Biomphalysin. They are indeed produced by the immune cells of the mollusc and induced during the infection by the parasite Schistosoma mansoni. Finally, we were also able to discover two genes coding for toxins, called Schistolysins, of the §-PFT family in the parasite Schistosoma mansoni. These proteins seem to be widespread in parasites and play essential roles in their development, in reproduction and hypothetically in nutrition. We show that these proteins are found exclusively in the adult stage of the parasite and should therefore play a role in the interaction with the human host or in the implantation or exploitation of this host. These different approaches, in the context of the interaction between the host and its parasite, will potentially lead to the identification of new strategies for the control or management of the disease in the field. The results generated in this work could also allow to study the role of these molecules in the interaction with other pathogens or their link with other pathologies and more particularly their use in the development of new cancer treatments for example
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Seung, Edward. "CD40-CD154 Blockade Facilitates Induction of Allogeneic Hematopoietic Chimerism and Transplantation Tolerance: A Dissertation". eScholarship@UMMS, 2003. https://escholarship.umassmed.edu/gsbs_diss/103.

Texto completo
Resumen
Allogeneic hematopoietic chimerism leading to central tolerance has significant therapeutic potential. Establishment of hematopoietic chimerism created by stem cell transplantation has been shown to prevent and cure a number of autoimmune diseases and induce the most robust and long-lasting form of transplantation tolerance known. However, the realization of the vast clinical potential of hematopoietic chimerism for induction of transplantation tolerance has been impeded by the toxicity of the host conditioning regimen and the development of graft-versus-host disease (GVHD). This thesis describes the development of stem cell transplantation protocols that 1) reduce the host conditioning regimen; and 2) abrogate the development of GVHD. When applied to the treatment of autoimmune diabetic NOD mice, a model of type 1 diabetes, stem cell transplantation was able to 3) prevent autoimmune recurrence; and 4) permit curative pancreatic islet transplantation. I first describe a tolerance-based stem cell transplantation protocol that combines sub-lethal irradiation with transient blockade of the CD40-CD154 costimulatory pathway using an anti-CD154 antibody. With this protocol, I established hematopoietic chimerism in BALB/c mice transplanted with fully allogeneic C57BL/6 bone marrow. All chimeric mice treated with anti-CD154 antibody remained free of graft vs.host disease (GVHD) and accepted donor-origin but not third party skin allografts. It was similarly possible to create allogeneic hematopoietic chimerism in NOD/Lt mice with spontaneous autoimmune diabetes. Pancreatic islet allografts transplanted into chimeric NOD/Lt mice were resistant not only to allorejection but also to recurrence of autoimmunity. I conclude that it is possible to establish robust allogeneic hematopoietic chimerism in sub-lethally irradiated mice without subsequent GVHD by blocking the CD40-CD154 costimulatory pathway using as few as two injections of anti-CD154 antibody. I also conclude that chimerism created in this way generates donor-specific allograft tolerance and reverses the predisposition to recurrent autoimmune diabetes in NOD/Lt mice, enabling them to accept curative islet allografts. In order to further reduce the impediments associated with the implementation of allogeneic hematopoietic chimerism as a therapeutic modality, I adapted a costimulation blockade-based protocol developed for solid organ transplantation for use in stem cell transplantation. The protocol combines a donor-specific transfusion (DST) with anti-CD154 antibody to induce peripheral transplantation tolerance. When applied to stem cell transplantation, administration of DST, anti-CD154 antibody, and allogeneic bone marrow led to hematopoietic chimerism and central tolerance with no myeloablation (i.e. no radiation) and no GVHD in 3 different strains of mice. The development of donor-specific tolerance in this system was shown to involve deletion of both peripheral host alloreactive CD8+ T cells and nascent intrathymic alloreactive CD8+ T cells. In the absence of large numbers of host alloreactive CD8+ T cells, the cell transfusion that precedes transplantation need not be of donor-origin, suggesting that both allo-specific and non-allo-specific mechanisms regulate engraftment. Agents that interfere with peripheral transplantation tolerance partially impair establishment of chimerism. I conclude that robust allogeneic hematopoietic chimerism and central tolerance can be established in the absence of host myeloablative conditioning using a peripheral transplantation tolerance protocol.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Tavares, Lucas Alves. "O envolvimento da proteína adaptadora 1 (AP-1) no mecanismo de regulação negativa do receptor CD4 por Nef de HIV-1". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/17/17136/tde-06012017-113215/.

Texto completo
Resumen
O Vírus da Imunodeficiência Humana (HIV) é o agente etiológico da Síndrome da Imunodeficiência Adquirida (AIDS). A AIDS é uma doença de distribuição mundial, e estima-se que existam atualmente pelo menos 36,9 milhões de pessoas infectadas com o vírus. Durante o seu ciclo replicativo, o HIV promove diversas alterações na fisiologia da célula hospedeira a fim de promover sua sobrevivência e potencializar a replicação. A rápida progressão da infecção pelo HIV-1 em humanos e em modelos animais está intimamente ligada à função da proteína acessória Nef. Dentre as diversas ações de Nef está a regulação negativa de proteínas importantes na resposta imunológica, como o receptor CD4. Sabe-se que esta ação resulta da indução da degradação de CD4 em lisossomos, mas os mecanismos moleculares envolvidos ainda são totalmente elucidados. Nef forma um complexo tripartite com a cauda citosólica de CD4 e a proteína adaptadora 2 (AP-2), em vesículas revestidas por clatrina nascentes, induzindo a internalização e degradação lisossomal de CD4. Pesquisas anteriores demonstraram que o direcionamento de CD4 aos lisossomos por Nef envolve a entrada do receptor na via dos corpos multivesiculares (MVBs), por um mecanismo atípico, pois, embora não necessite da ubiquitinação de carga, depende da ação de proteínas que compõem os ESCRTs (Endosomal Sorting Complexes Required for Transport) e da ação de Alix, uma proteína acessória da maquinaria ESCRT. Já foi reportado que Nef interage com subunidades dos complexos AP-1, AP-2, AP-3 e Nef não parece interagir com subunidades de AP-4 e AP-5. Entretanto, o papel da interação de Nef com AP-1 e AP-3 na regulação negativa de CD4 ainda não está totalmente elucidado. Ademais, AP-1, AP-2 e AP-3 são potencialmente heterogêneos devido à existência de isoformas múltiplas das subunidades codificadas por diferentes genes. Todavia, existem poucos estudos para demonstrar se as diferentes combinações de isoformas dos APs são formadas e se possuem propriedades funcionais distintas. O presente trabalho procurou identificar e caracterizar fatores celulares envolvidos na regulação do tráfego intracelular de proteínas no processo de regulação negativa de CD4 induzido por Nef. Mais especificamente, este estudo buscou caracterizar a participação do complexo AP-1 na modulação negativa de CD4 por Nef de HIV-1, através do estudo funcional das duas isoformas de ?-adaptina, subunidades de AP-1. Utilizando a técnica de Pull-down demonstramos que Nef é capaz de interagir com ?2. Além disso, nossos dados de Imunoblot indicaram que a proteína ?2-adaptina, e não ?1-adaptina, é necessária no processo de degradação lisossomal de CD4 por Nef e que esta participação é conservada para degradação de CD4 por Nef de diferentes cepas virais. Ademais, por citometria de fluxo, o silenciamento de ?2, e não de ?1, compromete a diminuição dos níveis de CD4 por Nef da membrana plasmática. A análise por imunofluorêsncia indireta também revelou que a diminuição dos níveis de ?2 impede a redistribuição de CD4 por Nef para regiões perinucleares, acarretando no acúmulo de CD4, retirados por Nef da membrana plasmática, em endossomos primários. A depleção de ?1A, outra subunidade de AP-1, acarretou na diminuição dos níveis celulares de ?2 e ?1, bem como, no comprometimento da eficiente degradação de CD4 por Nef. Além disso, foi possível observar que, ao perturbar a maquinaria ESCRT via super-expressão de HRS (uma subunidade do complexo ESCRT-0), ocorreu um acumulo de ?2 em endossomos dilatados contendo HRS-GFP, nos quais também detectou-se CD4 que foi internalizado por Nef. Em conjunto, os resultados indicam que ?2-adaptina é uma importante molécula para o direcionamento de CD4 por Nef para a via ESCRT/MVB, mostrando ser uma proteína relevante no sistema endo-lisossomal. Ademais, os resultados indicaram que as isoformas ?-adaptinas não só possuem funções distintas, mas também parecem compor complexos AP-1 com diferentes funções celulares, já que apenas a variante AP-1 contendo ?2, mas não ?1, participa da regulação negativa de CD4 por Nef. Estes estudos contribuem para o melhor entendimento dos mecanismos moleculares envolvidos na atividade de Nef, que poderão também ajudar na melhor compreensão da patogênese do HIV e da síndrome relacionada. Em adição, este trabalho contribui para o entendimento de processos fundamentais da regulação do tráfego de proteínas transmembrana no sistema endo-lisossomal.
The Human Immunodeficiency Virus (HIV) is the etiologic agent of Acquired Immunodeficiency Syndrome (AIDS). AIDS is a disease which has a global distribution, and it is estimated that there are currently at least 36.9 million people infected with the virus. During the replication cycle, HIV promotes several changes in the physiology of the host cell to promote their survival and enhance replication. The fast progression of HIV-1 in humans and animal models is closely linked to the function of an accessory protein Nef. Among several actions of Nef, one is the most important is the down-regulation of proteins from the immune response, such as the CD4 receptor. It is known that this action causes CD4 degradation in lysosome, but the molecular mechanisms are still incompletely understood. Nef forms a tripartite complex with the cytosolic tail of the CD4 and adapter protein 2 (AP-2) in clathrin-coated vesicles, inducing CD4 internalization and lysosome degradation. Previous research has demonstrated that CD4 target to lysosomes by Nef involves targeting of this receptor to multivesicular bodies (MVBs) pathway by an atypical mechanism because, although not need charging ubiquitination, depends on the proteins from ESCRTs (Endosomal Sorting Complexes Required for Transport) machinery and the action of Alix, an accessory protein ESCRT machinery. It has been reported that Nef interacts with subunits of AP- 1, AP-2, AP-3 complexes and Nef does not appear to interact with AP-4 and AP-5 subunits. However, the role of Nef interaction with AP-1 or AP-3 in CD4 down-regulation is poorly understood. Furthermore, AP-1, AP-2 and AP-3 are potentially heterogeneous due to the existence of multiple subunits isoforms encoded by different genes. However, there are few studies to demonstrate if the different combinations of APs isoforms are form and if they have distinct functional properties. This study aim to identify and characterize cellular factors involved on CD4 down-modulation induced by Nef from HIV-1. More specifically, this study aimed to characterize the involvement of AP-1 complex in the down-regulation of CD4 by Nef HIV-1 through the functional study of the two isoforms of ?-adaptins, AP-1 subunits. By pull-down technique, we showed that Nef is able to interact with ?2. In addition, our data from immunoblots indicated that ?2- adaptin, not ?1-adaptin, is required in Nef-mediated targeting of CD4 to lysosomes and the ?2 participation in this process is conserved by Nef from different viral strains. Furthermore, by flow cytometry assay, ?2 depletion, but not ?1 depletion, compromises the reduction of surface CD4 levels induced by Nef. Immunofluorescence microscopy analysis also revealed that ?2 depletion impairs the redistribution of CD4 by Nef to juxtanuclear region, resulting in CD4 accumulation in primary endosomes. Knockdown of ?1A, another subunit of AP-1, resulted in decreased cellular levels of ?1 and ?2 and, compromising the efficient CD4 degradation by Nef. Moreover, upon artificially stabilizing ESCRT-I in early endosomes, via overexpression of HRS, internalized CD4 accumulates in enlarged HRS-GFP positive endosomes, where co-localize with ?2. Together, the results indicate that ?2-adaptin is a molecule that is essential for CD4 targeting by Nef to ESCRT/MVB pathway, being an important protein in the endo-lysosomal system. Furthermore, the results indicate that ?-adaptins isoforms not only have different functions, but also seem to compose AP-1 complex with distinct cell functions, and only the AP-1 variant comprising ?2, but not ?1, acts in the CD4 down-regulation induced by Nef. These studies contribute to a better understanding on the molecular mechanisms involved in Nef activities, which may also help to improve the understanding of the HIV pathogenesis and the related syndrome. In addition, this work contributes with the understanding of primordial process regulation on intracellular trafficking of transmembrane proteins.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Shwetha, S. "Host-Pathogen Interactions in Hepatitis C Virus Infection : Deciphering the Role of Host Proteins and MicroRNAs". Thesis, 2015. http://etd.iisc.ac.in/handle/2005/3858.

Texto completo
Resumen
Host-pathogen interactions in Hepatitis C Virus infection: Deciphering the role of host proteins and microRNAs Hepatitis C virus (HCV) is a positive sense single stranded RNA virus belonging to the Hepacivirus genus of the Flaviviridae family. HCV genome consists of a single open reading frame flanked by highly structured 5‟ and 3‟ untranslated regions (UTRs) at both ends. Unlike cellular mRNAs, HCV RNA translation is independent of the cap structure and is mediated by an internal ribosomal entry site (IRES) present in the 5‟UTR. HCV replication begins with the synthesis of a complementary negative-strand RNA using the positive strand RNA genome as a template catalyzed by the NS5B RNA dependent RNA polymerase (RdRp). The de novo priming of HCV RNA synthesis by NS5B occurs at the very end of the 3‟UTR. The 3‟UTR is organized into highly structured regions namely the variable region, poly U/UC region and the 3‟X region. These regions contain cis-acting elements that determine the efficiency of viral replication. In addition, the interaction of trans-acting factors with the 3‟ UTR is also important for regulation of HCV replication. HCV 3‟UTR interacts with several cellular proteins such as the human La protein, polypyrimdine tract binding protein (PTB), poly (rC)-binding protein 2 (PCBP2) and Human antigen R (HuR). However, the molecular basis of regulation of viral replication by these proteins is not well understood. Many proteins that are hijacked by HCV as well as other cytoplasmic RNA viruses, such as La, PCBP2, HuR and PTB are RNA binding proteins (RBPs). They are involved in post transcriptional regulation of cellular gene expression. Thus the subversion of these proteins by the virus can affect their normal physiological functions. In addition to proteins, recent reports also describe the involvement of non-coding RNAs including microRNAs (miRNA) and long non coding RNAs (lncRNA) in HCV infection. miRNAs can either directly bind to the HCV genome and regulate its life cycle or indirectly modulate the expression of host proteins required by the virus. miRNAs that are differentially regulated in virus infected tissues or body fluids of infected patients can also serve as biomarkers for diagnosis of various stages of the disease. Hence, it was planned to study the role of host proteins and miRNAs in the HCV life cycle and pathogenesis to have novel insights into the biology of HCV infection. Riboproteomic studies have identified several host proteins that directly interact with the 5‟ and/or 3‟UTRs of the HCV RNA. One of the RNA binding proteins that predominantly interact with the 3‟UTR of HCV RNA was found to be HuR. In the present study, we have extensively characterized the interaction between HuR and HCV 3‟UTR and studied its functional implications in HCV life cycle along with other host factors. Characterizing the HCV 3’UTR–HuR interaction and its role in HCV replication HuR is a ubiquitously expressed member of the Hu family which shuttles between the nucleus and cytoplasm in response to stress. Whole genome siRNA knockdown and other studies have suggested that HuR is essential for HCV replication. However, the molecular mechanism of its involvement in this process was not clear. We observed that siRNA mediated knockdown of HuR reduces the HCV RNA and protein levels. Immunofluorescence studies indicated that HuR relocalizes from the nucleus to the cytoplasm in HCV infected cells. Through confocal microscopy and GST pulldown assays, we have demonstrated that HuR co localizes with the viral polymerase, NS5B and directly interacts with the NS5B protein. Membrane flotation assays showed that HuR is present in the detergent resistant membrane fractions which are the active sites of HCV replication. In addition to the interaction of HuR with the viral protein NS5B, we also characterized its interaction with the viral RNA. Direct UV cross linking assays and UV cross linking immunoprecipitation assays were performed to demonstrate the interaction of HuR with the HCV 3‟UTR. The RRM3, hinge region and RRM1 of HuR were found to be important for binding. Further, we observed that HuR competes with PTB for binding to the 3‟UTR when cytoplasmic S10 extracts or recombinant proteins were used in UV cross linking assays. In contrast, the addition of HuR facilitated the binding of La protein to the HCV 3‟UTR in the above assays. Competition UV cross linking assays indicated that both HuR and PTB bind to the poly U/UC region of the 3‟UTR while La binds to the variable region. HuR and La showed higher affinities for binding to the 3‟UTR as compared to PTB in filter binding assays. Since HuR and PTB interact with the same region on the 3‟UTR and HuR showed ~4 fold higher affinity for binding, it could displace PTB from the 3‟UTR. Next, we investigated the roles of HuR, PTB and La in HCV translation and replication in cell culture using three different assay systems, HCV sub genomic replicon, HCV bicistronic SGR-JFH1/Luc replicon as well as the infectious HCV full length RNA (JFH1). Results clearly indicated that HuR and La are positive modulators of HCV replication. Interestingly, PTB facilitated HCV IRES mediated translation but appeared to have a negative effect on HCV replication. The positive effectors, HuR and La showed significant co localization with one another in the cytoplasm in immunofluorescence studies. GST pulldown and coimmunoprecipitation experiments indicated protein-protein interactions between HuR and La but not between HuR and PTB. Through quantitative IP-RT assays, we demonstrated that the overexpression of HuR in HCV RNA transfected cells increases the association of La with the HCV RNA while HuR knockdown reduces the association of La with the HCV RNA. Previous studies in our laboratory have shown that La helps in HCV genome circularization. The addition of HuR significantly increased La mediated interactions between the 5‟UTR and the 3‟UTR of HCV RNA as monitored by 5‟-3‟ co precipitation assays, suggesting a possible mechanism by which cooperative binding of HuR and La could positively regulate HCV replication. Taken together, our results suggest a possible interplay between HuR, PTB and La in the regulation of HCV replication. Studying the role of HuR- associated cellular RNAs in HCV infection HuR belongs to the category of mRNA turnover and translation regulatory proteins (TTR-RBPs), which are capable of triggering rapid and robust changes in cellular gene expression. HuR plays a role in several post transcriptional events such as mRNA splicing, export, stability and translation. In the present study, we have investigated the possible consequences of relocalization of HuR on cellular processes in the context of HCV infection. We observed that 72h post transfection of infectious HCV-JFH1 RNA, there is an increase in the mRNA levels of some of the validated targets of HuR including the vascular endothelial growth factor A (VEGFA), dual specificity phosphatise 1 (MKP1) and metastasis - associated lung adenocarcinoma transcript (MALAT1). IP-RT assays demonstrated that the association of HuR with VEGFA and MKP1 was higher in HCV-JFH1 RNA transfected cells as compared to the mock transfected cells indicating that increase in HuR association could probably help in stabilization of these mRNAs. Interestingly, we observed that the association of HuR with the lncRNA MALAT1 decreases in the presence of HCV RNA, while its RNA levels increased. Earlier it has been reported that MALAT1 interacts with HuR and was predicted to interact with La. We confirmed the interaction of both HuR and La proteins with MALAT1 RNA in vitro and in the cell culture system. Results from our time course experiments suggest that relocalization of HuR and La upon HCV infection might decrease their association with the nuclear retained MALAT1 RNA leading to significant reduction in MALAT1 RNA levels at the initial time points. However at later time points, MALAT1 was found to be unregulated through activation of the Wnt/beta-catenin pathway as demonstrated using a chemical inhibitor against β-catenin. Since MALAT1 is a known regulator of epithelial mesenchymal transition (EMT) and metastasis, we further studied the physiological consequence of the observed increase in MALAT1 levels upon HCV infection. Cell migration and cell invasion studies suggested that the knockdown of MALAT1 led to the inhibition of HCV- triggered wound healing and matrigel invasion and also rescued the down regulation of E-Cadherin protein levels, an EMT marker. Our study highlights the importance of the lncRNA, MALAT1 in HCV infection and suggests its possible involvement in HCV induced HCC. Investigating the role of miRNAs in HCV pathogenesis and replication miRNAs can also regulate HCV infection and pathogenesis in multiple ways. It is known that under disease conditions, there is aberrant expression of intracellular as well as circulating miRNAs. We have investigated the expression profile of 940 human miRNAs in HCV infected patient serum samples to identify the differentially regulated miRNAs. miR-320c, miR-483-5p and the previously reported miR-125b were found to be upregulated in the serum of cirrhotic and non-cirrhotic HCV infected patient serum samples. All three miRNAs were also unregulated in the cell culture supernatant of HCV infected cells as well as within the HCV infected cells. miR-483-5p was specifically enriched in the exosomes isolated from patient serum samples. Knockdown of miR-320c and miR-483-5p did not have significant effect on HCV replication while knockdown of miR-125b affected HCV replication through regulation of one of its target genes, HuR. We observed that with time, miR-125b levels in HCV-JFH1 RNA transfected cells increase while the HuR protein levels decrease. Using luciferase reporter constructs, we demonstrated that the decrease in HuR protein levels is indeed mediated by miR-125b. Mutations in the target site of miR-125b in the HuR 3‟UTR prevented the down regulation of luciferase activity. Next we tested the effect of silencing miR-125b on HCV replication. Knockdown of miR-125b prevented the reduction in HuR protein levels but with no significant effect on HCV replication. It appeared that the HuR protein already present in the cytoplasm could be sufficient to support HCV replication. Hence similar experiments were carried out in cells depleted of HuR using either siRNA against HuR or a chemical inhibitor of nucleocytoplasmic transport of HuR, Leptomycin B. We observed that when the intracellular levels of HuR are reduced using either of the two approaches, there is a decrease in HCV replication. This is in accordance with the results obtained in the first part of the thesis. However when miR-125b was silenced in HuR depleted cells, we noticed an upregulation in the HuR protein levels by western blot analysis and a consequent increase in HCV RNA levels as quantified by qRT-PCR. From our findings, we can conclude that miR-125b mediated regulation of HuR plays an important role in HCV replication. We hypothesize that this could be a cellular response to HCV infection to which the virus responds by inducing protein relocalization. Altogether, these studies outline the importance of host factors including cellular proteins and non-coding RNAs in the regulation of HCV life cycle and pathogenesis. Results reveal the mechanistic insights into how HCV infection triggers host defense pathways, which are evaded by the virus by counter strategies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Shwetha, S. "Host-Pathogen Interactions in Hepatitis C Virus Infection : Deciphering the Role of Host Proteins and MicroRNAs". Thesis, 2015. http://etd.iisc.ernet.in/2005/3858.

Texto completo
Resumen
Host-pathogen interactions in Hepatitis C Virus infection: Deciphering the role of host proteins and microRNAs Hepatitis C virus (HCV) is a positive sense single stranded RNA virus belonging to the Hepacivirus genus of the Flaviviridae family. HCV genome consists of a single open reading frame flanked by highly structured 5‟ and 3‟ untranslated regions (UTRs) at both ends. Unlike cellular mRNAs, HCV RNA translation is independent of the cap structure and is mediated by an internal ribosomal entry site (IRES) present in the 5‟UTR. HCV replication begins with the synthesis of a complementary negative-strand RNA using the positive strand RNA genome as a template catalyzed by the NS5B RNA dependent RNA polymerase (RdRp). The de novo priming of HCV RNA synthesis by NS5B occurs at the very end of the 3‟UTR. The 3‟UTR is organized into highly structured regions namely the variable region, poly U/UC region and the 3‟X region. These regions contain cis-acting elements that determine the efficiency of viral replication. In addition, the interaction of trans-acting factors with the 3‟ UTR is also important for regulation of HCV replication. HCV 3‟UTR interacts with several cellular proteins such as the human La protein, polypyrimdine tract binding protein (PTB), poly (rC)-binding protein 2 (PCBP2) and Human antigen R (HuR). However, the molecular basis of regulation of viral replication by these proteins is not well understood. Many proteins that are hijacked by HCV as well as other cytoplasmic RNA viruses, such as La, PCBP2, HuR and PTB are RNA binding proteins (RBPs). They are involved in post transcriptional regulation of cellular gene expression. Thus the subversion of these proteins by the virus can affect their normal physiological functions. In addition to proteins, recent reports also describe the involvement of non-coding RNAs including microRNAs (miRNA) and long non coding RNAs (lncRNA) in HCV infection. miRNAs can either directly bind to the HCV genome and regulate its life cycle or indirectly modulate the expression of host proteins required by the virus. miRNAs that are differentially regulated in virus infected tissues or body fluids of infected patients can also serve as biomarkers for diagnosis of various stages of the disease. Hence, it was planned to study the role of host proteins and miRNAs in the HCV life cycle and pathogenesis to have novel insights into the biology of HCV infection. Riboproteomic studies have identified several host proteins that directly interact with the 5‟ and/or 3‟UTRs of the HCV RNA. One of the RNA binding proteins that predominantly interact with the 3‟UTR of HCV RNA was found to be HuR. In the present study, we have extensively characterized the interaction between HuR and HCV 3‟UTR and studied its functional implications in HCV life cycle along with other host factors. Characterizing the HCV 3’UTR–HuR interaction and its role in HCV replication HuR is a ubiquitously expressed member of the Hu family which shuttles between the nucleus and cytoplasm in response to stress. Whole genome siRNA knockdown and other studies have suggested that HuR is essential for HCV replication. However, the molecular mechanism of its involvement in this process was not clear. We observed that siRNA mediated knockdown of HuR reduces the HCV RNA and protein levels. Immunofluorescence studies indicated that HuR relocalizes from the nucleus to the cytoplasm in HCV infected cells. Through confocal microscopy and GST pulldown assays, we have demonstrated that HuR co localizes with the viral polymerase, NS5B and directly interacts with the NS5B protein. Membrane flotation assays showed that HuR is present in the detergent resistant membrane fractions which are the active sites of HCV replication. In addition to the interaction of HuR with the viral protein NS5B, we also characterized its interaction with the viral RNA. Direct UV cross linking assays and UV cross linking immunoprecipitation assays were performed to demonstrate the interaction of HuR with the HCV 3‟UTR. The RRM3, hinge region and RRM1 of HuR were found to be important for binding. Further, we observed that HuR competes with PTB for binding to the 3‟UTR when cytoplasmic S10 extracts or recombinant proteins were used in UV cross linking assays. In contrast, the addition of HuR facilitated the binding of La protein to the HCV 3‟UTR in the above assays. Competition UV cross linking assays indicated that both HuR and PTB bind to the poly U/UC region of the 3‟UTR while La binds to the variable region. HuR and La showed higher affinities for binding to the 3‟UTR as compared to PTB in filter binding assays. Since HuR and PTB interact with the same region on the 3‟UTR and HuR showed ~4 fold higher affinity for binding, it could displace PTB from the 3‟UTR. Next, we investigated the roles of HuR, PTB and La in HCV translation and replication in cell culture using three different assay systems, HCV sub genomic replicon, HCV bicistronic SGR-JFH1/Luc replicon as well as the infectious HCV full length RNA (JFH1). Results clearly indicated that HuR and La are positive modulators of HCV replication. Interestingly, PTB facilitated HCV IRES mediated translation but appeared to have a negative effect on HCV replication. The positive effectors, HuR and La showed significant co localization with one another in the cytoplasm in immunofluorescence studies. GST pulldown and coimmunoprecipitation experiments indicated protein-protein interactions between HuR and La but not between HuR and PTB. Through quantitative IP-RT assays, we demonstrated that the overexpression of HuR in HCV RNA transfected cells increases the association of La with the HCV RNA while HuR knockdown reduces the association of La with the HCV RNA. Previous studies in our laboratory have shown that La helps in HCV genome circularization. The addition of HuR significantly increased La mediated interactions between the 5‟UTR and the 3‟UTR of HCV RNA as monitored by 5‟-3‟ co precipitation assays, suggesting a possible mechanism by which cooperative binding of HuR and La could positively regulate HCV replication. Taken together, our results suggest a possible interplay between HuR, PTB and La in the regulation of HCV replication. Studying the role of HuR- associated cellular RNAs in HCV infection HuR belongs to the category of mRNA turnover and translation regulatory proteins (TTR-RBPs), which are capable of triggering rapid and robust changes in cellular gene expression. HuR plays a role in several post transcriptional events such as mRNA splicing, export, stability and translation. In the present study, we have investigated the possible consequences of relocalization of HuR on cellular processes in the context of HCV infection. We observed that 72h post transfection of infectious HCV-JFH1 RNA, there is an increase in the mRNA levels of some of the validated targets of HuR including the vascular endothelial growth factor A (VEGFA), dual specificity phosphatise 1 (MKP1) and metastasis - associated lung adenocarcinoma transcript (MALAT1). IP-RT assays demonstrated that the association of HuR with VEGFA and MKP1 was higher in HCV-JFH1 RNA transfected cells as compared to the mock transfected cells indicating that increase in HuR association could probably help in stabilization of these mRNAs. Interestingly, we observed that the association of HuR with the lncRNA MALAT1 decreases in the presence of HCV RNA, while its RNA levels increased. Earlier it has been reported that MALAT1 interacts with HuR and was predicted to interact with La. We confirmed the interaction of both HuR and La proteins with MALAT1 RNA in vitro and in the cell culture system. Results from our time course experiments suggest that relocalization of HuR and La upon HCV infection might decrease their association with the nuclear retained MALAT1 RNA leading to significant reduction in MALAT1 RNA levels at the initial time points. However at later time points, MALAT1 was found to be unregulated through activation of the Wnt/beta-catenin pathway as demonstrated using a chemical inhibitor against β-catenin. Since MALAT1 is a known regulator of epithelial mesenchymal transition (EMT) and metastasis, we further studied the physiological consequence of the observed increase in MALAT1 levels upon HCV infection. Cell migration and cell invasion studies suggested that the knockdown of MALAT1 led to the inhibition of HCV- triggered wound healing and matrigel invasion and also rescued the down regulation of E-Cadherin protein levels, an EMT marker. Our study highlights the importance of the lncRNA, MALAT1 in HCV infection and suggests its possible involvement in HCV induced HCC. Investigating the role of miRNAs in HCV pathogenesis and replication miRNAs can also regulate HCV infection and pathogenesis in multiple ways. It is known that under disease conditions, there is aberrant expression of intracellular as well as circulating miRNAs. We have investigated the expression profile of 940 human miRNAs in HCV infected patient serum samples to identify the differentially regulated miRNAs. miR-320c, miR-483-5p and the previously reported miR-125b were found to be upregulated in the serum of cirrhotic and non-cirrhotic HCV infected patient serum samples. All three miRNAs were also unregulated in the cell culture supernatant of HCV infected cells as well as within the HCV infected cells. miR-483-5p was specifically enriched in the exosomes isolated from patient serum samples. Knockdown of miR-320c and miR-483-5p did not have significant effect on HCV replication while knockdown of miR-125b affected HCV replication through regulation of one of its target genes, HuR. We observed that with time, miR-125b levels in HCV-JFH1 RNA transfected cells increase while the HuR protein levels decrease. Using luciferase reporter constructs, we demonstrated that the decrease in HuR protein levels is indeed mediated by miR-125b. Mutations in the target site of miR-125b in the HuR 3‟UTR prevented the down regulation of luciferase activity. Next we tested the effect of silencing miR-125b on HCV replication. Knockdown of miR-125b prevented the reduction in HuR protein levels but with no significant effect on HCV replication. It appeared that the HuR protein already present in the cytoplasm could be sufficient to support HCV replication. Hence similar experiments were carried out in cells depleted of HuR using either siRNA against HuR or a chemical inhibitor of nucleocytoplasmic transport of HuR, Leptomycin B. We observed that when the intracellular levels of HuR are reduced using either of the two approaches, there is a decrease in HCV replication. This is in accordance with the results obtained in the first part of the thesis. However when miR-125b was silenced in HuR depleted cells, we noticed an upregulation in the HuR protein levels by western blot analysis and a consequent increase in HCV RNA levels as quantified by qRT-PCR. From our findings, we can conclude that miR-125b mediated regulation of HuR plays an important role in HCV replication. We hypothesize that this could be a cellular response to HCV infection to which the virus responds by inducing protein relocalization. Altogether, these studies outline the importance of host factors including cellular proteins and non-coding RNAs in the regulation of HCV life cycle and pathogenesis. Results reveal the mechanistic insights into how HCV infection triggers host defense pathways, which are evaded by the virus by counter strategies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Jun-WeiLee y 李峻瑋. "An affinity purification-based proteomic approach reveals hnRNPH1, NF45, and C14orf166 as three HCV core-interacting proteins involved in viral replication and cell proliferation in host cells". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/86188286381245195492.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Bhat, Prasanna. "Characterization of Host Protein Interactions with HCV RNA : Implications in Viral Translation, Replication and Design of Antivirals". Thesis, 2014. http://etd.iisc.ernet.in/2005/3496.

Texto completo
Resumen
HCV genome is a positive sense single-stranded RNA containing a single open reading frame (ORF) flanked by untranslated regions (UTRs), 5’UTR and 3’UTR.Initiation of HCV RNA translation is mediated by internal ribosome entry site (IRES) present in 5’ UTR and this process is independent of cap-structure and requires only a small subset of canonical initiation factors. Hence, HCV IRES-mediated translation initiation mechanism is quite different from canonical cellular mRNA translation initiation. The IRES is organized into highly structured domains, namely domain II, III and IV. High affinity interactions between structured RNA elements present in the IRES and 40S ribosomal proteins mediate 40S recruitment to HCV IRES. However, details of the RNA elements and region of ribosomal proteins involved in these interactions are poorly understood. In recent days, RNA-based molecules like siRNAs, antisense RNAs and RNA decoys have become promising candidates for antiviral molecules. So designing short RNA molecules that target unique HCV translation initiation mechanism might help in developing novel anti-HCV molecules. HCV 3’UTR and antisense-5’ UTRs serve as sites for replication initiation to synthesize negative and positive strand and this process is catalyzed by NS5B protein (RNA-dependent RNA polymerase). Hence, host proteins binding to both 3’UTR and antisense-5’UTR might play important role in HCV replication. This puts the study of HCV RNA–host protein interactions and its role in viral translation and replication in perspective. Studying the HCV IRES-ribosomal protein S5 interactions and its role in HCV IRES function Previous studies from our laboratory have demonstrated that binding of La protein to GCAC close to initiator AUG enhances ribosomal protein S5 (RPS5) binding with HCV IRES and stimulates HCV translation. However in-detail study on HCV IRES–RPS5 interactions and its implication on HCV translation initiation were lacking. In present study computational modelling suggested that domain II and IV interact majorly with the beta hairpin structure and C-terminal helix of RPS5. Filter-binding and UV cross-linking studies with peptides derived from predicated RNA-binding region of RPS5 and mutational studies with RPS5 demonstrated that beta hairpin structure present in RPS5 is critical for IRES–RPS5 interaction. In parallel, we have studied RNA elements involved in the IRES–RPS5 interactions using deletions and substitution mutations, which we had generated on the basis of the computational model. Direct and competition UV cross-linking experiments performed with these IRES mutants and 40S subunits as a source of RPS5 suggested that structure and sequence of both domain II and IV play crucial role in IRES–RPS5 interactions. We further investigated the effect of these mutations on IRES activity by in vitro translation assay and found that all the mutants that were compromised in binding to RPS5 showed reduced IRES activity. Moreover, ribosome assembly experiments on HCV IRES demonstrated that mutations affecting IRES–RPS5 interactions result in reduction of 80S peak and slight increase of 48S peak. Since the 40S subunit had been previously reported to bind with HCV 3’UTR, we explored the possible interaction of RPS5 with HCV 3’UTR. From direct and competition UV cross-linking assays, we found that RPS5 does not bind to 3’UTR and the interaction is unique to IRES (5’UTR). Interestingly, partial silencing of RPS5 preferentially inhibited HCV translation with marginal effect on cap-dependent translation. Recently, reduction in 40S subunit abundance was reported to preferentially inhibit HCV translation. So, we investigated the abundance of free 40S subunit upon silencing RPS5 and results showed reduction in free 40S subunit level. So, we hypothesize that silencing of RPS5 reduces free 40S abundance to inhibit HCV translation. Taken together, results identified specific RNA elements present in HCV IRES that are critical for IRES–RPS5 interactions and demonstrated the role of these interactions in HCV translation initiation. Targeting ribosome assembly on HCV IRES using short RNAs Stem-loops (SL) IIIe and IIIf of HCV IRES are known to play an important role in stable IRES–40S complex formation. However interaction of these stem-loops with 40S subunit in isolation, independent of other regions of HCV IRES, was not studied. In this study, using electrophoretic mobility shift assay (EMSA) and sucrose gradient centrifugation experiments, we demonstrate that short RNA containing both SLIIIe and SLIIIf together (SLRef RNA) binds to 40S subunit, while short RNAs containing either of the stem-loops (SLRe RNA and SLRf RNA) lose their ability to interact with 40S subunit. Further, SLRef RNA inhibited ribosome assembly on the IRES, whereas SLRe and SLRf RNA failed to inhibit the same. Since SLRef RNA is derived from IRES, we investigated the interaction SLRef RNA with IRES–trans-acting factors (ITAFs). UV cross-linking of radio-labelled HCV IRES with cytoplasmic extract (S10) in presence of unlabelled short RNAs suggested possible interactions of La and RPS5 proteins with SLRef RNA. Studies with recombinant La protein and RPS5 further confirmed their interaction with SLRef RNA. Ex vivo experiments with HCV bicistronic RNA suggested that SLRef RNA specifically inhibits HCV translation. In addition to that SLRef RNA inhibited the HCV RNA synthesis in JFH1 HCV cell culture system. Moreover, specific delivery of pSUPER construct expressing SLRef RNA (pSUPERSLRef) to mice liver along with HCV bicistronic construct using Sendai virosomes demonstrated specific inhibition of HCV IRES activity by SLRef RNA in mice hepotocytes. In summary, short RNA derived from HCV IRES was shown to bind with La protein and RPS5 to inhibit ribosome assembly on HCV IRES. Further, targeted delivery of SLRef RNA into mice liver using Sendai virosome resulted in inhibition of HCV RNA translation in mice hepatocytes. Characterizing the interaction of host proteins with antisense-5’UTR and 3’UTR and its significance in HCV replication Antisense-5’UTR and 3’UTR of HCV RNA are the sites of replication initiation. Hence, host proteins binding to both of these RNA sequences are potential candidates for regulation of HCV replication. In this study, we have investigated host proteins binding with antisense-5’UTR and 3’UTRof HCV RNA by performing UV cross-linking experiments with cytoplasmic extract of Huh7 cells, and found that a protein of ~42kDa protein interacts with both antisense-5’UTR and 3’UTR. Based on earlier report, we predicted that the ~42kDa protein could be hnRNPC1/C2. Results of UV cross-linking followed by immuno pull-down (UV-IP assay) and UV cross-linking experiments with recombinant hnRNPC1 protein confirmed that hnRNPC1 indeed binds to antisense-5’UTR and 3’UTR. Further, filter-binding experiments demonstrated that hnRNPC1 protein binds to 3’UTR with higher affinity compared to antisense-5’UTR. Subsequently, we investigated the regions within 3’UTR and antisense-5’UTR that interact with hnRNPC1protein. Results demonstrated that poly-(U/UC) region of 3’UTR and region containing stem-loops SL-IIIa’, SL-IIIb’, SL-IIIcdef’ and SL-IV’ in antisense-5’UTR were mostly involved in the interaction. Interestingly, studies with confocal microscopy suggested that hnRNPC1/C2 re-localizes from nucleus to cytoplasm upon JFH1 infection, which might in turn influence HCV replication. To investigate the role of hnRNPC1/C2 in HCV replication, partial silencing of hnRNPC1/C2 was performed in HCV cell culture system (JFH1) and results demonstrated that hnRNPC1/C2 is critical for HCV RNA synthesis. However experiments with HCV bicistronic RNA suggested that hnRNPC1/C2 does not play significant role in HCV translation. Taken together, results suggested that hnRNPC1/C2 re-localizes from nucleus to cytoplasm upon JFH1 infection and binds to HCV 3’UTR and antisense- 5’UTR to regulate HCV replication. In summary, this thesis provides novel insights into the interaction of host proteins with HCV RNA and its significance in HCV translation and replication. Inhibition of the ribosome assembly and consequent reduction in HCV translation with mutations interfering with IRES–RPS5 interaction, reported in the present study, unfolds the novel role of this interaction in HCV translation. Further, results obtained in the present study with a small RNA SLRef, derived from HCV IRES, provide proof of concept for using short RNAs to specifically inhibit HCV translation. In addition, studies of interaction of hnRNPC1/C2 with HCV RNA and its re-localization upon HCV infection sheds light on the significance of host–virus interaction in viral RNA replication.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía