Literatura académica sobre el tema "Hydrogen underground storage"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hydrogen underground storage".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Hydrogen underground storage"

1

Park, Yumin, Sejin Choe, Dahui Han, Gaeul Heo y Sokhee P. Jung. "Underground Hydrogen Storage: Comparison of High-pressure Hydrogen, Liquid Hydrogen, and Ammonia". Journal of Korean Society of Environmental Engineers 46, n.º 10 (31 de octubre de 2024): 613–28. http://dx.doi.org/10.4491/ksee.2024.46.10.613.

Texto completo
Resumen
One of the alternatives for effective storage of irregularly produced renewable energy is hydrogen energy. In order to realize a hydrogen-based society, not only environmentally friendly production of hydrogen but also effective storage is very important. Underground hydrogen storage technology is a technology that has evolved from the technology for storing natural gas underground, and includes waste gas fields, salt domes, aquifers, and rock cavities. When stored underground, hydrogen is converted into high-pressure gaseous hydrogen, liquefied hydrogen, and ammonia. Liquefied hydrogen requires extremely low storage temperatures, and ammonia is a toxic substance that requires separate handling, and energy loss occurs during the conversion process. To compensate for this, research on liquefied hydrogen, such as multilayer insulation technology, is being conducted. Ammonia has successfully extracted high-purity hydrogen by developing a membrane reactor. Ammonia toxicity can be prevented by strengthening leak detection and blocking facilities. Among these, ammonia was found to be the most suitable for underground storage in terms of economic feasibility, environment, and commercialization.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Okoroafor, Esuru Rita, Lokesh Kumar Sekar y Henry Galvis. "Underground Hydrogen Storage in Porous Media: The Potential Role of Petrophysics". Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description 65, n.º 3 (1 de junio de 2024): 317–41. http://dx.doi.org/10.30632/pjv65n3-2024a3.

Texto completo
Resumen
The objective of this study is to showcase the key geological and reservoir engineering parameters that influence underground hydrogen storage, demonstrate the value of some petrophysical data, and show how hydrogen storage differs between depleted gas fields and saline aquifers for reservoir and geomechanical modeling. We utilized numerical simulation modeling to create a base-case model of a synthetic reservoir that accurately represented the hydrodynamic conditions relevant to underground hydrogen storage in porous media. A two-step sensitivity analysis was then conducted. Firstly, we identified the critical parameters that significantly influence the storage and flow of hydrogen in porous media. Subsequently, we analyzed the geomechanical impact of underground hydrogen storage. In addition, we compared the behavior of hydrogen storage to natural gas storage. The study showed that the reservoir depth or current pressure, the reservoir dip, and the flow capacity were the top three factors impacting the optimal withdrawal of hydrogen. The study also revealed that rock displacement and stress changes were important to be monitored, while changes in strain were not significant. If it is assumed that injection occurs in a critically stressed rock, hydrogen injection and withdrawal in saline aquifers could result in more incidence of microseismicity compared to hydrogen storage in depleted fields or even gas storage in depleted fields. This study quantifies uncertainties in data and pinpoints areas where petrophysical measurements could minimize the uncertainty associated with critical parameters relevant to underground hydrogen storage. It also identifies gaps in measurements for hydrogen storage in porous media. These parameters with large uncertainty are crucial for selecting optimal sites for hydrogen storage and detecting subsurface integrity issues when monitoring for underground hydrogen storage in porous media.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Song, Rui y Jianjun Liu. "Porous Flow of Energy and CO2 Transformation and Storage in Deep Formations: An Overview". Energies 17, n.º 11 (28 de mayo de 2024): 2597. http://dx.doi.org/10.3390/en17112597.

Texto completo
Resumen
The transformation and storage of energy and carbon dioxide in deep reservoirs include underground coal gasification, the underground storage of oil and gas, the underground storage of hydrogen, underground compressed air energy storage, the geological utilization and storage of carbon dioxide, etc [...]
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Małachowska, Aleksandra, Natalia Łukasik, Joanna Mioduska y Jacek Gębicki. "Hydrogen Storage in Geological Formations—The Potential of Salt Caverns". Energies 15, n.º 14 (10 de julio de 2022): 5038. http://dx.doi.org/10.3390/en15145038.

Texto completo
Resumen
Hydrogen-based technologies are among the most promising solutions to fulfill the zero-emission scenario and ensure the energy independence of many countries. Hydrogen is considered a green energy carrier, which can be utilized in the energy, transport, and chemical sectors. However, efficient and safe large-scale hydrogen storage is still challenging. The most frequently used hydrogen storage solutions in industry, i.e., compression and liquefaction, are highly energy-consuming. Underground hydrogen storage is considered the most economical and safe option for large-scale utilization at various time scales. Among underground geological formations, salt caverns are the most promising for hydrogen storage, due to their suitable physicochemical and mechanical properties that ensure safe and efficient storage even at high pressures. In this paper, recent advances in underground storage with a particular emphasis on salt cavern utilization in Europe are presented. The initial experience in hydrogen storage in underground reservoirs was discussed, and the potential for worldwide commercialization of this technology was analyzed. In Poland, salt deposits from the north-west and central regions (e.g., Rogóźno, Damasławek, Łeba) are considered possible formations for hydrogen storage. The Gubin area is also promising, where 25 salt caverns with a total capacity of 1600 million Nm3 can be constructed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Nasser Mohammed Al Rizeiqi, Nasser Al Rizeiqi y Ali Nabavi. "Potential of Underground Hydrogen Storage in Oman". Journal of Advanced Research in Applied Sciences and Engineering Technology 27, n.º 1 (16 de julio de 2022): 9–31. http://dx.doi.org/10.37934/araset.27.1.931.

Texto completo
Resumen
Hydrogen can provide a viable source of energy that can covers the world’s energy requirement in the next coming years. One of the major keys to wholly develop hydrogen energy is to provide a safe, cost efficient and compacted type of hydrogen storage. Geological reserves are considered a suitable space for hydrogen storage. In this research, we are trying to examine if there was any technical potential for hydrogen storage based on Oman’s geology by Identifying geological deposit in Oman that can be used for hydrogen storage and analyzing salt deposits for hydrogen storage suitability. By overviewing the possible underground hydrogen methods and based on Oman’s geology, deep aquifers were not suitable for hydrogen storage; due to the lack of large sedimentary basin, no experience for similar projects and the risks associated with surrounding environment. Depleted reservoir needs more study for deployment; there are no experiences of such projects for UHS. Salt basins are good candidate for underground storage; due to the large salt basin in Oman, salt caverns are known to successfully contain hydrogen and the guaranteed safety of the storage. Analysing the technical potential salt deposits was based on a good depth dome, salt thickness and salt dome size. The main findings illustrate that, two salt domes (Qarn Shamah and Qarn Alam) were offering a good potential of estimated working gas volume of hydrogen around 90 m3 hydrogen (0.2 TWh). Nevertheless, more future work is needed to confirm the geotechnical feasibility of salt domes in terms of internal complex structure, chemical composition and purity of salt.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Barison, Erika, Federica Donda, Barbara Merson, Yann Le Gallo y Arnaud Réveillère. "An Insight into Underground Hydrogen Storage in Italy". Sustainability 15, n.º 8 (19 de abril de 2023): 6886. http://dx.doi.org/10.3390/su15086886.

Texto completo
Resumen
Hydrogen is a key energy carrier that could play a crucial role in the transition to a low-carbon economy. Hydrogen-related technologies are considered flexible solutions to support the large-scale implementation of intermittent energy supply from renewable sources by using renewable energy to generate green hydrogen during periods of low demand. Therefore, a short-term increase in demand for hydrogen as an energy carrier and an increase in hydrogen production are expected to drive demand for large-scale storage facilities to ensure continuous availability. Owing to the large potential available storage space, underground hydrogen storage offers a viable solution for the long-term storage of large amounts of energy. This study presents the results of a survey of potential underground hydrogen storage sites in Italy, carried out within the H2020 EU Hystories “Hydrogen Storage In European Subsurface” project. The objective of this work was to clarify the feasibility of the implementation of large-scale storage of green hydrogen in depleted hydrocarbon fields and saline aquifers. By analysing publicly available data, mainly well stratigraphy and logs, we were able to identify onshore and offshore storage sites in Italy. The hydrogen storage capacity in depleted gas fields currently used for natural gas storage was estimated to be around 69.2 TWh.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Abukova, L. A., T. N. Nazina, S. N. Popov y D. P. Anikeev. "Storage of hydrogen with methane in underground reservoirs: forecast of associated processes". SOCAR Proceedings, SI2 (30 de diciembre de 2023): 29–41. http://dx.doi.org/10.5510/ogp2023si200884.

Texto completo
Resumen
Based on the generalization of world experience in the underground storage of hydrogen with methane and the experimental work performed, the authors predict the development of hydrochemical, microbiological, geomechanical processes and phenomena that, in a real geological environment, will most likely accompany the joint storage of hydrogen and methane in underground formations. The issues of gas diffusion through the tire and hydrogen losses due to its consumption by microorganisms are also considered. Theoretical solutions are illustrated by calculations on synthetic models. Keywords: underground gas storage; hydrogen; methane; anaerobic microorganisms.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Tarkowski, Radoslaw. "Underground hydrogen storage: Characteristics and prospects". Renewable and Sustainable Energy Reviews 105 (mayo de 2019): 86–94. http://dx.doi.org/10.1016/j.rser.2019.01.051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Stone, Howard B. J., Ivo Veldhuis y R. Neil Richardson. "Underground hydrogen storage in the UK". Geological Society, London, Special Publications 313, n.º 1 (2009): 217–26. http://dx.doi.org/10.1144/sp313.13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bradshaw, Melissa. "High Hopes for Underground Hydrogen Storage". Engineer 302, n.º 7929 (julio de 2021): 6. http://dx.doi.org/10.12968/s0013-7758(22)90522-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Hydrogen underground storage"

1

Eddaoui, Noura. "Patterns in bioreactive transport in underground storage of hydrogen : impact of natural and induced heterogeneity". Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0244.

Texto completo
Resumen
A l'ère de la transition énergétique et en lien avec l'accord international sur la transition vers une économie climatiquement neutre à l'horizon 2050, des recherches intensives sont menées dans le monde sur les énergies renouvelables. Du fait du caractère intermittent et imprévisible de leur fonctionnement, le problème du stockage de l'énergie produite en excès devient un problème très important. On parle actuellement d'une grande capacité de stockage de grandes quantités d'électricité provenant de cellules photovoltaïques et d'éoliennes. L'électricité étant mutuellement convertie en hydrogène et inversement, son stockage dans les couches géologiques sous forme de gaz devient la solution optimale. La conversion de l'électricité renouvelable en H2 peut se faire par électrolyse. Le processus est réversible à l'aide de piles à combustible, où l'hydrogène est converti en courant électrique. On obtient la chaîne : power - to gas - to power. En conséquence, il n'y a pratiquement pas de gaz à effet de serre, ce qui peut conduire à la décarbonation du secteur des transports et des industries énergivores. Dans cette thèse, nous analysons le stockage de l'hydrogène dans des milieux poreux souterrains, qui peuvent être des aquifères, ou des réservoirs de gaz épuisés, ou des ex-stockages de gaz naturel. Le sujet de cette thèse est l'analyse hydrodynamique du transport des gaz injectés dans un stockage couplé à la dynamique bactérienne. Comme le montrent les études précédentes, l'hydrogène est consommé de manière intensive par différents types de bactéries, qui le transforment en méthane par exemple. Les effets croisés des bioréactions et du transport conduisent à la formation de structures spatiales complexes appelées modèles qui conduisent à une distribution non uniforme de l'hydrogène sur le domaine. Notre attention principale s'est concentrée sur l'impact de l'hétérogénéité moyenne sur la formation de motifs. Deux types d'hétérogénéité ont été analysés : la double porosité, selon le modèle macroscopique de Barenblatt, et l'hétérogénéité induite par les bactéries dont la croissance crée la zone de pores réduits voire totalement obstrués
In the era of energy transition and in connection with the international agreement on the transition to a climate-neutral economy by 2050, intensive research is being carried out around the world on renewable energy sources. Due to the intermittent and unpredictable nature of their functioning, the problem of storing excessively produced energy becomes a highly important problem. We are currently talking about a large capacity for storing large amounts of electricity coming from photovoltaic cells and windmills. Since electricity is mutually converted to hydrogen and vice versa, storing it in geological strata in the form of gas becomes the optimal solution.The conversion of electricity into H2 can be done by electrolysis. The process is reversible using fuel cells, where hydrogen is converted into electrical current. We obtain the chain: power - to gas - to power. As a result, there are virtually no greenhouse gases, which can lead to the decarbonization of the transport sector and energy-intensive industries.In this thesis, we analyze the storage of hydrogen in underground porous media, which can be aquifers, or depleted gas reservoirs, or ex-storages of natural gas.The subject of this thesis is the hydrodynamic analysis of transport of injected gases in a storage coupled with bacterial dynamics. As shown in previous studies, hydrogen is intensively consumed by various types of bacteria, which transform it into methane, for example. The cross-effects of bioreactions and transport determine the formation of complicated spatial structures called patterns that lead to a nonuniform distribution of hydrogen over the domain. Our main attention was focused on the impact of medium heterogeneity on pattern formation. Two types of heterogeneity were analyzed: the double porosity, in terms of the macroscopic Barenblatt’s model, and the heterogeneity induced by bacteria, growth of which creates the zones of reduced permeability or even completely clogged pores
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hagemann, Birger. "Numerical and Analytical Modeling of Gas Mixing and Bio-Reactive Transport during Underground Hydrogen Storage". Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0328/document.

Texto completo
Resumen
En rapport avec la transition énergétique, d’importantes capacités de stockage énergétique sont nécessaires pour intégrer la forte variation de la production énergétique au travers des centrales éoliennes et photovoltaïques. La transformation de l’énergie électrique en énergie chimique sous forme d’hydrogène est l’une des possibles techniques. La technologie de stockage de l’hydrogène souterrain, selon laquelle l’hydrogène est stocké dans les formations souterraines semblables au stockage du gaz naturel est actuellement un axe de recherche de plusieurs états européens. Par comparaison au stockage du gaz naturel dans les formations souterraines et qui est établie depuis de nombreuses années, l'hydrogène a montré des différences significatives dans son comportement hydrodynamique et biochimique. Ces aspects ont été étudiés dans la présente thèse en utilisant différentes approches analytiques et numériques
In the context of energy revolution large quantities of storage capacity are required for the integration of strongly fluctuating energy production from wind and solar power plants. The conversion of electrical energy into chemical energy in the form of hydrogen is one of the technical possibilities. The technology of underground hydrogen storage (UHS), where hydrogen is stored in subsurface formations similar to the storage of natural gas, is currently in the exploratory focus of several European countries. Compared to the storage of natural gas in subsurface formations, which is established since many years, hydrogen shown some significant differences in its hydrodynamic and bio-chemical behavior. These aspects were investigated in the present thesis by different analytical and numerical approaches
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hagemann, Birger [Verfasser], Mikhail [Gutachter] Panfilov, Reinhard [Gutachter] Gaupp y Rudolf [Gutachter] Hilfer. "Numerical and Analytical Modeling of Gas Mixing and Bio-Reactive Transport during Underground Hydrogen Storage / Birger Hagemann ; Gutachter: Mikhail Panfilov, Reinhard Gaupp, Rudolf Hilfer". Clausthal-Zellerfeld : Technische Universität Clausthal, 2018. http://d-nb.info/1230990542/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Ebrahimiyekta, Alireza. "Characterization of geochemical interactions and migration of hydrogen in sandstone sedimentary formations : application to geological storage". Thesis, Orléans, 2017. http://www.theses.fr/2017ORLE2016/document.

Texto completo
Resumen
Parmi les options en cours d’investigation, le stockage souterrain de l'hydrogène dans les formations sédimentaires comme les grès pourrait offrir un potentiel unique pour stocker de grandes quantités d'énergie. L'évaluation des modalités de stockage souterrain de l'hydrogène nécessite donc à la fois une connaissance précise des transformations minéralogiques dues à la présence de l'hydrogène et l’acquisition de données sur le comportement hydrodynamique des fluides. Par conséquent, cette étude se composera de trois parties : 1- Etude des interactions géochimiques de l’hydrogène dans des formations sédimentaires gréseuses : Les produits expérimentaux portent la marque d'une réaction très limitée entre les minéraux du grès et l'hydrogène. Si les résultats expérimentaux sont combinés aux résultats numériques, l’étude démontre que l'hydrogène, une fois injecté, peut être considéré comme relativement inerte. De façon globale, nos résultats renforcent la faisabilité du confinement de l'hydrogène dans des réservoirs géologiques comme les grès. 2- Etude de la migration de l'hydrogène dans les grès : détermination de la perméabilité relative et de la pression capillaire du système hydrogène-eau : Afin de fournir des données quantitatives pour le développement du stockage souterrain de l'hydrogène, la pression capillaire et la perméabilité relative ont été mesurées pour le système hydrogène-eau en deux conditions potentielles. Les résultats indiquent que les données obtenues sont applicables à l’ensemble des conditions de stockage de l'hydrogène. 3- Modélisation numérique d’un site de stockage géologique d’hydrogène : La simulation numérique a été effectuée pour caractériser l'évolution dynamique d’un site de stockage d'hydrogène pur. Une fluctuation saisonnière du fonctionnement du réservoir et l'effet des fuites d'hydrogène dus aux réactions ont été pris en compte
Underground hydrogen storage has been introduced as storage solution for renewable energy systems as it offers a unique potential to store large amounts of energy, especially in sedimentary formations such as sandstones. However, evaluating the underground hydrogen storage requires a precise knowledge of the hydrodynamic behavior of the fluids and of mineralogical transformations due to the presence of hydrogen that may affect the storage properties. Therefore, this study is consists in three parts: 1- Study of geochemical reactivity of hydrogen in sandstone sedimentary formations: The experimental products bear the mark of only very limited reaction between sandstone minerals and hydrogen. Taken together with the numerical results, this study demonstrates that hydrogen, once injected, can be considered as relatively inert. Overall, our results support the feasibility of hydrogen confinement in geological reservoirs such as sandstones. 2- Study of the migration of hydrogen in sandstone: determination of relative permeability and capillary pressure of hydrogen-water system: To provide quantitative data for the development of underground hydrogen storage, capillary pressures and relative permeabilities of hydrogen-water system have been measured at two potential conditions. The interpretation of the results would suggest that the obtained data are applicable for the entire range of hydrogen storage conditions. Interfacial tensions and contact angles for the hydrogen-water system have been also derived. 3- Numerical simulation of a geological hydrogen storage site: The numerical simulation was performed to characterize the evolution of pure hydrogen storage, by considering the seasonal fluctuation of renewable energy and the effect of hydrogen loses due to the biotic reactions
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Sáinz-García, Álvaro. "Dynamique de stockage souterrain de gaz : aperçu à partir de modèles numériques de dioxyde de carbone et d'hydrogène". Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30187/document.

Texto completo
Resumen
L'atténuation du changement climatique est l'un des défis majeurs de notre époque. Les émissions anthropiques de gaz à effet de serre ont augmenté de façon continue depuis la révolution industrielle, provoquant le réchauffement climatique. Un ensemble de technologies très diverses doivent être mises en œuvre pour respecter les accords internationaux relatifs aux émissions de gaz à effet de serre. Certaines d'entre elles ont recours au sous-sol pour le stockage de diverses substances. Cette thèse traite plus particulièrement de la dynamique du stockage souterrain du dioxyde de carbone (CO2) et de l'hydrogène (H2). Des modèles numériques de transport réactif et multiphasiques ont été élaborés pour mieux comprendre la migration et les interactions des fluides dans des milieux poreux de stockage souterrain. Ils fournissent des recommandations pour améliorer l'efficacité, la surveillance et la sécurité du stockage. Trois modèles sont présentés dans ce document, dont deux dans le domaine du captage et du stockage du CO2 (CCS pour Carbon Capture and Storage), et le troisième s'appliquant au stockage souterrain de l'hydrogène (UHS pour Underground Hydrogen Storage). Chacun d'entre eux traite plus spécifiquement un aspect de la recherche : Modèle multiphasique appliqué au CCS L'efficacité et la sécurité à long terme du stockage du CO2 dépend de la migration et du piégeage du panache de CO2 flottant. Les grandes différences d'échelles temporelles et spatiales concernées posent de gros problèmes pour évaluer les mécanismes de piégeage et leurs interactions. Dans cet article, un modèle numérique dynamique diphasique a été appliqué à une structure aquifère synclinale-anticlinale. Ce modèle est capable de rendre compte des effets de capillarité, de dissolution et de mélange convectif sur la migration du panache. Dans les aquifères anticlinaux, la pente de l'aquifère et la distance de l'injection à la crête de l'anticlinal déterminent la migration du courant gravitaire et, donc, les mécanismes de piégeage affectant le CO2. La structure anticlinale arrête le courant gravitaire et facilite l'accumulation du CO2 en phase libre, en dessous de la crête de l'anticlinal, ce qui stimule la mise en place d'une convection et accélère donc la dissolution du CO2. Les variations de vitesse du courant gravitaire en raison de la pente de l'anticlinal peuvent provoquer la division du panache et une durée différente de résorption du panache en phase libre, qui dépend de l'endroit de l'injection
Climate change mitigation is one of the major challenges of our time. The anthropogenic greenhouse gases emissions have continuously increased since industrial revolution leading to global warming. A broad portfolio of mitigation technologies has to be implemented to fulfill international greenhouse gas emissions agreements. Some of them comprises the use of the underground as a storage of various substances. In particular, this thesis addresses the dynamics of carbon dioxide (CO2) and hydrogen (H2) underground storage. Numerical models are a very useful tool to estimate the processes taking place at the subsurface. During this thesis, a solute transport in porous media module and various multiphase flow formulations have been implemented in COMSOL Multiphysics (Comsol, 2016). These numerical tools help to progress in the understanding of the migration and interaction of fluids in porous underground storages. Three models that provide recommendations to improve the efficiency, monitoring and safety of the storages are presented in this manuscript: two in the context of carbon capture and storage (CCS) and one applied to underground hydrogen storage (UHS). Each model focus on a specific research question: Multiphase model on CCS. The efficiency and long-term safety of underground CO2 storage depend on the migration and trapping of the buoyant CO2 plume. The wide range of temporal and spatial scales involved poses challenges in the assessment of the trapping mechanisms and the interaction between them. In this chapter a two-phase dynamic numerical model able to capture the effects of capillarity, dissolution and convective mixing on the plume migration is applied to a syncline-anticline aquifer structure. In anticline aquifers, the slope of the aquifer and the distance of injection to anticline crest determine the gravity current migration and, thus, the trapping mechanisms affecting the CO2. The anticline structure halts the gravity current and promotes free-phase CO2 accumulation beneath the anticline crest, stimulating the onset of convection and, thus, accelerating CO2 dissolution. Variations on the gravity current velocity due to the anticline slope can lead to plume splitting and different free-phase plume depletion time is observed depending on the injection location. Injection at short distances from the anticline crest minimizes the plume extent but retards CO2 immobilization. On the contrary, injection at large distances from anticline crest leads to large plume footprints and the splitting of the free-phase plume. The larger extension yields higher leakage risk than injection close to aquifer tip; however, capillary trapping is greatly enhanced, leading to faster free-phase CO2 immobilization. Reactive transport model on convective mixing in CCS. Dissolution of carbon-dioxide into formation fluids during carbon capture and storage (CCS) can generate an instability with a denser CO2-rich fluid located above the less dense native aquifer fluid. This instability promotes convective mixing, enhancing CO2 dissolution and favouring the storage safety
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lacroix, Elodie. "Développements de protocoles méthodologiques pour le monitoring géochimique appliqué à la détection de fuite d'hydrogène (H₂) à l'aplomb des sites de stockage souterrain". Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0342.

Texto completo
Resumen
Associé à la transition énergétique, le stockage souterrain d’H₂ est une solution de stockage de l’énergie. Le projet de recherche « Rostock’H » intégrant ce travail de thèse a associé l’Université de Lorraine et l’Ineris pour développer des méthodes de monitoring géochimique afin d’en analyser les risques et opportunités. Il s’agit de pouvoir stocker l’H₂ dans un volume allant jusqu’à 1 000 000 m³ entre 300 et 1400 m de profondeur. Le développement d’un site de stockage souterrain implique une maîtrise des risques anté, syn et post-opérationnels par des méthodes de surveillance géochimique. Incolore et inodore, l’H₂ est un gaz volatil et explosif. Une attention particulière est donc portée sur les risques de fuite en subsurface à partir de ces sites de stockage et sur la métrologie associée à cette détection. Ce travail de thèse a eu trois objectifs : (i) expérimenter des méthodes de monitoring in situ et continu à partir d’injections de gaz dissous sur un site expérimental, (ii) déterminer les impacts potentiels d’une fuite dans les «sols» et «nappes phréatiques» avec une analyse modélisée du comportement géochimique de l’H₂ et des paramètres associés, (iii) établir une stratégie de monitoring recommandé pour les sites de stockages souterrains, afin de prévenir de potentielles fuites d’H₂. Composé d’un aquifère semi-captif à partir de 13 m de profondeur, ce site expérimental du Bassin parisien dispose de plusieurs puits et équipements atteignant les zones saturée et non saturée. Oxydantes, oxygénées et modérément minéralisées, les eaux de cet aquifère ont une composition chimique initiale appartenant au faciès bicarbonaté calcique avec une légère altération en nitrates et sulfates. Plusieurs étapes ont été nécessaires pour simuler et modéliser une fuite potentielle : - Préparation du site et choix des systèmes métrologiques - Établissement de l’état initial du site (ligne de base géochimique) définit à partir de mesures du niveau piézométrique, des paramètres physico-chimiques, d’analyses d’espèces ioniques et des mesures de gaz dissous en puits dédié en combinant spectroscopies Raman (N₂, O₂, CO₂, H₂ et CH₄) et infrarouge (CO₂, CH₄) à l’aide de capteurs optiques - Co-injection d’He dissous et de traceurs hydrogéologiques validant le protocole expérimental d’injection d’H₂ et une première analyse de la dynamique de l’aquifère - Co-injection d’H₂ dissous et de traceurs sélectionnés selon le protocole adapté lié au retour d’expérience - Suivi post-injection déterminant les impacts et la cinétique du retour à l’état initial de la nappe à l’aide notamment du puits dédié et du développement du système de monitoring des gaz dissous par capteurs optiques. Une concentration initiale d’H₂ dissous à 1,78 mg.L⁻¹ a été injectée en conditions de surface durant 2,5 heures dans la nappe. La migration du panache d’H2 dissous ainsi que d’autres gaz initialement présents dans l’aquifère a été suivie à la fois par méthode continue (spectroscopies Raman et infrarouge) et mesures discontinues (dégazage partiel). Une dynamique de transfert d'H₂ décroissante dans la nappe a été observée jusqu'à 20 m en aval du puits d’injection : 0,6 mg.L⁻¹ à 5 m, 0,17 mg.L⁻¹ à 7 m puis 1,8*10⁻³ mg.L⁻¹ d’H₂ à 10 et 20 m lors de la première semaine. À la suite de l'ajout d’H₂(aq), la physico-chimie de l'aquifère a été modifiée avec une augmentation du pH, une diminution du potentiel rédox et de la concentration en O₂(aq). A partir des mesures Raman (à 7 m en aval), un modèle 2D a été établi sur la base d’un processus mixte de diffusion/advection de l’H₂ en supposant un écoulement monocanal au sein de l’aquifère. Ces résultats expérimentaux acquis valident, sur le long terme, les choix métrologiques appliqués, avec une limite de détection d’H₂ en aquifère à 0,02 mg.L⁻¹. Ils confirment ainsi la faisabilité du suivi d’H₂ dans les aquifères peu profonds et mettent en évidence les impacts potentiels des fuites des stockages souterrains atteignant la surface
Combined with the energy transition, underground H₂ storage is a storage solution for the energy. The research project named "Rostock'H" integrating this thesis work associated the University of Lorraine and Ineris to develop geochemical monitoring methods in order to analyze the risks and opportunities. This project aims to study the risks and opportunities of H₂ storage in salt caverns. The next goal is to be able to store H₂ in a volume of up to 1,000,000 m³ between 300 and 1,400 m deep. The development of an underground storage site involves controlling pre, syn and post-operational risks by geochemical monitoring methods. Colorless and odorless, H₂ is a volatile and explosive gas. A particular attention is therefore paid to the risks of subsurface leakage from these storage sites and to the metrology associated with this detection. This thesis work had three main objectives: (i) to experiment in-situ and continuous monitoring methods from dissolved gas injections on a dedicated experimental site, (ii) to determine the potential impacts of a leak in “soils” and “aquifers” with a modeled analysis of the geochemical behavior of H₂ and associated parameters, (iii) to establish recommendations and a monitoring strategy for existing or future underground storage sites to prevent potential H₂ leakages. Composed of a semi-confined aquifer from 13 m deep, this experimental site in the Paris Basin has several wells and equipments reaching the saturated and unsaturated zones. Oxidizing, oxygenated and moderately mineralized, the waters of this aquifer have an initial chemical composition belonging to the calcium bicarbonate facies with a slight alteration in nitrates and sulphates. Several steps were necessary to simulate and model a potential leak: - Preparation of the site and choice of the metrological systems that will be deployed - Establishment of the initial state of the site through the definition of a geochemical baseline from measurements of the piezometric level, physico-chemical parameters, analyzes of ionic species and dissolved gas measurements in a dedicated well by combining of the Raman and infrared spectroscopies - Co-injection of dissolved He and hydrogeological tracers to validate the experimental protocol of the H₂ injection and to allow a first analysis of the aquifer dynamics - Co-injection of dissolved H₂ and tracers selected according to the adapted protocol linked to the experience feedback from the He injection - Post-injection monitoring to determine the impacts and the kinetics of return in the initial state of the aquifer using in particular the monitoring system of dissolved gases by optical sensors. An initial concentration of H₂ dissolved at 1.78 mg.L-1 was injected under surface conditions for 2.5 hours into the aquifer. The migration of the dissolved H₂ plume as well as other gases initially present in the aquifer was monitored both by continuous method (Raman and infrared spectroscopies) and discontinuous measurements (partial degassing). A dynamic of H₂ transfer in the water table was observed up to 20 m downstream from the injection well: 0.6 mg.L⁻¹ at 5 m, 0.17 mg.L⁻¹ at 7 m then 1.8*10⁻³ mg.L⁻¹ of H₂ at 10 and 20 m during the first week. Following the addition of H₂(aq), the physico-chemistry of the aquifer was modified with an increase of pH, a decrease of redox potential and of the O₂(aq) concentration. From continuous measurements by Raman spectroscopy (at 7 m downstream the injection well), a 2D model was established on the basis of a mixed H₂ diffusion/advection process, assuming a single-channel flow in the aquifer. The experimental results acquired in this thesis work validate, over the long term, the metrological choices applied, with a detection limit of H₂ in aquifer lowered to 0.02 mg.L⁻¹. These results thus confirm the feasibility of monitoring dissolved H2 in shallow aquifers and highlight the potential impacts of leakages from underground storage reaching the surface
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Powell, Tobin Micah. "Design of an underground compressed hydrogen gas storage". Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-12-2231.

Texto completo
Resumen
Hydrogen has received significant attention throughout the past decade as the United States focuses on diversifying its energy portfolio to include sources of energy beyond fossil fuels. In a hydrogen economy, the most common use for hydrogen is in fuel cell vehicles. Advancements in on-board storage devices, investment in hydrogen production facilities nation-wide, development of a hydrogen transmission infrastructure, and construction of hydrogen fueling stations are essential to a hydrogen economy. This research proposes a novel underground storage technique to be implemented at a hydrogen fueling station. Three boreholes are drilled into the subsurface, with each borehole consisting of an outer pipe and an inner pipe. Hydrogen gas (H2) is stored in the inner tube, while the outer pipe serves to protect the inner pipe and contain any leaked gas. Three boreholes of varying pressures are necessary to maintain adequate inventory and sufficient pressure while filling vehicles to full tank capacity. The estimated cost for this storage system is $2.58 million. This dollar amount includes drilling and completion costs, steel pipe costs, the cost of a heavy-duty hydrogen compressor, and miscellaneous equipment expenses. Although the proposed design makes use of decades’ worth of experience and technical expertise from the oil and gas industry, there are several challenges—technical, economic, and social—to implementing this storage system. The impact of hydrogen embrittlement and the lack of a hydrogen transmission infrastructure represent the main technical impediments. Borehole H2 storage, as part of a larger hydrogen economy, reveals significant expenses beyond those calculated in the amount above. Costs related to delivering H2 to the filling station, electricity, miscellaneous equipment, and maintenance associated with hydrogen systems must also be considered. Public demand for hydrogen is low for several reasons, and significant misperceptions exist concerning the safety of hydrogen storage. Although the overall life-cycle emissions assessment of hydrogen fuel reveals mediocre results, a hydrogen economy impacts air quality less than current fossil-fuel systems. If and when the U.S. transitions to a hydrogen economy, the borehole storage system described herein is a feasible solution for on-site compressed H2 storage.
text
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Peng, Dan. "Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage". Thesis, 2013. http://hdl.handle.net/10012/7931.

Texto completo
Resumen
Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility of power grid operations. Underground storage of hydrogen with natural gas (UHNG) is proposed as a new energy storage technology, to be considered for utility-scale energy storage applications. UHNG is a composite technology: using electrolyzers to convert electrical energy to chemical energy in the form of hydrogen. The latter is then injected along with natural gas into existing gas distribution and storage facilities. The energy stored as hydrogen is recovered as needed; as hydrogen for industrial and transportation applications, as electricity to serve power demand, or as hydrogen-enriched natural gas to serve gas demand. The storage of electrical energy in gaseous form is also termed “Power to Gas”. Such large scale electrical energy storage is desirable to baseload generators operators, renewable energy-based generator operators, independent system operators, and natural gas distribution utilities. Due to the low density of hydrogen, the hydrogen-natural gas mixture thus formed has lower volumetric energy content than conventional natural gas. But, compared to the combustion of conventional natural gas, to provide the same amount of energy, the hydrogen-enriched mixture emits less carbon dioxide. This thesis investigates the dynamic behaviour, financial and environmental performance of UHNG through scenario-based simulation. A proposed energy hub embodying the UHNG principle, located in Southwestern Ontario, is modeled in the MATLAB/Simulink environment. Then, the performance of UHNG for four different scenarios are assessed: injection of hydrogen for long term energy storage, surplus baseload generation load shifting, wind power integration and supplying large hydrogen demand. For each scenario, the configuration of the energy hub, its scale of operation and operating strategy are selected to match the application involved. All four scenarios are compared to the base case scenario, which simulates the operations of a conventional underground gas storage facility. For all scenarios in which hydrogen production and storage is not prioritized, the concentration of hydrogen in the storage reservoir is shown to remain lower than 7% for the first three years of operation. The simulation results also suggest that, of the five scenarios, hydrogen injection followed by recovery of hydrogen-enriched natural gas is the most likely energy recovery pathway in the near future. For this particular scenario, it was also found that it is not profitable to sell the hydrogen-enriched natural gas at the same price as regular natural gas. For the range of scenarios evaluated, a list of benchmark parameters has been established for the UHNG technology. With a roundtrip efficiency of 39%, rated capacity ranging from 25,000 MWh to 582,000 MWh and rated power from 1 to 100 MW, UHNG is an energy storage technology suitable for large storage capacity, low to medium power rating storage applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Langels, Hanna y Oskar Syrjä. "Hydrogen Production and Storage Optimization based on Technical and Financial Conditions : A study of hydrogen strategies focusing on demand and integration of wind power". Thesis, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-435176.

Texto completo
Resumen
There has recently been an increased interest in hydrogen, both as a solution for seasonal energy storage but also for implementations in various industries and as fuel for vehicles. The transition to a society less dependent on fossil fuels highlights the need for new solutions where hydrogen is predicted to play a key role. This project aims to investigate technical and economic outcomes of different strategies for production and storage of hydrogen based on hydrogen demand and source of electricity. This is done by simulating the operation of different systems over a year, mapping the storage level, the source of electricity, and calculating the levelized cost of hydrogen (LCOH). The study examines two main cases. The first case is a system integrated with offshore wind power for production of hydrogen to fuel the operations in the industrial port Gävle Hamn. The second case examines a system for independent refueling stations where two locations with different electricity prices and traffic flows are analyzed. Factors such as demand, electricity prices, and component costs are investigated through simulating cases as well as a sensitivity analysis. Future potential sources of income are also analyzed and discussed. The results show that using an alkaline electrolyzer (AEL) achieves the lowest LCOH while PEM electrolyzer is more flexible in its operation which enables the system to utilize more electricity from the offshore wind power. When the cost of wind electricity exceeds the average electricity price on the grid, a higher share of wind electricity relative to electricity from the grid being utilized in the production results in a higher LCOH. The optimal design of the storage depends on the demand, where using vessels above ground is the most beneficial option for smaller systems and larger systems benefit financially from using a lined rock cavern (LRC). Hence, the optimal design of a system depends on the demand, electricity source, and ultimately on the purpose of the system. The results show great potential for future implementation of hydrogen systems integrated with wind power. Considering the increased share of wind electricity in the energy system and the expected growth of the hydrogen market, these are results worth acknowledging in future projects.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Hydrogen underground storage"

1

Karakilcik, Hatice y Mehmet Karakilcik. "Underground Large-Scale Hydrogen Storage". En Lecture Notes in Energy, 375–92. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40738-4_17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bachand, Antoine, Bernard Doyon, Robert Schulz, Ralph Rudd y Jasmin Raymond. "Numerical Model for Underground Hydrogen Storage in Cased Boreholes". En Atlantis Highlights in Engineering, 14–28. Dordrecht: Atlantis Press International BV, 2023. http://dx.doi.org/10.2991/978-94-6463-156-2_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Esfandi, Tanin, Yasin Noruzi, Mir Saeid Safavi y Saeid Sadeghnejad. "Analyzing Key Parameters in Underground Hydrogen Storage Using Machine Learning Surrogate Models". En Progress and Challenge of Porous Media: Proceedings of the 16th Annual Meeting Conference on Porous Media, 978–86. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-2983-1_83.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Van Gessel, S. F., R. M. Groenenberg, J. Juez-Larré y R. A. F. Dalman. "Underground hydrogen storage in salt caverns in the Netherlands – Storage performance and implications for geomechanical stability​". En The Mechanical Behavior of Salt X, 607–15. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003295808-55.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Pudlo, Dieter, Leonhard Ganzer, Steven Henkel, Michael Kühn, Axel Liebscher, Marco De Lucia, Michel Panfilov et al. "The H2STORE Project: Hydrogen Underground Storage – A Feasible Way in Storing Electrical Power in Geological Media?" En Springer Series in Geomechanics and Geoengineering, 395–412. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37849-2_31.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Eckel, Anna-Maria, Lea Döpp, Márton Pál Farkas, Cornelia Schmidt-Hattenberger y Ingo Sass. "Comparative Study of Reservoir Simulation Tools with Application of Hydrogen Underground Storage at the Ketzin Site". En Progress and Challenge of Porous Media: Proceedings of the 16th Annual Meeting Conference on Porous Media, 600–612. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-2983-1_53.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Passaris, Evan y Georgios Yfantis. "Geomechanical Analysis of Salt Caverns Used for Underground Storage of Hydrogen Utilised in Meeting Peak Energy Demands". En Springer Series in Geomechanics and Geoengineering, 179–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99670-7_23.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Toleukhanov, A., M. Panfilov y A. Kaltayev. "Self-Organization Phenomena in Underground Hydrogen Storages". En Communications in Computer and Information Science, 177–89. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25058-8_18.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Thakur, Jagruti y Ahmed Elberry. "Subsurface underground hydrogen storage". En Subsurface Hydrogen Energy Storage, 151–82. Elsevier, 2025. http://dx.doi.org/10.1016/b978-0-443-24071-3.00007-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bera, Achinta y Sunil Kumar. "Introduction to underground hydrogen storage". En Subsurface Hydrogen Energy Storage, 1–30. Elsevier, 2025. http://dx.doi.org/10.1016/b978-0-443-24071-3.00002-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Hydrogen underground storage"

1

Esmaeely, Saba Nava, Sarah Hopkin, Johannes Sonke y Shane Finneran. "Storage Area Assessment for Underground Hydrogen Storage (UHS) - Material Integrity Concerns". En CONFERENCE 2025, 1–10. AMPP, 2025. https://doi.org/10.5006/c2025-00164.

Texto completo
Resumen
Abstract As hydrogen is becoming a key source for transitioning the existing energy system toward decarbonized sources, one of the remaining challenges for the large-scale deployment of hydrogen is the development of safe and efficient storage systems. Geological reservoirs, such as depleted oil and gas fields or saline aquifers, have been discussed as a large-scale storage option that could provide the volume capacity needed for large-scale underground hydrogen storage (UHS). While underground gas storage (UGS) has been safely used for CH4 storage for decades, the experience is not directly transferable in the UHS considering the differences between the two systems. Differences include: the cyclic loading and frequency restrictionsthe purity limitationsdifferent properties of hydrogen such as diffusivity, dissolution, and surface/interfacial tension, which can lead to different physiochemical behaviors in the reservoir.microbial activity, which will be more significant during UHS considering that molecular hydrogen is one of the main electron donors for microbial respiration in the subsurface. Therefore, a UHS assessment should include a subsurface microbial biosphere review of the native bacteria and archaea as well as those introduced during drilling, pumping and mining. The assessment should also consider the effect of other contaminants like pyrite (FeS2) and other sulfur containing compounds, water, CO2 and organic acids, which could potentially cause corrosion and adversely impact integrity. This paper discusses these issues and provides a pathway to a storage assessment for UHS from the material integrity perspective.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Leleika, Scott, Taylor Rambo y Tekle Fida. "Effects of Renewable Natural Gas and Hydrogen on Microbially Influenced Corrosion and Souring in Underground Gas Storage". En CONFERENCE 2024, 1–15. AMPP, 2024. https://doi.org/10.5006/c2024-21146.

Texto completo
Resumen
Abstract A bench scale laboratory experiment was conducted to assess the microbial corrosion and souring effects renewable natural gas (RNG) and natural gas amended with hydrogen have on underground gas storage systems. Steel coupon-containing vials inoculated with produced fluid from an underground storage well were subject to different headspace conditions to simulate underground gas storage. The vials were filled with geologic natural gas, geologic natural gas amended with hydrogen, RNG, and RNG amended with hydrogen. Each condition was subject to molecular (qPCR, and 16S rRNA analysis), liquid chemistry (sulfate and volatile fatty acid), corrosion, and headspace chemistry (major components and trace sulfur) analysis in duplicate at three time points. The results showed that levels of sulfide production, microbial community composition, and coupon mass loss did not differ greatly between the natural gas and RNG conditions. However, the presence of hydrogen did increase the levels of sulfide in both geologic and RNG conditions. There was also evidence of significant biotransformation of hydrogen into an organic acid (formate). This experiment has shown that microbes native to underground storage wells could have an impact on gas quality and corrosion (via hydrogen sulfide production) if hydrogen is introduced.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Krishnan, Karthik, Shashwat Shukla y Arpana Verma. "Evaluation of Hydrogen Embrittlement Resistance of 41XX Cr-Mo Steels, 13Cr Stainless Steel in High Pressure Hydrogen Environment". En CONFERENCE 2023, 1–14. AMPP, 2023. https://doi.org/10.5006/c2023-18971.

Texto completo
Resumen
Abstract Underground well storage of Hydrogen gas (H2) under higher pressure than what ambient storage allows is becoming an increasing area of interest. This enables large scale storage of Hydrogen that can be a potential input to various industries and applications on demand similar to natural gas. Currently, there is vast experience in the industry with underground well storage of natural gas. While quite a few aspects of well construction can be common between storage of natural gas and hydrogen; there are significant other challenges with regards to storage of hydrogen gas compared to natural gas. One important aspect is compatibility of metallic materials used for well operations and construction, especially with regards to assessing risk for hydrogen embrittlement. In this work, 41XX type Cr-Mo steels and 13Cr (AISI 420mod) type stainless steels, commonly used for well equipment, both in conventional upstream oil and gas production and in natural gas storage, were assessed for compatibility with high pressure Hydrogen gas at ambient and elevated temperature of 80°C (176°F). Evaluation was mainly performed via Slow Strain Rate Testing (SSRT) per ASTM G142.1 Details of this assessment and post testing evaluation of the specimens will be provided in this paper.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Chen, Yunzhi, Daniel Hil, Blake Billings, John Hedengren y Kody Powell. "Hydrogen Underground Storage for Grid Resilience: A Dynamic Simulation and Optimization Study". En 2024 American Control Conference (ACC), 2242–47. IEEE, 2024. http://dx.doi.org/10.23919/acc60939.2024.10644729.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Wagner, M. "Microbiological Aspects of Hydrogen Storage in Porous Underground Storages". En EAGE/DGMK Joint Workshop on Underground Storage of Hydrogen. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201900260.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Bouteldja, M. y Y. Le Gallo. "From hydrogen storage potential to hydrogen capacities in underground hydrogen storages". En 84th EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.2023101293.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Van Wingerden, T. y J. Douma. "Economics of Hydrogen Storage". En EAGE/DGMK Joint Workshop on Underground Storage of Hydrogen. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201900265.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Dohrmann, Anja y Martin Krüger. "Microbial Hydrogen Transformation During Underground Hydrogen Storage". En Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.9711.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Rudolph, T. "Underground Hydrogen Storage – Current Developments and Opportunities". En EAGE/DGMK Joint Workshop on Underground Storage of Hydrogen. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201900256.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Pichler, M. "Underground Sun Storage Results and Outlook". En EAGE/DGMK Joint Workshop on Underground Storage of Hydrogen. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201900257.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Hydrogen underground storage"

1

Louie, Melissa y Brian Ehrhart. Quantitative risk assessment examples for underground hydrogen storage facilities. Office of Scientific and Technical Information (OSTI), junio de 2024. http://dx.doi.org/10.2172/2372618.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Louie, Melissa y Brian Ehrhart. Regulations, Codes, and Standards Review for Underground Hydrogen Storage. Office of Scientific and Technical Information (OSTI), abril de 2024. http://dx.doi.org/10.2172/2369636.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Vega, John, Jeff Mays, Daniel LeFevers, Donna Willette, Jeanfils Saint-Cyr, Michael Fay y Kevin Harris. Hydrogen Storage for Flexible Fossil Fuel Power Generation: Integration of Underground Hydrogen Storage with Gas Turbine (Final Report). Office of Scientific and Technical Information (OSTI), julio de 2022. http://dx.doi.org/10.2172/1876901.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Baek, Seunghwan, Leon EJ Hibbard, Nicolas Huerta, Gregory Lackey, Angela Goodman y Joshua White. Enhancing Site Screening for Underground Hydrogen Storage: Qualitative Site Quality Assessment - SHASTA: Subsurface Hydrogen Assessment, Storage, and Technology Acceleration Project. Office of Scientific and Technical Information (OSTI), marzo de 2024. http://dx.doi.org/10.2172/2404525.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Baek, Seunghwan, Leon EJ Hibbard, Nicolas Huerta, Gregory Lackey, Angela Goodman y Joshua White. Enhancing Site Screening for Underground Hydrogen Storage: Qualitative Site Quality Assessment - SHASTA: Subsurface Hydrogen Assessment, Storage, and Technology Acceleration Project. Office of Scientific and Technical Information (OSTI), marzo de 2024. http://dx.doi.org/10.2172/2404524.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Hamilton, Kirk, Jarek Nowinka y Jami dePencier. PR-244-21700-R01 Underground Storage Define and Refine Scope for Hydrogen. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), mayo de 2022. http://dx.doi.org/10.55274/r0012223.

Texto completo
Resumen
In an effort to enhance understanding of underground hydrogen storage (UHS), Pipeline Research Council International, Inc. ("PRCI") contracted C-FER Technologies (1999) Inc. to perform an engineering assessment and literature review. The overall goal of the project is to provide PRCI with a five-year strategy to address the major technical challenges and knowledge gaps pertaining to UHS. This singular milestone has been divided into five tasks: (1) Current State-of-the-art (SOTA) for UHS; (2) UHS Gap Analysis; (3) Roadmap; (4) Roadmap Project List; and (5) Comprehensive Five-year Strategy. This report is the deliverable for Task 5; however, the deliverables for Tasks 1 to 4 are included as sections of this report and are also available as stand-alone documents (as requested by PRCI).
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Hasiuk, Franciszek, Mathew Ingraham y Donald Conley. Field Test Plan for Underground Hydrogen Storage Demonstration in a Porous Reservoir. Office of Scientific and Technical Information (OSTI), agosto de 2024. http://dx.doi.org/10.2172/2463027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Domptail, Kim, Shannon Hildebrandt, Graham Hill, David Maunder, Fred Taylor y Vanessa Win. PR-720-20603-R01 Emerging Fuels - Hydrogen SOTA Gap Analysis and Future Project Roadmap. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), noviembre de 2020. http://dx.doi.org/10.55274/r0011975.

Texto completo
Resumen
The overall goal of the study is to develop a concrete path forward to define the necessary projects that need to be completed for companies to safely and reliably inject hydrogen into their pipelines at certain blend levels. The study was broken down into four main tasks as follows: - Mapping of worldwide projects and references, - State-of-the-art analysis, - Gap analysis, and - Recommendations for R and D topics. The analysis focused around 8 technical subjects including: - Integrity, - Safety, - Network and End-Use Equipment, - Metering and Gas Quality, - Network Management and Compression, - Inspection and Maintenance, - Hydrogen-Natural Gas Separation, and - Underground Gas Storage.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Guidati, Gianfranco y Domenico Giardini. Joint synthesis “Geothermal Energy” of the NRP “Energy”. Swiss National Science Foundation (SNSF), febrero de 2020. http://dx.doi.org/10.46446/publication_nrp70_nrp71.2020.4.en.

Texto completo
Resumen
Near-to-surface geothermal energy with heat pumps is state of the art and is already widespread in Switzerland. In the future energy system, medium-deep to deep geothermal energy (1 to 6 kilometres) will, in addition, play an important role. To the forefront is the supply of heat for buildings and industrial processes. This form of geothermal energy utilisation requires a highly permeable underground area that allows a fluid – usually water – to absorb the naturally existing rock heat and then transport it to the surface. Sedimentary rocks are usually permeable by nature, whereas for granites and gneisses permeability must be artificially induced by injecting water. The heat gained in this way increases in line with the drilling depth: at a depth of 1 kilometre, the underground temperature is approximately 40°C, while at a depth of 3 kilometres it is around 100°C. To drive a steam turbine for the production of electricity, temperatures of over 100°C are required. As this requires greater depths of 3 to 6 kilometres, the risk of seismicity induced by the drilling also increases. Underground zones are also suitable for storing heat and gases, such as hydrogen or methane, and for the definitive storage of CO2. For this purpose, such zones need to fulfil similar requirements to those applicable to heat generation. In addition, however, a dense top layer is required above the reservoir so that the gas cannot escape. The joint project “Hydropower and geo-energy” of the NRP “Energy” focused on the question of where suitable ground layers can be found in Switzerland that optimally meet the requirements for the various uses. A second research priority concerned measures to reduce seismicity induced by deep drilling and the resulting damage to buildings. Models and simulations were also developed which contribute to a better understanding of the underground processes involved in the development and use of geothermal resources. In summary, the research results show that there are good conditions in Switzerland for the use of medium-deep geothermal energy (1 to 3 kilometres) – both for the building stock and for industrial processes. There are also grounds for optimism concerning the seasonal storage of heat and gases. In contrast, the potential for the definitive storage of CO2 in relevant quantities is rather limited. With respect to electricity production using deep geothermal energy (> 3 kilometres), the extent to which there is potential to exploit the underground economically is still not absolutely certain. In this regard, industrially operated demonstration plants are urgently needed in order to boost acceptance among the population and investors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía