Tesis sobre el tema "Hypoellipticité"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 21 mejores tesis para su investigación sobre el tema "Hypoellipticité".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Valentin, Jérôme. "Extensions de la formule d'Itô par le calcul de Malliavin et application à un problème variationnel". Thesis, Paris, ENST, 2012. http://www.theses.fr/2012ENST0029/document.
Texto completoThis dissertation studies the extension of the Itô formula to the case of distibution-valued paths of bounded variation lifted by processes which are regular in the sense of Malliavin calculus. We make optimal hypotheses, which gives us access to many applications. The first chapter is a primer in Malliavin calculus. The second chapter provides useful results on the toplogy of the schwartz class and of the space of tempered distributions. in the third chapter, we give optimal conditions under which a tempered distribution may be composed by a random variable and we study the malliavin regularity of the object thus defined. Interpolation techniques give access to results in fractional spaces. We also give results for the case where the tempered distribution is itself stochastic. These results allow us to obtain, in chapter 4, a weak Itô formula under hypotheses which are much weaker than those usually made in the litterature. We also give an Itô-Wentzell and an anticipative version. In the case where the process to which the ito formula is applied is the solution to an SDE, we give a more precise result, which we use to study the reguarity of the multi-dimensional local time. Finally the fifth chapter solves a variational problem under hypotheses which are much weaker than the usual assumption of hypoellipticity
Cao, Chuqi. "Equations de Fokker-Planck cinétiques : hypocoercivité et hypoellipticité". Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED040.
Texto completoThis thesis mainly study the hypocoercivity and long time behaviour of kinetic equations. We first consider the kinetic Fokker-Planck equation with weak confinement force and a class of general force. We prove the existence and uniqueness of a positive normalized equilibrium (in the case of a general force) and establish some exponential rate or sub-geometric rate of convergence to the equilibrium (and the rate can be explicitly computed). Then we study convergence to equilibriumof the linear relaxation Boltzmann (also known as linear BGK) and the linear Boltzmann equations either on the torus or on the whole space with a confining potential. We present explicit convergence results in total variation or weighted total variation norms. The convergence rates are exponential when the equations are posed on the torus, or with a confining potential growing at least quadratically at infinity. Moreover, we give algebraic convergence rates when subquadratic potentials considered. We use a method known as Harris’s Theorem
Pigato, Paolo. "Tube estimates for hypoelliptic diffusions and scaling properties of stochastic volatility models". Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1029/document.
Texto completoIn this thesis we address two problems. In the first part we consider hypoelliptic diffusions, under both strong and weak Hormander condition. We find Gaussian estimates for the density of the law of the solution at a fixed, short time. A main tool to prove these estimates is Malliavin Calculus, in particular some techniques recently developed to deal with degenerate problems. We then use these short-time estimates to show exponential two-sided bounds for the probability that the diffusion remains in a small tube around a deterministic path up to a given time. In our hypoelliptic framework, the shape of the tube must reflect the fact the diffusion moves with a different speed in the direction of the diffusion coefficient and in the direction of the Lie brackets. For this reason we introduce a norm accounting of this anisotropic behavior, which can be adapted to both the strong and weak Hormander framework. We establish a connection between this norm and the standard control distance in the strong Hormander case. In the weak Hormander case, we introduce a suitable equivalent control distance. In the second part of the thesis we work with mean reverting stochastic volatility models, with a volatility driven by a jump process. We first suppose that the jumps follow a Poisson process, and consider the decay of cross asset correlations, both theoretically and empirically. This leads us to study an algorithm for the detection of jumps in the volatility profile. We then consider a more subtle phenomenon widely observed in financial indices: the multiscaling of moments, i.e. the fact that the q-moment of the log-increment of the price on a time lag of length h scales as h to a certain power of q, which is non-linear in q. We work with models where the volatility follows a mean reverting SDE driven by a Lévy subordinator. We show that multiscaling occurs if the characteristic measure of the Lévy has power law tails and the mean reversion is super-linear at infinity. In this case the scaling function is piecewise linear
Valentin, Jérôme. "Extensions de la formule d'Itô par le calcul de Malliavin et application à un problème variationnel". Electronic Thesis or Diss., Paris, ENST, 2012. http://www.theses.fr/2012ENST0029.
Texto completoThis dissertation studies the extension of the Itô formula to the case of distibution-valued paths of bounded variation lifted by processes which are regular in the sense of Malliavin calculus. We make optimal hypotheses, which gives us access to many applications. The first chapter is a primer in Malliavin calculus. The second chapter provides useful results on the toplogy of the schwartz class and of the space of tempered distributions. in the third chapter, we give optimal conditions under which a tempered distribution may be composed by a random variable and we study the malliavin regularity of the object thus defined. Interpolation techniques give access to results in fractional spaces. We also give results for the case where the tempered distribution is itself stochastic. These results allow us to obtain, in chapter 4, a weak Itô formula under hypotheses which are much weaker than those usually made in the litterature. We also give an Itô-Wentzell and an anticipative version. In the case where the process to which the ito formula is applied is the solution to an SDE, we give a more precise result, which we use to study the reguarity of the multi-dimensional local time. Finally the fifth chapter solves a variational problem under hypotheses which are much weaker than the usual assumption of hypoellipticity
Pigato, Paolo. "Tube Estimates for Hypoelliptic Diffusions and Scaling Properties of Stochastic Volatility Models". Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424189.
Texto completoIn questa tesi ci occupiamo di due problemi. Nella prima parte consideriamo delle diffusioni ipoellittiche, sia sotto una condizione di Hormander forte che debole. Troviamo delle stime gaussiane per la densità della legge della soluzione in tempo corto. Uno strumento fondamentale per dimostrare questo tipo di stime è il calcolo di Malliavin. In particolare, utilizziamo delle tecniche sviluppate negli ultimi anni per affrontare dei problemi degeneri. Poi, grazie a queste stime in tempo corto, troviamo dei bound inferiore e superiore esponenziali per la probabilità che la diffusione rimanga in un piccolo tubo attorno a una traiettoria deterministica, fino a un tempo fissato. In questo contesto ipoellittico, la forma del tubo deve riflettere il fatto che la diffusione si muove con una velocità diversa nella direzione dei coefficienti di diffusione e nella direzione delle parentesi di Lie. Per questo motivo introduciamo una norma che tenga conto di questo comportamento anisotropo, adattabile al caso di Hormander forte e debole. Nel caso Hormander forte stabiliamo un'equivalenza tra questa norma e la distanza di controllo classica. Nel caso Hormander debole introduciamo una distanza di controllo equivalente adeguata. Nella seconda parte della tesi lavoriamo con dei modelli a volatilità stocastica con ritorno alla media, in cui la volatilità è diretta da un processo di salto. Supponiamo inizialmente che i salti siano dati da un processo di Poisson, e consideriamo il decadimento delle correlazioni incrociate, sia teoricamente che empiricamente. Questo ci porta a studiare un algoritmo per identificare i picchi nel profilo della volatilità. Consideriamo successivamente un fenomeno più sottile largamente osservato negli indici finanziari: il "multiscaling" dei momenti, ovvero il fatto che i momenti d'ordine q dei log-incrementi del prezzo su un tempo h, hanno un'ampiezza di ordine h a una certa potenza, che è non lineare in q. Lavoriamo con dei modelli in cui la volatilità è data da un'equazione differenziale stocastica con ritorno alla media, diretta da un subordinatore di Lévy. Mostriamo che il multiscaling si produce se la misura caratteristica del Lévy ha delle code di legge di potenza e il ritorno alla media è superlineare all'infinito. In questo caso l'esponente di scaling è lineare a tratti.
Tartakoff, David S. y Andreas Cap@esi ac at. "Results in Gevrey and Analytic Hypoellipticity". ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi967.ps.
Texto completoWenyi, Chen y Wang Tianbo. "The hypoellipticity of differential forms on closed manifolds". Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2009/2980/.
Texto completoChen, Hua, Wei-Xi Li y Chao-Jiang Xu. "Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations". Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2009/3028/.
Texto completoShimoda, Taishi. "Hypoellipticity of second order differential operators with sign-changing principal symbols /". Sendai : Tohoku Univ, 2000. http://www.loc.gov/catdir/toc/fy0713/2007329003.html.
Texto completoChinni, Gregorio <1980>. "Analytic and gevrey (micro-)hypoellipticity for sums of squares: an FBI approach". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/947/1/Tesi_Chinni_Gregorio.pdf.
Texto completoChinni, Gregorio <1980>. "Analytic and gevrey (micro-)hypoellipticity for sums of squares: an FBI approach". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/947/.
Texto completoHurth, Tobias. "Invariant densities for dynamical systems with random switching". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52274.
Texto completoLaguna, Renato Andrielli. "Hipoeliticidade global para campos vetoriais complexos no plano". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-28112016-111054/.
Texto completoThis work is a study about global hypoellipticity for nonsingular complex vector fields in the plane. Sussmanns orbits play a fundamental role in this analysis. We show that if all the orbits are one-dimensional then the vector field is not globally hypoelliptic. When there exist a two-dimensional orbit and an embedded one-dimensional one then the vector field is not globally hypoelliptic. In the case when the plane is the only orbit, one defines, as in Hounie (1982), a certain equivalence relation between points where the vector field is not elliptic. The equivalence classes are homeomorphic to a single point, a compact interval or a ray. If all the equivalence classes are compact then the vector field is globally hypoelliptic. If there exists an equivalence class that is closed and homeomorphic to a ray then the vector field is not globally hypoelliptic.
Rodrigues, Nicholas Braun. "Classes de Gevrey em grupos de Lie compactos e aplicações". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23082016-201051/.
Texto completoIn this work we study the Gevrey class of functions and ultrudistribuitions on compact Lie groups, which is the most natural generalization of the torus in the context of Fourier analysis. For such we used the theory of Gevrey vectors. We get a characterization of such class by the behaviour of the Fourier transform, as in [DR14], using the Laplace-Beltrami operator associated to a specific metric. At the end we give an aplication of this characterization in a global hypoellipticity problem as in [GW73].
Botós, Hugo Cattarucci. "Propriedades globais de uma classe de complexos diferenciais". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25102018-112308/.
Texto completoConsider the manifold Tn x S1 with coordinates (t;x) and let a(t) be a real and closed differential 1-form on Tn. In this work we consider the operator Lpsub>a = dt +a(t) Λ ∂x de D\'p from D\'p to D\'p+1, where D\'p is the space of all p-currents u = ∑ Ι I Ι = puI (t, x)dtI . The above operator defines a cochain complex consisting of the vector spaces D\'p and of the linear maps Lpa : D\'p → D\'p+1. We define what global solvability means for the above complex and characterize for which 1-forms a the complex is globally solvable. We will do the same with respect to global hypoellipticity on the first level of the complex.
Campana, Camilo. "Campos hipoelíticos no plano". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032013-094256/.
Texto completoLet L be a nonsingular complex vector field defined on an open subset of the plane. Treves proved that if L is locally solvable then L is locally integrable. For hypoelliptic planar vector fields an additional property holds, namely, every first integral (restricted to a sufficiently small open set) is an injective (and open) mapping; this, on its turn, implies that each solution of the homogeneous equation Lu = 0 is locally of the form u = h Z, where h is holomorphic and Z is a first integral of the vector eld. The central problem of interest in this work is the corresponding global question, that is, the existence of global, injective first integrals and the representation of global solutions as compositions of the first integral with a holomorphic function
Nascimento, Moisés Aparecido do. "Hipoelipticidade global de campos vetoriais no toro TN". Universidade Federal de São Carlos, 2010. https://repositorio.ufscar.br/handle/ufscar/5869.
Texto completoIn this work, we will see that if the transpose operator of a smooth real vector field L defined on the N-dimensional torus, regarded as a linear differential operator with coefficients in C1(TN), is globally hypoelliptic, then there exists a vector field with constant coefficients L0 such that L and L0 are C1-conjugated, with such constants satisfying a condition called Diofantina (*). We will also show the converse of this fact, that is, if there is a coordinate system such that in this new system L has constant coefficients with such constant satisfying the Diophantine condition (*) then its transpose L* is globally hypoelliptic. We will see that the Diophantine condition implies that the flow generated by the field, regarded as a Dynamical system is minimal.
Neste trabalho, veremos que se o operador transposto de um campo vetorial real suave L definido no toro N-dimensional, visto como um operador diferencial linear com coeficientes em C1(TN), for globalmente hipoelíptico, então existe um campo vetorial com coeficientes constantes L0 tal que L e L0 são C1- conjugados, com tais constantes satisfazendo uma condição chamada de Diofantina (*). Mostraremos também a recíproca deste fato, isto é, se existir um sistema de coordenadas tal que, neste novo sitema L possui coeficientes constantes com tais constantes satisfazendo a condição Diofantina (*) então, seu transposto L* é globalmente hipoelíptico. Veremos que a condição Diofantina implica que, os fluxos gerados pelo campo, vistos como um sistema dinânico, são minimais.
Dušanka, Perišić. "On Integral Transforms and Convolution Equations on the Spaces of Tempered Ultradistributions". Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 1992. https://www.cris.uns.ac.rs/record.jsf?recordId=73337&source=NDLTD&language=en.
Texto completoU ovoj tezi su proučavani prostori temperiranih ultradistribucija Beurlingovog i Roumieovog tipa, koji su prirodna uopštenja prostora Schwarzovih temperiranih distribucija u Denjoy-Carleman-Komatsuovoj teoriji ultradistribucija. Dokazano je ovi prostori imaju sva dobra svojstva, koja ima i Schwarzov prostor, izmedju ostalog, značajno svojstvo da Furijeova transformacija preslikava te prostore neprekidno na same sebe.U prvom poglavlju su uvedene neophodne oznake i pojmovi.U drugom poglavlju su uvedeni prostori ultrabrzo opadajucih ultradiferencijabilnih funkcija i njihovi duali, prostori Beurlingovih i Rumieuovih temperiranih ultradistribucija; proučavana su njihova topološka svojstva i veze sa poznatim prostorima distribucija i ultradistribucija, kao i strukturne osobine; date su i karakterizacije Ermitskih ekspanzija i graničnih reprezentacija elemenata tih prostora.Prostori multiplikatora Beurlingovih i Roumieuovih temperiranih ultradistribucija su okarakterisani u trećem poglavlju.Četvrto poglavlje je posvećeno proučavanju Fourierove, Wignerove, Bargmanove i Hilbertove transformacije na prostorima Beurlingovih i Rouimieovih temperiranih ultradistribucija i njihovim test prostorima.U petoj glavi je dokazana ekvivalentnost klasičnih definicija konvolucije na Beurlingovim prostorima ultradistribucija, kao i ekvivalentnost novouvedenih definicija ultratemperirane konvolucije ultradistribucija Beurlingovog tipa.U poslednjoj glavi je dat potreban i dovoljan uslov da konvolutor prostora temperiranih ultradistribucija bude hipoeliptičan u prostoru integrabilnih ultradistribucija i razmatrane su neke konvolucione jednačine u tom prostoru.Bibliografija ima 70 bibliografskih jedinica.
"On hypoellipticity of the Cauchy Riemann operator on weakly pseudoconvex CR manifolds". 2001. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0021-2603200719120139.
Texto completo李光祥. "On hypoellipticity of the Cauchy Riemann operator on weakly pseudoconvex CR manifolds". Thesis, 2002. http://ndltd.ncl.edu.tw/handle/05559275024571438422.
Texto completo國立臺灣師範大學
數學研究所
90
On hypoellipticity of the @b operator on weakly pseudoconvex CR manifold Let D Cn, n 2, be a CR manifold with smooth boundary, and let r be a smooth defining function for D. Hence, the set {Lk = @r @zn @ @zk − @r @zk @ @zn | k = 1, 2, · · · , n − 1} forms a global basis for the space of tangential (1,0) vector fields on the boundary bD. If D is strongly pseudoconvex, then bD is strongly pseudoconvex CR manifold. For example, we consider the Siegel upper half space = {(z0, zn) 2 Cn | Imzn > |z0|2} Cn. The set {Lk = @ @zk + 2izk @ @zn | k = 1, · · · , n − 1} forms a global basis for the space of tangential (1,0) vector fields on the boundary b . If we choose T = −2i @ @t , then the Levi matrix is the identity matrix. Moreover, the surface b is a strictly pseudoconvex CR manifold. As coordinates for the surface we use Hn = Cn−1 × R 3 (z0, t) 7! (z0, t + i|z0|2); the vector fields pull back to Zk = @ @zk + izk @ @t . The Heisenberg group Hn is a strictly pseudoconvex CR manifold with type (1,0) vector fields spanned by Z1, . . . ,Zn−1. Then we can get b = @b@ b+@ b@b is hypoelliptic on Hn for (0, q)-forms when 1 q n−1. But hypoellipticity of @ b does not always hold on a pseudoconvex CR manifold M which is not strongly pseudoconvex. For example, we consider the domain D = {(z1, z2) 2 C2 | Imz2 > [ReZ1]m,m 4 is even}. Set M to be the boundary bD, and the tangential (1,0) vector field on M is Z = @ @z1 + im 2 xm−1 1 @ @t , where x = Rez1 and z2 = t + is. Let S((z, t); (w, s)) be the Szeg¨o projection from L2(C × R) onto the kernel of Z. Define the distribution K(z, t) = S((z, t); (0, 0)). Then we can prove that K is not analytic away from 0. In the case M = {(z1, z2, z3) 2 C3 | Imz3 = [Rez1]m +|z2|2,m 4 is even}, the tangential (1,0) vector fields are spanned by Z1 = @ @z1 +im 2 xm−1 1 @ @t , and Z2 = @ @z2 +iz2 @ @t . Similarly, the Szeg¨o projection S is the orthogonal projection from L2 onto {f 2 L2 | Z1f = Z2 = 0}. Let J(z1, z2, t) = S((z1, z2, t), (0, 0, 0)). Then we can prove that J is not analytic away from 0, too. Now, we consider M = {(z1, z2) 2 C2 | Imz2 = xm,m 4 is even}. We prove the failure of @b to be analytic hypoelliptic on M directly. We examine f(x) = e2(x+xm) Rx −1 e−4(s+sm)ds , and define f(x + iy, t) = Z 0 −1 e−2ite−2i||1/myf(||1/mx) d . A calculation shows @b@ bf = 0, but @ bf(0 − i, t) is not analytic at t = 0. 1
Gao, Tingran. "Hypoelliptic Diffusion Maps and Their Applications in Automated Geometric Morphometrics". Diss., 2015. http://hdl.handle.net/10161/9931.
Texto completoWe introduce Hypoelliptic Diffusion Maps (HDM), a novel semi-supervised machine learning framework for the analysis of collections of anatomical surfaces. Triangular meshes obtained from discretizing these surfaces are high-dimensional, noisy, and unorganized, which makes it difficult to consistently extract robust geometric features for the whole collection. Traditionally, biologists put equal numbers of ``landmarks'' on each mesh, and study the ``shape space'' with this fixed number of landmarks to understand patterns of shape variation in the collection of surfaces; we propose here a correspondence-based, landmark-free approach that automates this process while maintaining morphological interpretability. Our methodology avoids explicit feature extraction and is thus related to the kernel methods, but the equivalent notion of ``kernel function'' takes value in pairwise correspondences between triangular meshes in the collection. Under the assumption that the data set is sampled from a fibre bundle, we show that the new graph Laplacian defined in the HDM framework is the discrete counterpart of a class of hypoelliptic partial differential operators.
This thesis is organized as follows: Chapter 1 is the introduction; Chapter 2 describes the correspondences between anatomical surfaces used in this research; Chapter 3 and 4 discuss the HDM framework in detail; Chapter 5 illustrates some interesting applications of this framework in geometric morphometrics.
Dissertation