Siga este enlace para ver otros tipos de publicaciones sobre el tema: Hypoellipticité.

Artículos de revistas sobre el tema "Hypoellipticité"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Hypoellipticité".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Xu, Chaojiang. "Hypoellipticité d'équations aux dérivées partielles non linéaires". Journées équations aux dérivées partielles, n.º 1 (1985): 1–16. http://dx.doi.org/10.5802/jedp.299.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Morioka, Tatsushi. "Hypoellipticité pour un certain opérateur à caractéristique double". Tsukuba Journal of Mathematics 21, n.º 3 (diciembre de 1997): 739–62. http://dx.doi.org/10.21099/tkbjm/1496163378.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Donno, Giuseppe De. "Generalized Vandermonde determinants for reversing Taylor's formula and application to hypoellipticity". Tamkang Journal of Mathematics 38, n.º 2 (30 de junio de 2007): 183–89. http://dx.doi.org/10.5556/j.tkjm.38.2007.89.

Texto completo
Resumen
The problem of the hypoellipticity of the linear partial differential operators with constant coefficients was completely solved by H"{o}r-man-der in [5]. He listed many equivalent algebraic conditions on the polynomial symbol of the operator, each necessary and sufficient for hypoellipticity. In this paper we employ two Mitchell's Theorems (1881) regarding a type of Generalized Vandermonde Determinants, for inverting Taylor's formula of polynomials in several variables with complex coefficients. We obtain then a more direct and easy proof of an equivalence for the mentioned H"{o}r-man-der's hypoellipticity conditions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bergamasco, Adalberto P. y Sérgio Luís Zani. "Global Hypoellipticity of a Class of Second Order Operators". Canadian Mathematical Bulletin 37, n.º 3 (1 de septiembre de 1994): 301–5. http://dx.doi.org/10.4153/cmb-1994-045-4.

Texto completo
Resumen
AbstractWe show that almost all perturbations P — λ, λ € C, of an arbitrary constant coefficient partial differential operator P are globally hypoelliptic on the torus. We also give a characterization of the values λ € C for which the operator is globally hypoelliptic; in particular, we show that the addition of a term of order zero may destroy the property of global hypoellipticity of operators of principal type, contrary to that happens with the usual (local) hypoellipticity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Nedeljkov, M. y S. Pilipović. "Hypoelliptic differential operators with generalized constant coefficients". Proceedings of the Edinburgh Mathematical Society 41, n.º 1 (febrero de 1998): 47–60. http://dx.doi.org/10.1017/s0013091500019428.

Texto completo
Resumen
The space of Colombeau generalized functions is used as a frame for the study of hypoellipticity of a family of differential operators whose coefficients depend on a small parameter ε.There are given necessary and sufficient conditions for the hypoellipticity of a family of differential operators with constant coefficients which depend on ε and behave like powers of ε as ε→0. The solutions of such family of equations should also satisfy the power order estimate with respect to ε.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Himonas, A. Alexandrou. "analytic hypoellipticity". Duke Mathematical Journal 59, n.º 1 (agosto de 1989): 265–87. http://dx.doi.org/10.1215/s0012-7094-89-05909-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Street, Brian. "What is ...Hypoellipticity?" Notices of the American Mathematical Society 65, n.º 04 (1 de abril de 2018): 1. http://dx.doi.org/10.1090/noti1670.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bergamasco, A. P., G. A. Mendoza y S. Zani. "On Global Hypoellipticity". Communications in Partial Differential Equations 37, n.º 9 (29 de marzo de 2012): 1517–27. http://dx.doi.org/10.1080/03605302.2011.641054.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Nedeljkov, Marko y Stevan Pilipovic. "On hypoellipticity in ς". Bulletin: Classe des sciences mathematiques et natturalles 123, n.º 27 (2002): 47–56. http://dx.doi.org/10.2298/bmat0227047n.

Texto completo
Resumen
We give a condition of sufficiency for the hypoellipticity of a family of equations with constant coefficients satisfied prescribed power growth rate with respect to ? ? (0, 1). The framework is Colombeau algebra of generalized functions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Street, Brian. "WHAT ELSE about...Hypoellipticity?" Notices of the American Mathematical Society 65, n.º 04 (1 de abril de 2018): 1. http://dx.doi.org/10.1090/noti1664.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Cordaro, Paulo D. y Nicholas Hanges. "Hyperfunctions and (analytic) hypoellipticity". Mathematische Annalen 344, n.º 2 (28 de noviembre de 2008): 329–39. http://dx.doi.org/10.1007/s00208-008-0308-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Yoshino, Masafumi. "Global hypoellipticity and continued fractions". Tsukuba Journal of Mathematics 15, n.º 1 (junio de 1991): 193–203. http://dx.doi.org/10.21099/tkbjm/1496161581.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Morimoto, Yoshinori. "On a criterion for hypoellipticity". Proceedings of the Japan Academy, Series A, Mathematical Sciences 62, n.º 4 (1986): 137–40. http://dx.doi.org/10.3792/pjaa.62.137.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Morimoto, Yoshinori y Chao-Jiang Xu. "Nonlinear Hypoellipticity of Infinite Type". Funkcialaj Ekvacioj 50, n.º 1 (2007): 33–65. http://dx.doi.org/10.1619/fesi.50.33.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Bergamasco, Adalberto P. "Remarks about global analytic hypoellipticity". Transactions of the American Mathematical Society 351, n.º 10 (19 de marzo de 1999): 4113–26. http://dx.doi.org/10.1090/s0002-9947-99-02299-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Petersen, Johannes A. "Hypoellipticity on Cauchy-Riemann manifolds". Transactions of the American Mathematical Society 334, n.º 2 (1 de febrero de 1992): 615–39. http://dx.doi.org/10.1090/s0002-9947-1992-1113696-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Chanillo, Sagun, Bernard Helffer y Ari Laptev. "Nonlinear eigenvalues and analytic hypoellipticity". Journal of Functional Analysis 209, n.º 2 (abril de 2004): 425–43. http://dx.doi.org/10.1016/s0022-1236(03)00105-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Yu, Ching-Chau. "Nonlinear eigenvalues and analytic-hypoellipticity". Memoirs of the American Mathematical Society 134, n.º 636 (1998): 0. http://dx.doi.org/10.1090/memo/0636.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Matsuzawa, Tadato. "Gevrey hypoellipticity for Grushin operators". Publications of the Research Institute for Mathematical Sciences 33, n.º 5 (1997): 775–99. http://dx.doi.org/10.2977/prims/1195145017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Takei, Yoshitsugu. "A fine microlocalization and hypoellipticity". Journal of Mathematics of Kyoto University 29, n.º 1 (1989): 127–57. http://dx.doi.org/10.1215/kjm/1250520311.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Ninomiya, Haruki. "On a problem of hypoellipticity". Journal of Mathematics of Kyoto University 27, n.º 4 (1987): 587–95. http://dx.doi.org/10.1215/kjm/1250520600.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Christ, Michael. "Examples pertaining to Gevrey hypoellipticity". Mathematical Research Letters 4, n.º 5 (1997): 725–33. http://dx.doi.org/10.4310/mrl.1997.v4.n5.a10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Aragão-Costa, E. R. "Local Hypoellipticity by Lyapunov Function". Abstract and Applied Analysis 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/7210540.

Texto completo
Resumen
We treat the local hypoellipticity, in the first degree, for a class of abstract differential operators complexes; the ones are given by the following differential operators:Lj=∂/∂tj+(∂ϕ/∂tj)(t,A)A,j=1,2,…,n, whereA:D(A)⊂H→His a self-adjoint linear operator, positive with0∈ρ(A), in a Hilbert spaceH, andϕ=ϕ(t,A)is a series of nonnegative powers ofA-1with coefficients inC∞(Ω),Ωbeing an open set ofRn, for anyn∈N, different from what happens in the work of Hounie (1979) who studies the problem only in the casen=1. We provide sufficient condition to get the local hypoellipticity for that complex in the elliptic region, using a Lyapunov function and the dynamics properties of solutions of the Cauchy problemt′(s)=-∇Reϕ0(t(s)),s≥0,t(0)=t0∈Ω,ϕ0:Ω→Cbeing the first coefficient ofϕ(t,A). Besides, to get over the problem out of the elliptic region, that is, in the pointst∗ ∈Ωsuch that∇Reϕ0(t∗)= 0, we will use the techniques developed by Bergamasco et al. (1993) for the particular operatorA=1-Δ:H2(RN)⊂L2(RN)→L2(RN).
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Himonas, A. Alexandrou y Gerson Petronilho. "Global Hypoellipticity and Simultaneous Approximability". Journal of Functional Analysis 170, n.º 2 (febrero de 2000): 356–65. http://dx.doi.org/10.1006/jfan.1999.3524.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Xuebo, Luo. "Necessary and Sufficient Conditions for Hypoellipticity for a Class of Convolution Operators". Canadian Journal of Mathematics 46, n.º 1 (1 de febrero de 1994): 212–24. http://dx.doi.org/10.4153/cjm-1994-008-1.

Texto completo
Resumen
AbstractIn this paper the Corwin's conjecture is proved, which says that if d is a function analytic near ∞, then the hypoellipticity of the convolution operator Ad, defined by for every u ∊ S'(ℝn), implies that P(x)/ logx → ∞ as x → ∞, where P(x) is the distance from x ∊ ℝn to the set of complex zeros of d.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Morimoto, Yoshinori. "Criteria for hypoellipticity of differential operators". Publications of the Research Institute for Mathematical Sciences 22, n.º 6 (1986): 1129–54. http://dx.doi.org/10.2977/prims/1195177066.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Morimoto, Yoshinori. "Non-hypoellipticity for degenerate elliptic operators". Publications of the Research Institute for Mathematical Sciences 22, n.º 1 (1986): 25–30. http://dx.doi.org/10.2977/prims/1195178369.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Margaryan, V. N. "Comparison of polynomials and almost hypoellipticity". Journal of Contemporary Mathematical Analysis 47, n.º 1 (febrero de 2012): 16–27. http://dx.doi.org/10.3103/s1068362312010025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Bergamasco, Adalberto P. y Edna M. Zuffi. "On global hypoellipticity on the torus". Tsukuba Journal of Mathematics 21, n.º 2 (octubre de 1997): 319–27. http://dx.doi.org/10.21099/tkbjm/1496163244.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Bove, Antonio y David S. Tartakoff. "Gevrey Hypoellipticity for Non-subelliptic Operators". Pure and Applied Mathematics Quarterly 6, n.º 3 (2010): 663–76. http://dx.doi.org/10.4310/pamq.2010.v6.n3.a2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Chinni, Gregorio. "Germ hypoellipticity and loss of derivatives". Proceedings of the American Mathematical Society 140, n.º 7 (1 de julio de 2012): 2417–27. http://dx.doi.org/10.1090/s0002-9939-2011-11252-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Himonas, A. Alexandrou y Gerson Pentronilho. "Propagation of regularity and global hypoellipticity". Michigan Mathematical Journal 50, n.º 3 (2002): 471–82. http://dx.doi.org/10.1307/mmj/1039029977.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Yoshino, Masafumi. "Global hypoellipticity of a Mathieu operator". Proceedings of the American Mathematical Society 111, n.º 3 (1 de marzo de 1991): 717. http://dx.doi.org/10.1090/s0002-9939-1991-1042277-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Mughetti, Marco. "Hypoellipticity and higher order Levi conditions". Journal of Differential Equations 257, n.º 4 (agosto de 2014): 1246–87. http://dx.doi.org/10.1016/j.jde.2014.05.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Mannucci, Paola y Bianca Stroffolini. "Periodic homogenization under a hypoellipticity condition". Nonlinear Differential Equations and Applications NoDEA 22, n.º 4 (14 de noviembre de 2014): 579–600. http://dx.doi.org/10.1007/s00030-014-0296-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Koenig, Kenneth D. "Maximal hypoellipticity for the ∂¯-Neumann problem". Advances in Mathematics 282 (septiembre de 2015): 128–219. http://dx.doi.org/10.1016/j.aim.2015.06.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Kazaryan, G. G. "ON A FUNCTIONAL INDEX OF HYPOELLIPTICITY". Mathematics of the USSR-Sbornik 56, n.º 2 (28 de febrero de 1987): 333–47. http://dx.doi.org/10.1070/sm1987v056n02abeh003039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Christ, Michael. "A Necessary Condition For Analytic Hypoellipticity". Mathematical Research Letters 1, n.º 2 (1994): 241–48. http://dx.doi.org/10.4310/mrl.1994.v1.n2.a11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

ALEXANDRE, R. "FRACTIONAL ORDER KINETIC EQUATIONS AND HYPOELLIPTICITY". Analysis and Applications 10, n.º 03 (julio de 2012): 237–47. http://dx.doi.org/10.1142/s021953051250011x.

Texto completo
Resumen
We give simple proofs of hypoelliptic estimates for some models of kinetic equations with a fractional order diffusion part. The proofs are based on energy estimates together with the previous ideas of Bouchut and Perthame.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Li, Wei-Xi y Alberto Parmeggiani. "Global Gevrey hypoellipticity for twisted Laplacians". Journal of Pseudo-Differential Operators and Applications 4, n.º 3 (25 de mayo de 2013): 279–96. http://dx.doi.org/10.1007/s11868-013-0073-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Herzog, David P. y Nathan Totz. "An Extension of Hörmander’s Hypoellipticity Theorem". Potential Analysis 42, n.º 2 (21 de septiembre de 2014): 403–33. http://dx.doi.org/10.1007/s11118-014-9439-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Kohn, J. J. "Hypoellipticity of Some Degenerate Subelliptic Operators". Journal of Functional Analysis 159, n.º 1 (octubre de 1998): 203–16. http://dx.doi.org/10.1006/jfan.1998.3289.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Kirilov, Alexandre y Wagner A. A. de Moraes. "Global hypoellipticity for strongly invariant operators". Journal of Mathematical Analysis and Applications 486, n.º 1 (junio de 2020): 123878. http://dx.doi.org/10.1016/j.jmaa.2020.123878.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Bahri, Mawardi, Ryuichi Ashino y Rémi Vaillancourt. "Convolution Theorems for Quaternion Fourier Transform: Properties and Applications". Abstract and Applied Analysis 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/162769.

Texto completo
Resumen
General convolution theorems for two-dimensional quaternion Fourier transforms (QFTs) are presented. It is shown that these theorems are valid not only for real-valued functions but also for quaternion-valued functions. We describe some useful properties of generalized convolutions and compare them with the convolution theorems of the classical Fourier transform. We finally apply the obtained results to study hypoellipticity and to solve the heat equation in quaternion algebra framework.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Sibony, Nessim. "Hypoellipticit� pour l'op�rateur $$\bar \partial $$". Mathematische Annalen 276, n.º 2 (enero de 1987): 279–90. http://dx.doi.org/10.1007/bf01450742.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Bell, Denis. "The Malliavin calculus and hypoelliptic differential operators". Infinite Dimensional Analysis, Quantum Probability and Related Topics 18, n.º 01 (marzo de 2015): 1550001. http://dx.doi.org/10.1142/s0219025715500010.

Texto completo
Resumen
This article is intended as an introduction to Malliavin's stochastic calculus of variations and his probabilistic approach to hypoellipticity. Topics covered include an elementary derivation of the basic integration by parts formulae, a proof of the probabilistic version of Hörmander's theorem as envisioned by Malliavin and completed by Kusuoka and Stroock, and an extension of Hörmander's theorem valid for operators with degeneracy of exponential type due to the author and S. Mohammed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

SHARDLOW, TONY y YUBIN YAN. "GEOMETRIC ERGODICITY FOR DISSIPATIVE PARTICLE DYNAMICS". Stochastics and Dynamics 06, n.º 01 (marzo de 2006): 123–54. http://dx.doi.org/10.1142/s0219493706001670.

Texto completo
Resumen
Dissipative particle dynamics is a model of multi-phase fluid flows described by a system of stochastic differential equations. We consider the problem of N particles evolving on the one-dimensional periodic domain of length L and, if the density of particles is large, prove geometric convergence to a unique invariant measure. The proof uses minorization and drift arguments, but allows elements of the drift and diffusion matrix to have compact support, in which case hypoellipticity arguments are not directly available.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Chen, So-Chin. "Global analytic hypoellipticity of □bon circular domains". Pacific Journal of Mathematics 175, n.º 1 (1 de septiembre de 1996): 61–70. http://dx.doi.org/10.2140/pjm.1996.175.61.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Francsics, G�bor. "Hypoellipticity in the tangential Cauchy-Riemann complex". Duke Mathematical Journal 73, n.º 1 (enero de 1994): 25–77. http://dx.doi.org/10.1215/s0012-7094-94-07302-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Christ, Michael. "Examples of analytic non-hypoellipticity of ∂b". Communications in Partial Differential Equations 19, n.º 5-6 (enero de 1994): 911–41. http://dx.doi.org/10.1080/03605309408821040.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía