Siga este enlace para ver otros tipos de publicaciones sobre el tema: KAM and Nekhoroshev theory.

Artículos de revistas sobre el tema "KAM and Nekhoroshev theory"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "KAM and Nekhoroshev theory".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Benettin, Giancarlo, Francesco Fassò y Massimiliano Guzzo. "Nekhoroshev-Stability ofL4andL5in the Spatial Restricted Problem". International Astronomical Union Colloquium 172 (1999): 445–46. http://dx.doi.org/10.1017/s0252921100073097.

Texto completo
Resumen
The Lagrangian equilateral pointsL4andL5of the restricted circular three-body problem are elliptic for all values of the reduced massμbelow Routh’s critical massμR≈ .0385. In the spatial case, because of the possibility of Arnold diffusion, KAM theory does not provide Lyapunov-stability. Nevertheless, one can consider the so-called ‘Nekhoroshev-stability’: denoting byda convenient distance from the equilibrium point, one asks whetherfor any small єe > 0, with positiveaandb. Until recently this problem, as more generally the problem of Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems, was studied only under some arithmetic conditions on the frequencies, and thus onμ(see e.g .Giorgilli, 1989). Our aim was instead considering all values ofμup toμR. As a matter of fact, Nekhoroshev-stability of elliptic equilibria, without any arithmetic assumption on the frequencies, was proved recently under the hypothesis that the fourth order Birkhoff normal form of the Hamiltonian exists and satisfies a ‘quasi-convexity’ assumption (Fassòet al, 1998; Guzzoet al, 1998; Niedermann, 1998).
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Guzzo, Massimiliano. "Nekhoroshev Stability in Quasi-Integrable Degenerate Hamiltonian Systems". International Astronomical Union Colloquium 172 (1999): 443–44. http://dx.doi.org/10.1017/s0252921100073085.

Texto completo
Resumen
Many classical problems of Mechanics can be studied regarding them as perturbations of integrable systems; this is the case of the fast rotations of the rigid body in an arbitrary potential, the restricted three body problem with small values of the mass-ratio, and others. However, the application of the classical results of Hamiltonian Perturbation Theory to these systems encounters difficulties due to the presence of the so-called ‘degeneracy’. More precisely, the Hamiltonian of a quasi-integrable degenerate system looks likewhere (I, φ) є U × Tn, U ⊆ Rn, are action-angle type coordinates, while the degeneracy of the system manifests itself with the presence of the ‘degenerate’ variables (p, q) є B ⊆ R2m. The KAM theorem has been applied under quite general assumptions to degenerate Hamiltonians (Arnold, 1963), while the Nekhoroshev theorem (Nekhoroshev, 1977) provides, if h is convex, the following bounds: there exist positive ε0, a0, t0 such that if ε < ε0 then if where Te is the escape time of the solution from the domain of (1). An escape is possible because the motion of the degenerate variables can be bounded in principle only by , and so over the time they can experience large variations. Therefore, there is the problem of individuating which assumptions on the perturbation and on the initial data allow to control the motion of the degenerate variables over long times.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Wiggins, S. y A. M. Mancho. "Barriers to transport in aperiodically time-dependent two-dimensional velocity fields: Nekhoroshev's theorem and "Nearly Invariant" tori". Nonlinear Processes in Geophysics 21, n.º 1 (4 de febrero de 2014): 165–85. http://dx.doi.org/10.5194/npg-21-165-2014.

Texto completo
Resumen
Abstract. In this paper we consider fluid transport in two-dimensional flows from the dynamical systems point of view, with the focus on elliptic behaviour and aperiodic and finite time dependence. We give an overview of previous work on general nonautonomous and finite time vector fields with the purpose of bringing to the attention of those working on fluid transport from the dynamical systems point of view a body of work that is extremely relevant, but appears not to be so well known. We then focus on the Kolmogorov–Arnold–Moser (KAM) theorem and the Nekhoroshev theorem. While there is no finite time or aperiodically time-dependent version of the KAM theorem, the Nekhoroshev theorem, by its very nature, is a finite time result, but for a "very long" (i.e. exponentially long with respect to the size of the perturbation) time interval and provides a rigorous quantification of "nearly invariant tori" over this very long timescale. We discuss an aperiodically time-dependent version of the Nekhoroshev theorem due to Giorgilli and Zehnder (1992) (recently refined by Bounemoura, 2013 and Fortunati and Wiggins, 2013) which is directly relevant to fluid transport problems. We give a detailed discussion of issues associated with the applicability of the KAM and Nekhoroshev theorems in specific flows. Finally, we consider a specific example of an aperiodically time-dependent flow where we show that the results of the Nekhoroshev theorem hold.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Li, Yong y Yingfei Yi. "Nekhoroshev and KAM Stabilities in Generalized Hamiltonian Systems". Journal of Dynamics and Differential Equations 18, n.º 3 (15 de julio de 2006): 577–614. http://dx.doi.org/10.1007/s10884-006-9025-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bounemoura, Abed y Stéphane Fischler. "A Diophantine duality applied to the KAM and Nekhoroshev theorems". Mathematische Zeitschrift 275, n.º 3-4 (22 de mayo de 2013): 1135–67. http://dx.doi.org/10.1007/s00209-013-1174-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Bounemoura, Abed y Laurent Niederman. "Generic Nekhoroshev theory without small divisors". Annales de l’institut Fourier 62, n.º 1 (2012): 277–324. http://dx.doi.org/10.5802/aif.2706.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Moan, Per Christian. "On the KAM and Nekhoroshev theorems for symplectic integrators and implications for error growth". Nonlinearity 17, n.º 1 (29 de septiembre de 2003): 67–83. http://dx.doi.org/10.1088/0951-7715/17/1/005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

MacKay, R. S. y I. C. Percival. "Converse KAM: Theory and practice". Communications in Mathematical Physics 98, n.º 4 (diciembre de 1985): 469–512. http://dx.doi.org/10.1007/bf01209326.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Salamon, Dietmar y Eduard Zehnder. "KAM theory in configuration space". Commentarii Mathematici Helvetici 64, n.º 1 (diciembre de 1989): 84–132. http://dx.doi.org/10.1007/bf02564665.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Delshams, Amadeu y Pere Gutiérrez. "Effective Stability and KAM Theory". Journal of Differential Equations 128, n.º 2 (julio de 1996): 415–90. http://dx.doi.org/10.1006/jdeq.1996.0102.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Henrici, Andreas. "Nekhoroshev Stability for the Dirichlet Toda Lattice". Symmetry 10, n.º 10 (16 de octubre de 2018): 506. http://dx.doi.org/10.3390/sym10100506.

Texto completo
Resumen
In this work, we prove a Nekhoroshev-type stability theorem for the Toda lattice with Dirichlet boundary conditions, i.e., with fixed ends. The Toda lattice is a member of the family of Fermi-Pasta-Ulam (FPU) chains, and in view of the unexpected recurrence phenomena numerically observed in these chains, it has been a long-standing research aim to apply the theory of perturbed integrable systems to these chains, in particular to the Toda lattice which has been shown to be a completely integrable system. The Dirichlet Toda lattice can be treated mathematically by using symmetries of the periodic Toda lattice. Precisely, by treating the phase space of the former system as an invariant subset of the latter one, namely as the fixed point set of an important symmetry of the periodic lattice, the results already obtained for the periodic lattice can be used to obtain analogous results for the Dirichlet lattice. In this way, we transfer our stability results for the periodic lattice to the Dirichlet lattice. The Nekhoroshev theorem is a perturbation theory result which does not have the probabilistic character of related theorems, and the lattice with fixed ends is more important for applications than the periodic one.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Giorgilli, Antonio, Ugo Locatelli y Marco Sansottera. "Kolmogorov and Nekhoroshev theory for the problem of three bodies". Celestial Mechanics and Dynamical Astronomy 104, n.º 1-2 (3 de marzo de 2009): 159–73. http://dx.doi.org/10.1007/s10569-009-9192-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Chen, Yuhan, Takashi Matsubara y Takaharu Yaguchi. "KAM Theory Meets Statistical Learning Theory: Hamiltonian Neural Networks with Non-zero Training Loss". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 6 (28 de junio de 2022): 6322–32. http://dx.doi.org/10.1609/aaai.v36i6.20582.

Texto completo
Resumen
Many physical phenomena are described by Hamiltonian mechanics using an energy function (Hamiltonian). Recently, the Hamiltonian neural network, which approximates the Hamiltonian by a neural network, and its extensions have attracted much attention. This is a very powerful method, but theoretical studies are limited. In this study, by combining the statistical learning theory and KAM theory, we provide a theoretical analysis of the behavior of Hamiltonian neural networks when the learning error is not completely zero. A Hamiltonian neural network with non-zero errors can be considered as a perturbation from the true dynamics, and the perturbation theory of the Hamilton equation is widely known as KAM theory. To apply KAM theory, we provide a generalization error bound for Hamiltonian neural networks by deriving an estimate of the covering number of the gradient of the multi-layer perceptron, which is the key ingredient of the model. This error bound gives a sup-norm bound on the Hamiltonian that is required in the application of KAM theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Berti, Massimiliano. "KAM Theory for Partial Differential Equations". Analysis in Theory and Applications 35, n.º 3 (junio de 2019): 235–67. http://dx.doi.org/10.4208/ata.oa-0013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Llave, R. de la, A. González, À. Jorba y J. Villanueva. "KAM theory without action-angle variables". Nonlinearity 18, n.º 2 (22 de enero de 2005): 855–95. http://dx.doi.org/10.1088/0951-7715/18/2/020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Giorgilli, Antonio. "Classical constructive methods in KAM theory". Planetary and Space Science 46, n.º 11-12 (noviembre de 1998): 1441–51. http://dx.doi.org/10.1016/s0032-0633(98)00045-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Sevryuk, M. B. "The finite-dimensional reversible KAM theory". Physica D: Nonlinear Phenomena 112, n.º 1-2 (enero de 1998): 132–47. http://dx.doi.org/10.1016/s0167-2789(97)00207-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Bricmont, Jean, Krzysztof Gawędzki y Antti Kupiainen. "KAM Theorem and Quantum Field Theory". Communications in Mathematical Physics 201, n.º 3 (1 de abril de 1999): 699–727. http://dx.doi.org/10.1007/s002200050573.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Knauf, A. "Closed orbits and converse KAM theory". Nonlinearity 3, n.º 3 (1 de agosto de 1990): 961–73. http://dx.doi.org/10.1088/0951-7715/3/3/019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Evans, Lawrence Craig. "New identities for Weak KAM theory". Chinese Annals of Mathematics, Series B 38, n.º 2 (marzo de 2017): 379–92. http://dx.doi.org/10.1007/s11401-017-1074-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Hanßmann, Heinz. "Non-degeneracy conditions in kam theory". Indagationes Mathematicae 22, n.º 3-4 (diciembre de 2011): 241–56. http://dx.doi.org/10.1016/j.indag.2011.09.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Cardaliaguet, Pierre y Marco Masoero. "Weak KAM theory for potential MFG". Journal of Differential Equations 268, n.º 7 (marzo de 2020): 3255–98. http://dx.doi.org/10.1016/j.jde.2019.09.060.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Glenn, Jerry y Lothar Walsdorf. "Über Berge kam ich". World Literature Today 62, n.º 4 (1988): 650. http://dx.doi.org/10.2307/40144597.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Glenn, Jerry y Ernst Meister. "Es kam die Nachricht". World Literature Today 66, n.º 1 (1992): 131. http://dx.doi.org/10.2307/40147961.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Davini, Andrea y Maxime Zavidovique. "Weak KAM theory for nonregular commuting Hamiltonians". Discrete & Continuous Dynamical Systems - B 18, n.º 1 (2013): 57–94. http://dx.doi.org/10.3934/dcdsb.2013.18.57.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Bogdanov, Rifkat Ibragimovich y Mihail Rifkatovich Bogdanov. "Numerical Data in Weakly-Dissipative KAM-Theory". Advanced Materials Research 875-877 (febrero de 2014): 880–84. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.880.

Texto completo
Resumen
In the article are presented as figures numerical data calculation of the basic thermodynamic variables such as dependence of the thermodynamic potentials from the temperature and pressure, and the geometric characteristics of the dynamics like the center of mass of trial particle. The dynamics is described by a simple Euler discretization of family of vector fields arising in the Bogdanov-Takens bifurcation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Haro, Àlex. "Converse KAM theory for monotone positive symplectomorphisms". Nonlinearity 12, n.º 5 (13 de agosto de 1999): 1299–322. http://dx.doi.org/10.1088/0951-7715/12/5/306.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Sevryuk, Mikhail B. "Partial preservation of frequencies in KAM theory". Nonlinearity 19, n.º 5 (10 de abril de 2006): 1099–140. http://dx.doi.org/10.1088/0951-7715/19/5/005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

MacKay, R. S., J. D. Meiss y J. Stark. "Converse KAM theory for symplectic twist maps". Nonlinearity 2, n.º 4 (1 de noviembre de 1989): 555–70. http://dx.doi.org/10.1088/0951-7715/2/4/004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Gidea, Marian, James D. Meiss, Ilie Ugarcovici y Howard Weiss. "Applications of KAM theory to population dynamics". Journal of Biological Dynamics 5, n.º 1 (enero de 2011): 44–63. http://dx.doi.org/10.1080/17513758.2010.488301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Gomes, Diogo A. y Adam Oberman. "Viscosity solutions methods for converse KAM theory". ESAIM: Mathematical Modelling and Numerical Analysis 42, n.º 6 (25 de septiembre de 2008): 1047–64. http://dx.doi.org/10.1051/m2an:2008035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Levi, Mark. "KAM theory for particles in periodic potentials". Ergodic Theory and Dynamical Systems 10, n.º 4 (diciembre de 1990): 777–85. http://dx.doi.org/10.1017/s0143385700005897.

Texto completo
Resumen
AbstractIt is shown that the system of the form x + V′ (x) = p (t) with periodic V and p and with (p) = 0 is near-integrable for large energies. In particular, most (in the sense of Lebesgue measure) fast solutions are quasiperiodic, provided V ∈ C(5) and p ∈ L1; furthermore, for any solution x(t) there exists a velocity bound c for all time: |x(t)| < c for all t ∈ R. For any real number r there exists a solution with that average velocity, and when r is rational, this solution can be chosen to be periodic.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Bambusi, D., M. Berti y E. Magistrelli. "Degenerate KAM theory for partial differential equations". Journal of Differential Equations 250, n.º 8 (abril de 2011): 3379–97. http://dx.doi.org/10.1016/j.jde.2010.11.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Khesin, Boris, Sergei Kuksin y Daniel Peralta-Salas. "KAM theory and the 3D Euler equation". Advances in Mathematics 267 (diciembre de 2014): 498–522. http://dx.doi.org/10.1016/j.aim.2014.09.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Evans, Lawrence C. "Further PDE methods for weak KAM theory". Calculus of Variations and Partial Differential Equations 35, n.º 4 (18 de noviembre de 2008): 435–62. http://dx.doi.org/10.1007/s00526-008-0214-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Yu, Yifeng. "L∞ variational problems and weak KAM theory". Communications on Pure and Applied Mathematics 60, n.º 8 (2007): 1111–47. http://dx.doi.org/10.1002/cpa.20173.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Trujillo, Frank. "Uniqueness properties of the KAM curve". Discrete & Continuous Dynamical Systems 41, n.º 11 (2021): 5165. http://dx.doi.org/10.3934/dcds.2021072.

Texto completo
Resumen
<p style='text-indent:20px;'>Classical KAM theory guarantees the existence of a positive measure set of invariant tori for sufficiently smooth non-degenerate near-integrable systems. When seen as a function of the frequency this invariant collection of tori is called the KAM curve of the system. Restricted to analytic regularity, we obtain strong uniqueness properties for these objects. In particular, we prove that KAM curves completely characterize the underlying systems. We also show some of the dynamical implications on systems whose KAM curves share certain common features.</p>
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Sevryuk, M. B. "Kam-stable Hamiltonians". Journal of Dynamical and Control Systems 1, n.º 3 (julio de 1995): 351–66. http://dx.doi.org/10.1007/bf02269374.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Chierchia, Luigi y Gabriella Pinzari. "Properly-degenerate KAM theory (following V. I. Arnold)". Discrete & Continuous Dynamical Systems - S 3, n.º 4 (2010): 545–78. http://dx.doi.org/10.3934/dcdss.2010.3.545.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Berti, Massimiliano, Luca Biasco y Michela Procesi. "KAM theory for the hamiltonian derivative wave equation". Annales scientifiques de l'École normale supérieure 46, n.º 2 (2013): 301–73. http://dx.doi.org/10.24033/asens.2190.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Broer, Henk W. "KAM theory: The legacy of Kolmogorov's 1954 paper". Bulletin of the American Mathematical Society 41, n.º 04 (9 de febrero de 2004): 507–22. http://dx.doi.org/10.1090/s0273-0979-04-01009-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

JianSheng, GENG, XU JunXiang y YOU JianGong. "KAM theory in finite and infinite dimensional spaces". SCIENTIA SINICA Mathematica 47, n.º 1 (12 de diciembre de 2016): 77–96. http://dx.doi.org/10.1360/n012016-00154.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Walsh, James. "A Window into the World of KAM Theory". Mathematics Magazine 93, n.º 4 (7 de agosto de 2020): 244–60. http://dx.doi.org/10.1080/0025570x.2020.1792238.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

MADERNA, EZEQUIEL. "On weak KAM theory for N-body problems". Ergodic Theory and Dynamical Systems 32, n.º 3 (27 de abril de 2011): 1019–41. http://dx.doi.org/10.1017/s0143385711000046.

Texto completo
Resumen
AbstractWe consider N-body problems with potential 1/r2κ, where κ∈(0,1), including the Newtonian case (κ=1/2). Given R>0 and T>0, we find a uniform upper bound for the minimal action of paths binding, in time T, any two configurations which are contained in some ball of radius R. Using cluster partitions, we obtain from these estimates the Hölder regularity of the critical action potential (i.e. of the minimal action of paths binding two configurations in free time). As an application, we establish the weak KAM theorem for these N-body problems, i.e. we prove the existence of fixed points of the Lax–Oleinik semigroup, and we show that they are global viscosity solutions of the corresponding Hamilton–Jacobi equation. We also prove that there are invariant solutions for the action of isometries on the configuration space.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Evans, Lawrence C. "Towards a Quantum Analog of Weak KAM Theory". Communications in Mathematical Physics 244, n.º 2 (1 de enero de 2004): 311–34. http://dx.doi.org/10.1007/s00220-003-0975-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Khanin, Kostya, João Lopes Dias y Jens Marklof. "Multidimensional Continued Fractions, Dynamical Renormalization and KAM Theory". Communications in Mathematical Physics 270, n.º 1 (10 de octubre de 2006): 197–231. http://dx.doi.org/10.1007/s00220-006-0125-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Evans, L. C. "Some new PDE methods for weak KAM theory". Calculus of Variations and Partial Differential Equations 17, n.º 2 (1 de junio de 2003): 159–77. http://dx.doi.org/10.1007/s00526-002-0164-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Bernard, Patrick y Maxime Zavidovique. "Regularization of Subsolutions in Discrete Weak KAM Theory". Canadian Journal of Mathematics 65, n.º 4 (1 de agosto de 2013): 740–56. http://dx.doi.org/10.4153/cjm-2012-059-3.

Texto completo
Resumen
AbstractWe expose different methods of regularizations of subsolutions in the context of discrete weak KAM theory that allow us to prove the existence and the density of C1,1 subsolutions. Moreover, these subsolutions can be made strict and smooth outside of the Aubry set.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Celletti, Alessandra y Luigi Chierchia. "Rigorous estimates for a computer‐assisted KAM theory". Journal of Mathematical Physics 28, n.º 9 (septiembre de 1987): 2078–86. http://dx.doi.org/10.1063/1.527418.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Desogus, Marco y Elisa Casu. "A SURVEY ON MACROECONOMIC DATA IN THE EUROZONE AND A CONTROL DASHBOARD MODEL BASED ON THE KAM AND NEKHOROSHEV THEOREMS AND THE HÉNON ATTRACTOR". Journal of Academy of Business and Economics 21, n.º 3 (1 de octubre de 2021): 67–85. http://dx.doi.org/10.18374/jabe-21-3.6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía